
SAS®

9.1 Scalable Performance
Data Engine
Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1 Scalable Performance Data Engine: Reference, Cary, NC: SAS Institute Inc.

SAS® 9.1 Scalable Performance Data Engine: Reference
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
1-59047-156-3
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/publishing or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New v

Overview v

P A R T 1 Usage 1

Chapter 1 Overview: The SPD Engine 3
Introduction to the SPD Engine 3

Using the SMP Machine 4

How the SPD Engine Organizes SAS Data 4

Comparing the Base SAS Engine and the SPD Engine 5

Interoperability of the Base SAS Engine and the SPD Engine Data Sets 7

Interoperability of the SPD Engine and the SPD Server Data Sets 8

Sharing the SPD Engine Files 8

Features That Enhance I/O Performance 8

Features That Boost Processing Performance 9

The SPD Engine Options 9

Chapter 2 Creating and Loading SPD Engine Files 11
Introduction for Creating and Loading SPD Engine Files 11

Allocating the Library Space 11

Efficiency Using Disk Striping and Large Disk Arrays 14

Converting Base SAS Engine Data Sets to SPD Engine Data Sets 14

Creating and Loading New SPD Engine Data Sets 16

SPD Engine Component File Naming Conventions 16

Efficient Indexing in the SPD Engine 17

P A R T 2 Reference 21

Chapter 3 SPD Engine LIBNAME Statement Options 23
Introduction to the SPD Engine LIBNAME Statement 23

SPD Engine LIBNAME Statement Syntax 23

SPD Engine LIBNAME Statement Options List 33

Chapter 4 SPD Engine Data Set Options 35
Introduction to SPD Engine Data Set Options 35

Syntax 35

SPD Engine Data Set Options List 60

SAS Data Set Options That Behave Differently with the SPD Engine Than with the
Base SAS Engine 61

SAS Data Set Options Not Supported by the SPD Engine 61

Chapter 5 SPD Engine System Options 63

iv

Introduction to SPD Engine System Options 63

Syntax 63

SPD Engine System Options List 71

SAS System Options That Behave Differently with SPD Engine 71

P A R T 3 Appendix 73

Appendix 1 Quick Guide to the SPD Engine Disk-I/O Set-Up 75
SPD Engine Disk-I/O Set-Up 75

Disk Striping and RAIDs 76

Metadata Area Configuration 77

Data Area Configuration 77

Index Area Configuration 81

Work Area Configuration 84

Configuration Validation Program 85

Appendix 2 Recommended Reading 89
Recommended Reading 89

Glossary 91

Index 95

v

What’s New

Overview

The SAS Scalable Performance Data Engine (SPD Engine) is a SAS LIBNAME
engine that provides rapid data delivery to applications by using multiple CPUs to
provide parallel data I/O. The SPD Engine is not intended to replace the default Base
SAS engine. Rather it is intended for rapid processing of very large data sets that are
stored in partitions across multiple disk volumes.

Note: z/OS is the successor to the OS/390 operating system. SAS 9.1 for z/OS is
supported on both OS/390 and z/OS operating systems and, throughout this document,
any reference to z/OS also applies to OS/390, unless otherwise stated. �

vi What’s New

1

P A R T1

Usage

Chapter 1.Overview: The SPD Engine 3

Chapter 2.Creating and Loading SPD Engine Files 11

2

3

C H A P T E R

1
Overview: The SPD Engine

Introduction to the SPD Engine 3

Using the SMP Machine 4
How the SPD Engine Organizes SAS Data 4

Metadata Component Files 5

Index Component Files 5
Data Component Files 5

Comparing the Base SAS Engine and the SPD Engine 5

The SPD Engine Libraries and File Systems 6
Utility File Workspace 6

Temporary Storage of Interim Data Sets 6
Other Similarities/Differences between the Base SAS Engine Data Sets and the SPD Engine Data

Sets 6

Interoperability of the Base SAS Engine and the SPD Engine Data Sets 7
Interoperability of the SPD Engine and the SPD Server Data Sets 8

Sharing the SPD Engine Files 8

Features That Enhance I/O Performance 8
Multiple Directory Paths 8

Physical Separation of the Data File and the Associated Indexes 8
WHERE Optimization 9

Features That Boost Processing Performance 9

Implicit Sort Capabilities 9
Queries Using Indexes 9

Parallel Index Creation 9

The SPD Engine Options 9

Introduction to the SPD Engine

The Scalable Performance Data Engine (SPD Engine) is designed for
high-performance data delivery. It enables rapid access to SAS data for processing by
the application. The SPD Engine delivers data to applications rapidly because it
organizes the data into a streamlined file format that takes advantage of multiple
CPUs to perform parallel input/output functions.

The SPD Engine uses threads to read blocks of data very rapidly and in parallel. The
software tasks are performed in conjunction with an operating system that enables
threads to execute on any of the machine’s available CPUs. Although threaded I/O is an
important part of the SPD Engine functionality, the real power of the SPD Engine
comes from the way that the software structures SAS data. The SPD Engine organizes
data into a new file format that includes partitioning of the data. This data structure
permits threads, running in parallel, to perform I/O tasks efficiently.

4 Using the SMP Machine Chapter 1

Although it is not intended to replace the default Base SAS engine, the SPD Engine
is a high-speed alternative for processing very large data sets. It reads and writes data
sets that contain millions of observations, data sets that expand beyond the 2-gigabyte
size limit imposed by some operating systems, and data sets that SAS analytic software
and procedures must process faster.

The SPD Engine performance is boosted in these ways:
� support for gigabytes of data
� scalability on symmetric multiprocessor (SMP) machines
� parallel WHERE selections
� parallel loads
� parallel index creation
� parallel I/O data delivery to applications
� implicit sorting on BY statements.

The SPD Engine runs on UNIX, Windows, z/OS (zFS file system only), and OpenVMS
Alpha (on ODS-5 file systems only).

All operating environment-specific information is included in this documentation and
not in the SAS Companion documentation.

Note: Be sure to visit the Scalability Community Web site at
support.sas.com/rnd/scalability for more information about scalability in SAS
9.1 �

Using the SMP Machine
The SPD Engine exploits a hardware and software architecture known as symmetric

multiprocessing (SMP). An SMP machine has multiple central processing units (CPUs)
and an operating system that supports threads. An SMP machine is usually configured
with multiple controllers and multiple disk drives per controller. When the SPD Engine
reads a data file, it launches one or more threads for each CPU; these threads then read
data in parallel from multiple disk drives, driven by one or more controllers per CPU.
The SPD Engine running on an SMP machine provides the capability to read and
deliver much more data to an application in a given elapsed time.

For example, in a perfectly tuned system, reading a data set with an SMP machine
that has 5 CPUs and 10 disk drives could be as much as 5 times faster than I/O on a
single-CPU machine. In addition to threaded I/O, an SMP machine enables threading of
application processes, for example, threaded sorting in the SORT procedure in SAS 9.1

The exact number of CPUs on an SMP machine varies by manufacturer and model.
The operating system of the machine is also specialized; it must be capable of
scheduling code segments so that they execute in parallel. If the operating system
kernel is threaded, performance is further enhanced because it prevents contention
between the executing threads.

As threads run on the SMP machine, managed by a threaded operating system, the
available CPUs work together. The synergy between the CPUs and threads enables the
software to scale processing performance. The scalability, in turn, significantly
increases overall processing speed for tasks such as creating data sets, appending data,
and querying the data by using WHERE statements.

How the SPD Engine Organizes SAS Data
Because the SPD Engine organizes data for high-performance processing, an SPD

Engine data set is physically different from a Base SAS engine data set. The Base SAS

Overview: The SPD Engine Comparing the Base SAS Engine and the SPD Engine 5

engine stores data in a single data file that contains both data and data descriptors for
the file (metadata). The SPD Engine creates separate files for the data and data
descriptors. In addition, if the data set is indexed, two index files are created for each
index. Each of these four types of files is called an SPD Engine component file and each
has an identifying file extension.

In addition, each of these components can comprise one or more physical files so that
the component can span volumes but can be referenced as one logical file. For example,
the SPD Engine can create many physical files containing data, but reference it as a
single data component in an SPD Engine data set. The metadata and index components
differ from the data component in two ways:

1 You can specify a fixed length partition size for data component files using the
PARTSIZE= option. However, you have little or no control over the size of the
metadata or index partitions.

2 The data component files are created in a cyclical fashion across all defined paths.
The metadata and index components are created in a single path until that path is
full; then the next path is used.

Metadata Component Files
The SPD Engine data set stores the descriptive metadata in a file with the file

extension .mdf. Usually an SPD Engine data set has only one .mdf file.

Index Component Files
If the file is indexed, the SPD Engine creates two index component files for each

index. Each of these files contains a particular view of the index, so both are present for
each data set.

� The index file with the .hbx file extension contains the global index.
� The index file with the .idx file extension contains the segment index.

Data Component Files
The data component of an SPD Engine data set can be several or many files

(partitions) per path or device, rather than just one. Each of these partitions is a fixed
length, specified by you when you create the SPD Engine data set.

Specifying a partition size for the data component files allows you to tune the
performance of your applications because the partitions are the threadable units, that
is, each partition (file) is read in one thread. Chapter 2, “Creating and Loading SPD
Engine Files,” on page 11 provides details on how the SPD Engine stores data,
metadata, and indexes.

Comparing the Base SAS Engine and the SPD Engine
Base SAS engine data sets and SPD Engine data sets have many similarities. They

both store data in a SAS data library, which is a collection of files that reside in one or
more directories. However, since the SPD Engine data libraries can span devices and
file systems, the SPD Engine is ideal for use with very large data sets. Also, the SPD
Engine enables you to specify separate directories, or devices, for each component on
the LIBNAME statement. Chapter 2, “Creating and Loading SPD Engine Files,” on
page 11 provides details on designing and setting up the SPD Engine data libraries.

6 The SPD Engine Libraries and File Systems Chapter 1

The SPD Engine Libraries and File Systems
An SPD Engine library can contain data files, metadata files, and index files. The

SPD Engine does not support catalogs, SAS VIEWS, MDDBs, or other utility (byte) files.
The SPD Engine uses the zFS file system for OS/390 and z/OS and the ODS-5 file

system for OpenVMS Alpha. This means that some functionality might be slightly
different on these platforms. For example, for OS/390 and z/OS, the user must have a
home directory on zFS.

Utility File Workspace
Utility files are generated during the SPD Engine operations that need extra space,

for example, when creating parallel indexes or when sorting very large files. Default
locations exist for all platforms but, if you have large amounts of data to process, the
default location may not be large enough. The SPD Engine system option
SPDEUTILLOC= lets you specify a set of file locations in which to store utility scratch
files. See “SPDEUTILLOC= System Option” on page 68 for details.

Temporary Storage of Interim Data Sets
To create a library to store interim data sets, specify the SPD Engine option TEMP=

on the LIBNAME statement. If you want current applications to refer to these interim
files using one-level names, specify that library on the USER= system option.

This example code creates a user libref for interim data sets. It is deleted at the end
of the session.

libname user spde ’/mydata’ temp=yes;
data a; x=1;
run;
proc print data=a;

The USER= option can be set in the configuration file so that applications that
reference interim data sets with one-level names can run in the SPD Engine.

Other Similarities/Differences between the Base SAS Engine Data Sets
and the SPD Engine Data Sets

The following chart compares the SPD Engine capabilities to Base SAS engine
capabilities.

Table 1.1 Comparing the Base SAS Engine Data Sets and the SPD Engine Data
Sets

Feature SPD Engine Base SAS Engine

Partitioned data sets yes no

Parallel WHERE optimization yes no

Lowest locking level member record

Concurrent access from multiple
SAS sessions on a given data set

READ (INPUT open mode) READ/WRITE (all open modes)

Support in SAS/SHARE no yes

Overview: The SPD Engine Interoperability of the Base SAS Engine and the SPD Engine Data Sets 7

Feature SPD Engine Base SAS Engine

Implicit sort for SAS BY
processing (sort a temporary
copy of the data to support BY
processing)

yes no

User-defined formats and
informats

yes, except in WHERE1 yes

Catalogs no yes

Views no yes

MDDB no yes

Integrity constraints no yes

Data sets generations no yes

CEDA no yes

Audit trail no yes

NLS transcoding no yes

DBCS support no yes

Ability to change/modify
passwords using PROC
DATASETS

no yes

Number of variables more than 32,767 more than 32,767

Number of observations 263-1 (all hosts) 231-1 (on 32-bit hosts)

263-1 (on 64-bit hosts)

COMPRESS= YES|NO YES|NO|CHAR|BINARY

Functions and call routines yes, with some exceptions2 yes

Encryption yes yes

Observations returned in
physical order

no by default; yes via
THREADNUM=1

yes

1 In WHERE processing, user-defined formats and informats are passed to the supervisor for handling;
therefore, they are not processed in parallel.

2 In WHERE processing, functions and call routines introduced in SAS 9 or later are passed to the supervisor
for handling; therefore, they are not processed in parallel.

Interoperability of the Base SAS Engine and the SPD Engine Data Sets
Base SAS engine data sets must be converted to the SPD Engine format in order for

the SPD Engine to access them. You can convert the Base SAS engine data sets easily
using the COPY procedure, the APPEND procedure, or a DATA step. (PROC MIGRATE
cannot be used.) In addition, most of your existing SAS programs can run on the SPD
Engine files with little modification other than the LIBNAME statement. Chapter 2,
“Creating and Loading SPD Engine Files,” on page 11 provides details of converting
Base SAS engine data sets to the SPD Engine.

8 Interoperability of the SPD Engine and the SPD Server Data Sets Chapter 1

Interoperability of the SPD Engine and the SPD Server Data Sets

UNIX and Windows only support the interoperability that the SAS 9.1 SPD Engine
can read the SPD Server 4.0 files and the SPD Server 4.0 product can read the SPD
Engine files created in SAS 9.1 unless they have more than 32,767 variables.

There are certain access requirements to enable this interoperability.

� The OS permissions must be set for access of the files.

� The SPD Engine file must be accessed via the server product using
USER=ANONYMOUS on the LIBNAME statement.

� The server product files, to be usable by the SPD Engine, must not have an ACL
(access control list) owner; they must be stored with USER=ANONYMOUS.

However, some features of the SPD Server cannot be used with the SPD Engine files.

� The SPD Server backup and restore process cannot be used on SPD Engine files.

� The SPD Server index reorganization utility cannot be used. If the SPD Engine
indexes become skewed, delete and then re-create them.

� The enhanced SQL capabilities of the SPD Server, for example, parallel BY group
processing and SQL pass-through, are not supported in the SPD Engine.

Sharing the SPD Engine Files

The SPD Engine supports member-level locking, which means that multiple users
can have the same SPD Engine data set open for INPUT (read only). However, if an
SPD Engine data set has been opened for update, then only that user can access it. If
you want to share the SPD Engine data sets among multiple users who could be both
reading and updating the data set, you must use the SPD Server product.

Features That Enhance I/O Performance

The SPD Engine introduces several new features that enhance I/O performance.
These features can dramatically increase the performance of I/O bound applications, in
which large amounts of data must be delivered to the application for processing.

Multiple Directory Paths
You can specify multiple directory paths and devices for each component type,

because the SPD Engine can reference multiple physical files across volumes as a single
logical file. For very large data sets, this feature circumvents any file size limits that
the operating system might impose.

Physical Separation of the Data File and the Associated Indexes
Because each component file type can be stored in a different location, file

dependencies are not a concern when deciding where to store the component files. Only
cost, performance, and availability of disk space need to be considered.

Overview: The SPD Engine The SPD Engine Options 9

WHERE Optimization
The SPD Engine uses a WHERE optimization process, developed for the SAS SPD

Server product. The SPD Engine automatically determines the optimal process to use
to evaluate observations for qualifying criteria specified in a WHERE statement.
WHERE statement efficiency depends on such factors as whether the variables in the
expression are indexed. A WHERE evaluation planner is included in the SPD Engine
which can choose the best method to use to evaluate WHERE expressions that use
indexes to optimize evaluation.

Features That Boost Processing Performance
The SPD Engine also provides several features that can boost processing

performance of CPU-bound applications.

Implicit Sort Capabilities
The SPD Engine’s implicit sort capabilities save time and resources for SAS

applications that process large data sets. With the SPD Engine, you do not need to
invoke the SORT procedure before you submit a SAS statement with a BY clause.
When the SPD Engine encounters a BY clause, if the data is not already sorted or
indexed on the BY variable, the SPD Engine automatically sorts the data without
affecting the permanent data set or producing a new output data set.

Queries Using Indexes
Large data sets can be indexed to maximize performance. Indexes permit rapid

WHERE-expression evaluations for indexed variables. The SPD Engine takes
advantage of multiple CPUs to search the index component file efficiently.

Parallel Index Creation
In addition, the SPD Engine supports parallel index creation so that indexing large

data sets is not time consuming. The SPD Engine decomposes data set append or insert
operations into a set of steps that can be performed in parallel. The level of parallelism
depends on the number of indexes present in the data set. The more indexes you have,
the greater the exploitation of parallelism during index creation. However index
creation requires utility file space and memory resources.

The SPD Engine Options
The SPD Engine works with many Base SAS engine options. In addition, the SPD

Engine-specific options allow you to further manage the SPD Engine libraries and
processing.

See
� Chapter 3, “SPD Engine LIBNAME Statement Options,” on page 23

10 The SPD Engine Options Chapter 1

� Chapter 4, “SPD Engine Data Set Options,” on page 35

� Chapter 5, “SPD Engine System Options,” on page 63.

11

C H A P T E R

2
Creating and Loading SPD
Engine Files

Introduction for Creating and Loading SPD Engine Files 11

Allocating the Library Space 11
Configuring Space for All Components in a Single Path 12

Configuring Separate Library Space for Each Component File 12

Anticipating the Space for Each Component File 12
Storage of the Metadata Component Files 13

Example: Initial Set of Paths 13

Example: Adding Subsequent Paths 13
Storage of the Index Component Files 14

Storage of the Data Partitions 14
Efficiency Using Disk Striping and Large Disk Arrays 14

Converting Base SAS Engine Data Sets to SPD Engine Data Sets 14

Converting Base SAS Engine Data Sets Using PROC COPY 15
Converting Base SAS Engine Data Sets Using PROC APPEND 15

Creating and Loading New SPD Engine Data Sets 16

SPD Engine Component File Naming Conventions 16
Efficient Indexing in the SPD Engine 17

Parallel Index Creation 18
Parallel Index Updates 18

Introduction for Creating and Loading SPD Engine Files

This section provides details on allocating SPD Engine libraries and creating and
loading SPD Engine data and indexes. Performance considerations related to these
tasks are also discussed.

Allocating the Library Space

To realize performance gains through SPD Engine’s partitioned data I/O and
threading capabilities, the SPD Engine libraries must be properly configured and
managed. Optimally, a SAS system administrator will perform these tasks.

An SPD Engine data set requires a file system with enough space to store the
various component files. Often that file system includes multiple directories for these
components. Usually, a single directory path (part of a given file system) is constrained
by a volume limit for the file system as a whole. This limit is the maximum amount of
disk space configured for the file system to use.

12 Configuring Space for All Components in a Single Path Chapter 2

Within this maximum file space, you must allocate enough space for all of the SPD
Engine component files. Understanding how each component file is handled is critical
to estimating the amount of storage you will need in each library.

Configuring Space for All Components in a Single Path
In the simplest SPD Engine library configuration, all of the SPD Engine component

files (data files, metadata files, and index files) can reside in a single path called the
primary path. The primary path is the default path specification in the LIBNAME
statement. The following LIBNAME statement sets up the primary file system for the
MYLIB library:

libname mylib spde ’/disk1/spdedata’;

Because there are no other path options specified, all component files will be created
in this primary path. While storing all component file types in the primary path is
simple and works for very small data sets, it doesn’t take advantage of the performance
boost that storing components separately achieves nor does it take advantage of
multiple CPUs.

Note: The SPD Engine requires fully qualified pathnames to be specified. �

Configuring Separate Library Space for Each Component File
Most sites use the SPD Engine to manage very large amounts of data, which can

have thousands of variables, some of them indexed. At these sites, separate storage
paths are usually defined for the various component types. In addition, using
disk-striping and RAIDS can be very efficient. Refer to Appendix 1, “Quick Guide to the
SPD Engine Disk-I/O Set-Up,” on page 75 for additional information.

All metadata component files must begin in the primary path, even if they span
devices. In addition, specifying separate paths for the data and index components
provides further performance gains. This is because the I/O load is distributed across
disk drives and because separating the data and index components helps prevent disk
contention and increases the level of parallelism that can be achieved, especially in
complex WHERE evaluations. The following example code specifies a primary path for
the metadata and uses the “DATAPATH= LIBNAME Statement Option” on page 26 and
“INDEXPATH= LIBNAME Statement Option” on page 28 to specify additional, separate
paths for the data and index component files:

libname all_users spde ’/disk1/metadata’
datapath= (’/disk2/userdata’ ’/disk3/userdata’)
indexpath= (’/disk4/userindexes’ ’/disk5/userindexes’);

The metadata is stored on disk1, which is the primary path. The data is on disk2 and
disk3, and the indexes are on disk4 and disk5. For all path specifications you must
specify the fully qualified pathname.

CAUTION:
The primary path must be unique for each library. If two librefs are created with the
same primary path but with differences in the other paths, data can be lost. �

Anticipating the Space for Each Component File
In order to properly configure the SPD Engine library space, you need to understand

the relative sizes of the SPD Engine component files. The following information

Creating and Loading SPD Engine Files Storage of the Metadata Component Files 13

provides a general overview. More details are located in Appendix 1, “Quick Guide to
the SPD Engine Disk-I/O Set-Up,” on page 75.

Metadata component files are relatively small files, so the primary path might be
large enough to contain all the metadata files for the library.

Index component files (both .idx and .hbx) can be medium to large depending on the
number of distinct values in each index and whether the indexes are single or
composite indexes. When an index component file grows beyond the space available in
the current file path, a new component file is created in the next path.

Data component files can be quite numerous, depending on the amount of data and
the partition size specified for the data set. Each data partition is stored as a separate
data component file. The size of the data partitions is specified in the “PARTSIZE=
LIBNAME Statement Option” on page 29. Data files are the only component files for
which you can specify a partition size.

Storage of the Metadata Component Files
Because much of the information that the SPD Engine needs in order to efficiently

read and write partitioned data is stored in the metadata component, the SPD Engine
must be able to rapidly access that metadata. By design, the SPD Engine expects every
data set’s metadata component to begin in the primary path. These metadata
component files can overflow into other paths (specified in the “METAPATH= LIBNAME
Statement Option” on page 28) but they must always begin in the primary path. This is
a very important concept to understand because it directly affects whether you can add
data sets (with their associated metadata files) to the library.

When the space in the primary path is full, and a new data set for that library is
created, the SPD Engine cannot begin the metadata component file in that primary
path as required. The create operation will fail with an appropriate error message. To
successfully create a new data set in this case, you must either free space in the primary
path or assign a new library so the metadata component file can begin in the primary
path for the new library. You cannot use the METAPATH= option to create space for a
new data set’s first metadata partition. METAPATH= only specifies overflow space for a
metadata component that begins in the primary path but has expanded to fill the space
reserved in the primary path. Therefore, if you anticipate that your metadata
component will grow to exceed the file size or library space limitations, and you want to
ensure you have space in the primary path for additional data sets, specify an overflow
path for metadata in the METAPATH= option when you first create the library.

For data and index component files, however, you can specify additional space at a
later time, even if you specified separate paths for data and index component files in
the initial LIBNAME statement.

Example: Initial Set of Paths
In this example, the LIBNAME statement specifies the MYLIB directory for the

primary path. By default, this path is used to store initial metadata partitions. Other
devices and directories are specified to store the data and index partitions.

libname myref spde ’mylib’
datapath=(’/mydisk30/siteuser’)
indexpath=(’/mydisk31/siteuser’);

Example: Adding Subsequent Paths
Later, if more space is needed, for example for appending large amounts of data,

additional devices are added for the data and indexes. For example,

14 Efficiency Using Disk Striping and Large Disk Arrays Chapter 2

libname myref spde ’mylib’
datapath=(’/mydisk30/siteuser’ ’/mydisk32/siteuser’ ’/mydisk33/siteuser’)
indexpath=(’/mydisk31/siteuser’ ’/mydisk34/siteuser’);

Storage of the Index Component Files
Index component files are also stored based on overflow space. When several file

paths are specified with the INDEXPATH=option, index files are started in the first
available space and then overflow to the next file path when the previous space is filled.
Unlike metadata components, index component files do not have to begin in the
primary path.

Storage of the Data Partitions
The data component partitions are the only files for which you can specify the size.

Partitioned data can be processed in threads easily, thereby taking full advantage of
multiple CPUs on your machine.

The partition size for the data component is fixed and it is set at the time the data
set is created. The default is 16 megabytes, but you can specify a different partition size
using the PARTSIZE= option. Performance depends on appropriate partition sizes. You
are responsible for knowing the size and uses of the data so that SPD Engine data sets
can be created with a partition size that results in a balanced number of observations.
(See “PARTSIZE= Data Set Option” on page 48 for details.)

Unlike index and metadata files, many data partitions can be created in each data
path for a given data set. The SPD Engine uses the collection of file paths that you
specify with the DATAPATH= option to distribute partitions in a cyclic fashion. The
SPD Engine creates the first data partition in the first path, the second partition in the
next path, and so on. The software continues to cycle among the file paths, as many
times as needed, until all data partitions for the data set are stored.

For example, assume that you specify the following in your LIBNAME statement:

datapath=(’/data1’’/data2’)

The SPD Engine stores the first partition in /DATA1, the second partition in /DATA2,
the third partition in /DATA1, and so on. Cyclical distribution of the data partitions
creates disk striping, which can be highly efficient. Disk striping is discussed in detail
in Appendix 1, “Quick Guide to the SPD Engine Disk-I/O Set-Up,” on page 75.

Efficiency Using Disk Striping and Large Disk Arrays
If your system has a file creation utility that enables you to override the file system

limitations and create file systems (volumes) greater than the space on a single disk,
you can use the utility to allocate SPD Engine libraries that span multiple disk devices,
such as redundant arrays of independent disks (RAIDs). RAID configurations employ a
technique called disk striping that can significantly enhance I/O. For more information
on disk striping and RAIDS, see Appendix 1, “Quick Guide to the SPD Engine Disk-I/O
Set-Up,” on page 75.

Converting Base SAS Engine Data Sets to SPD Engine Data Sets
You can convert existing Base SAS engine data sets to SPD Engine data sets using

these methods:

Creating and Loading SPD Engine Files Converting Base SAS Engine Data Sets Using PROC APPEND 15

� PROC COPY

� PROC APPEND.

Some limitations apply. For example, if your Base SAS engine data has integrity
constraints, then the integrity constraints are dropped when the file is created in the
SPD Engine format. The following chart of file characteristics indicates whether that
characteristic will be retained, dropped, or result in error when converted.

Table 2.1 Conversion Results for Base SAS File Characteristics

Base SAS File Characteristic Conversion Result

Indexes Rebuilt in SPD Engine (in parallel if
ASYNCINDEX=YES)

Base SAS engine COMPRESS=YES* Converts with SPD Engine compression
(COMPRESS=YES)

Base SAS engine ENCRYPT=YES Encryption retained

CHAR compression Changed to SPD Engine compression
(COMPRESS=YES)

BINARY compression Results in ERROR

User defined compression Results in ERROR

Integrity constraints Dropped without ERROR

Audit file Dropped without ERROR

Generations file Dropped without ERROR

* If the Base SAS engine file has both compression and encryption, the compression is
dropped but the encryption is retained.

Converting Base SAS Engine Data Sets Using PROC COPY
To create an SPD Engine data set from an existing Base SAS engine data set you can

simply use the COPY procedure as shown in this example. The PROC COPY statement
copies the Base SAS engine-formatted data set LOCAL.RACQUETS to a new SPD
Engine-formatted data set SPORT.RACQUETS.

libname sport spde ’conversion_area’;

proc copy in=local out=sport;
select racquets;

run;

Even though the indexes on the Base SAS engine data set are automatically
regenerated as the SPD Engine indexes (both .hdx and .idx files), they are not created
in parallel because the data set option ASYNCINDEX=NO is the default. The default
partition size is 16 megabytes.

Converting Base SAS Engine Data Sets Using PROC APPEND
Use the APPEND procedure when you need to specify data set options for a new SPD

Engine data set.

16 Creating and Loading New SPD Engine Data Sets Chapter 2

This example creates an SPD Engine data set from a Base SAS engine data set using
PROC APPEND. The ASYNCINDEX=YES data set option specifies to build the indexes
in parallel. The PARTSIZE= option specifies to create partitions of 100 megabytes.

libname spdelib spde ’old_data’;
libname somelib ’old_data’;
proc append base=spdelib.cars (asyncindex=yes partsize=100)

data=somelib.cars;
run;

Creating and Loading New SPD Engine Data Sets
To create a new SPD Engine data set, you can use the DATA step, any PROC

statement* with the OUT= option, or PROC SQL with the CREATE TABLE= option.
The following example uses the DATA step to create a new SPD Engine data set,

CARDATA.OLD_AUTOS in the report_area directory. The options ENCRYPT= and
PW= are Base SAS engine options; COMPRESS= is the SPD Engine-specific option.

libname cardata spde ’/report_area’(compress=yes encrypt=yes pw=secret);

data cardata.old_autos;
infile ’old_cars’;
input year $4. @6 manufacturer $12. @18 model $12. @31 body_style $5. @37
engine_liters @42 transmission_type $1. @45 exterior_color
$10. @55 mileage @62 condition;

datalines;

1966 Ford Mustang conv 3.5 M white 143000 2
1967 Chevrolet Corvair sedan 2.2 M burgundy 70000 3
1975 Volkswagen Beetle 2door 1.8 M yellow 80000 4
1987 BMW 325is 2door 2.5 A black 110000 3
1962 Nash Metropolitan conv 1.3 M red 125000 3
;

SPD Engine Component File Naming Conventions
When you create an SPD Engine data set, many component files can result. SPD

Engine component files are stored with the following naming conventions:

filename.mdf.0.p#.v#.spds9
filename.dpf.fuid.p#.v#.spds9
filename.idxsuffix.fuid.p#.v#.spds9
filename.hbxsuffix.fuid.p#.v#.spds9

filename
a valid SAS file name.

mdf

* except PROC MIGRATE.

Creating and Loading SPD Engine Files Efficient Indexing in the SPD Engine 17

identifies the metadata component file.

dpf
identifies the partitioned data component files.

p#
is the partition number.

v#
is the version number.

fuid
is the unique file id, which is set to the primary (metadata) path.

idxsuffix
identifies the segmented view of an index, where suffix is the name of the index.

hbxsuffix
identifies the global view of an index, where suffix is the name of the index.

spds9
denotes a SAS 9 SPD Engine component file.

Table 2.2 shows the data set component files that are created when you use this
LIBNAME statement and DATA step:

libname sample spde ’/DATA01/mydir’
datapath=(’/DATA01/mydir’ ’/DATA02/mydir’)
indexpath=(’/IDX1/mydir’);

data sample.mine(index=(ssn));
do i=1 to 100000;
ssn=ranuni(0);
end;

run;

Table 2.2 Data Set Component Files

mine.mdf.0.0.0.spde metadata file

mine.dpf._DATA01_mydir.0.1.spds9 data file partition #1

mine.dpf._DATA02_mydir.1.1.spds9 data file partition #2

mine.dpf._DATA01_mydir.n-1.spds9 data file partition #n

mine.dpf._DATA02_mydir.n.1.1.spds9 data file partition #n+1

mine.hbxssn._DATA01_mydir.0.1.spds9 global index data set for variable
SSN

mine.idxssn._DATA01_mydir.0.1.spds9 segmented index data set for
variable SSN

Efficient Indexing in the SPD Engine
Indexes can improve the performance of WHERE expression processing and BY

expression processing. The SPD Engine enables the rapid creation and update of
indexes because it can process these in parallel.

The SPD Engine’s indexes are especially suited for data sets of varying sizes and
data distributions. These indexes contain both a segment view and a global view of

18 Parallel Index Creation Chapter 2

indexed variables’ values. This feature allows the SPD Engine to optimally support
both queries that require global data views, such as BY expression processing, and
queries that require segment views, such as parallel processing of WHERE expressions.

Parallel Index Creation
You can create indexes on your SPD Engine data in parallel, asynchronously. To

enable asynchronous parallel index creation, use the “ASYNCINDEX= Data Set Option”
on page 36.

Use this option with the DATA step INDEX= option, with PROC DATASETS INDEX
CREATE commands, or on the PROC APPEND statement when creating an SPD
Engine data set from a Base SAS engine data set that has an index. Each method
allows all of the declared indexes to be populated from a single scan of the data set.

The following example shows indexes created in parallel using the DATA step. A
simple index is created on variable X and a composite index is created on variables A
and B.

data foo.mine(index=(x y=(a b)) asyncindex=yes);
x=1;
a="Doe";
b=20;

run;

To create multiple indexes in parallel, you must allocate enough utility disk space to
create all of the key sorts at the same time. You must also allocate enough memory
space. Use “SPDEUTILLOC= System Option” on page 68 to allocate disk space and
“SPDEINDEXSORTSIZE= System Option” on page 66 in the configuration file or at
invocation to allocate additional memory.

The DATASETS procedure has the flexibility to enable batched parallel index
creation by using multiple MODIFY groups. Instead of creating all of the indexes at
once, which would require a significant amount of space, you can create the indexes in
groups as shown in this example:

proc datasets lib=main;
modify patients(asyncindex=yes);

index create number;
index create class;

run;
modify patients(asyncindex=yes)’

index create lastname firstname;
run;
modify patients(asyncindex=yes);

index create fullname=(lastname firstname);
index create class_sex=(class sex);

run;
quit;

Indexes NUMBER and CLASS are created in parallel, indexes LASTNAME and
FIRSTNAME are created in parallel, and indexes FULLNAME and CLASS_SEX are
created in parallel.

Parallel Index Updates
The SPD Engine software also supports parallel index updating during data set

append operations. Multiple threads enable updates of the data store and index files.

Creating and Loading SPD Engine Files Parallel Index Updates 19

The SPD Engine decomposes a data set append or insert operations into a set of steps
that can be performed in parallel. The level of parallelism attained depends on the
number of indexes present on the data set. As with parallel index creation, this
operation uses memory and disk space for the key sorts that are part of the index
append processing. Use system options SPDEINDEXSORTSIZE= to allocate memory
and SPDEUTILLOC= to allocate disk space.

20

21

P A R T2

Reference

Chapter 3.SPD Engine LIBNAME Statement Options 23

Chapter 4.SPD Engine Data Set Options 35

Chapter 5.SPD Engine System Options 63

22

23

C H A P T E R

3
SPD Engine LIBNAME Statement
Options

Introduction to the SPD Engine LIBNAME Statement 23

SPD Engine LIBNAME Statement Syntax 23
BYSORT= LIBNAME Statement Option 24

DATAPATH= LIBNAME Statement Option 26

ENDOBS= LIBNAME Statement Option 26
INDEXPATH= LIBNAME Statement Option 28

METAPATH= LIBNAME Statement Option 28

PARTSIZE= LIBNAME Statement Option 29
STARTOBS= LIBNAME Statement Option 31

TEMP= LIBNAME Statement Option 32
SPD Engine LIBNAME Statement Options List 33

Introduction to the SPD Engine LIBNAME Statement
This section contains reference information for all LIBNAME options that are valid

for the SPD Engine LIBNAME statement. Some of these LIBNAME options are also
data set options. As in the Base SAS engine, data set options take precedence over
corresponding LIBNAME options if both options are set.

SPD Engine LIBNAME Statement Syntax

LIBNAME libref SPDE ’full-primary-path’ <options> ;

libref
a name that is up to eight characters long and that conforms to the rules for SAS
names. You cannot specify TEMP as a libref for a SPD Engine library unless
TEMP is not used as an environment variable.

’full-primary-path’
the fully qualified pathname of the primary path for the SPD Engine library. The
name must be recognized by the operating environment. Enclose the name in
single or double quotation marks. Unless the DATAPATH= and INDEXPATH=
options are also specified, the index and data components will also be stored in the
same location. The primary path must be unique for each library. Librefs that are
different but that reference the same primary path are interpreted to be the same
library and can result in lost data.

options

24 BYSORT= LIBNAME Statement Option Chapter 3

one or more SPD Engine LIBNAME statement options.

Operating Environment Information: A valid library specification and its syntax are
specific to your operating environment. For details, see the SAS documentation for your
operating environment.

BYSORT= LIBNAME Statement Option

Specifies for the SPD Engine to perform an automatic implicit sort when it encounters a BY
statement.

Corresponding data set option: BYSORT=
Affected by data set option: BYNOEQUALS=
Default: YES

Syntax
BYSORT=YES | NO

YES
specifies to implicitly sort the data based on the BY variables whenever a BY
statement is encountered, rather than explicitly invoking PROC SORT prior to a BY
statement.

NO
specifies not to sort the data based on the BY variables.

Details
DATA or PROC step processing using the default Base SAS engine requires that if
there is no index or if the observations are not in order, the data set must be sorted
before a BY statement is issued. In contrast, by default the SPD Engine sorts the data
returned to the application if the observations are not in order. Unlike PROC SORT,
which creates a new sorted data set, the SPD Engine’s implicit sort does not change the
permanent data set and does not create a new data set. However, utility file space is
used. See “SPDEUTILLOC= System Option” on page 68.

The default is BYSORT=YES. A BYSORT=YES argument allows the implicit sort,
which outputs the observations in BY group order. If the data set option
BYNOEQUALS=YES, then the observations within a group might be output in a
different order from the order in the data set. Set BYNOEQUALS=NO to preserve data
set order.

The BYSORT=NO argument means that the data must already be ordered on the
specified BY variables. This can be the result of a previous explicit sort, an index on the
specified variable(s), or the data set having been created in BY variable order. When
BYSORT=NO, grouped data is delivered to the application in data set order. The data
set option BYNOEQUALS= has no effect when BYSORT=NO.

If you specify the BYSORT= option in the LIBNAME statement, it can be overridden
by specifying BYSORT= in the PROC or DATA steps. Therefore, if you set
BYSORT=NO in the LIBNAME statement and subsequently a BY statement is
encountered, unless your data has been explicitly sorted already, an error will occur.

SPD Engine LIBNAME Statement Options BYSORT= LIBNAME Statement Option 25

Set BYSORT=YES in the DATA or PROC step, for input or update opens, to override
BYSORT=NO in the LIBNAME statement.

Examples

Example 1: Group Formatting with BYSORT=YES by Default

libname growth spde ’D:\SchoolAge’;
data growth.teens;

input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;

proc print data=growth.teens; by sex;run;

Even though the data was not explicitly sorted, no error occurred because
BYSORT=YES is the default. The output is shown below.

Output 3.1 Group Formatting with BYSORT=YES by Default

The SAS System

Sex=F

Obs Name Age Height Weight

2 Carol 14 62.8 102.5
4 Janet 15 62.5 112.5
5 Judy 14 64.3 90.0

Sex=M

Obs Name Age Height Weight

1 Alfred 14 69.0 112.5
3 James 13 57.3 83.0
6 Philip 16 72.0 150.0
7 William 15 66.5 112.0

Example 2: Using BYSORT=NO in the LIBNAME Statement In this example, SAS
returns an error because BYSORT=YES was not specified on the DATA or PROC steps
to override the BYSORT=NO specification on the LIBNAME statement. Whenever
implicit sorting is suppressed (BYSORT=NO), the data must be sorted on the BY
variable prior to the BY statement, for example by using PROC SORT.

libname growth spde ’D:\SchoolAge’ bysort=no;
proc print data=growth.teens; by sex;run;

ERROR: Data set GROWTH.TEENS is not sorted in ascending sequence.
The current by-group has Sex = M and the next by-group has Sex = F.

NOTE: The SAS System stopped processing this step because of errors.

26 DATAPATH= LIBNAME Statement Option Chapter 3

DATAPATH= LIBNAME Statement Option

Specifies a list of paths in which to store data partitions (.dpf) for an SPD Engine data set.

Affected by: PARTSIZE= data set or LIBNAME option

Default: the primary path specified on the LIBNAME statement.

Syntax
DATAPATH= (’path1’ ’path2’...)

’pathn’
is a fully qualified pathname in single or double quotation marks within parentheses.
Separate multiple arguments with spaces.

Details
The SPD Engine creates as many partitions as are needed to store all the data. The
size of the partitions is set using the PARTSIZE= option and partitions are created in
the paths specified using the DATAPATH= option in a cyclic fashion.

Example

Data partitions are created by cycling through the paths specified on the LIBNAME
statement. The first partition is created in /DISK1/DATAFLOW1. The second partition
is created in /DISK1/DATAFLOW2. The third partition is created in /DISK1/
DATAFLOW1, and so on.

libname mylib spde ’/metadisk/metadata’
datapath=(’/disk1/dataflow1’ ’/disk2/dataflow2’);

ENDOBS= LIBNAME Statement Option

Specifies the end observation number in a user-defined range of observations to be processed.

Used with: STARTOBS=

Corresponding data set option: ENDOBS=

Default: the last observation in the data set

Restriction: Use ENDOBS= with input data sets only

Syntax
ENDOBS=n

SPD Engine LIBNAME Statement Options ENDOBS= LIBNAME Statement Option 27

n
is the number of the end observation.

Details
By default, the SPD Engine processes all the observations in the data set unless you
specify a range of observations using STARTOBS= and ENDOBS= values. If the
STARTOBS= option is used without the ENDOBS= option, the implied value of
ENDOBS= is the end of the data set. When both options are used together, the value of
ENDOBS= must be greater than the value of STARTOBS=.

In contrast to the Base SAS Engine options FIRSTOBS= and OBS=, the
STARTOBS= and ENDOBS= SPD Engine options can be used on the LIBNAME
statement. (Refer to Chapter 4, “SPD Engine Data Set Options,” on page 35 for
information on using the ENDOBS= data set option in WHERE processing.)

Example

This example shows that the STARTOBS and ENDOBS options subset the data
before the WHERE clause executes. The example prints the four observations that were
qualified by the WHERE expression (age >13 in the PRINT procedure) out of the five
observations processed from the input data set:

libname growth spde ’D:\SchoolAge’ endobs=5;
data growth.teens;

input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;

proc print data=growth.teens;
where age >13;

run;

The SAS System

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5
2 Carol F 14 62.8 102.5
4 Janet F 15 62.5 112.5
5 Judy F 14 64.3 90.0

28 INDEXPATH= LIBNAME Statement Option Chapter 3

INDEXPATH= LIBNAME Statement Option

Specifies a path or list of paths in which to store the two types of index component files (.hbx and
.idx) associated with an SPD Engine data set.

Default: the primary path specified on the LIBNAME statement

Syntax
INDEXPATH=(’path1’ ’path2’...)

’pathn’
is a fully qualified pathname, enclosed in single or double quotation marks, within
parentheses. Separate multiple arguments with spaces.

Details
The SPD Engine creates the two index component files in the location specified. When
there is not enough space, the index component files overflow into the second file path
specified, and so on.

Example

This example creates index component files that span the paths /DISK1/IDXFLOW1
and /DISK1/IDXFLOW2. The index component files will start in /DISK1/IDXFLOW1
and, when that location is full, the index files will overflow to /DISK2/IDXFLOW2.

libname mylib spde ’/spdedata’
indexpath=(’/disk1/idxflow1’ ’/disk2/idxflow2’);

METAPATH= LIBNAME Statement Option

Specifies a list of overflow paths to store metadata (.mdf) component files for an SPD Engine data
set.

Default: the primary path specified on the libname statement

Syntax
METAPATH=(’path1’ ’path2’...)

’pathn’
is a fully qualified pathname, enclosed in single or double quotation marks, within
parentheses. Separate multiple arguments with spaces.

SPD Engine LIBNAME Statement Options PARTSIZE= LIBNAME Statement Option 29

Details
The METAPATH= option is specified for space that is exclusively overflow space for the
metadata component file. The metadata component file for each data set must begin in
the primary path, and overflow occurs to the METAPATH= location when that primary
path is full.

Example

This example creates overflow metadata file partitions as needed using the
path /DISK1/METAFLOW1.

When /DISK1SPDE is full, the metadata overflows to /DISK1/METAFLOW1.

libname mylib spde ’/disk1spde’
metapath=(’/disk1/metaflow1’);

PARTSIZE= LIBNAME Statement Option

Specifies, when an SPD Engine data set is created, the largest size (in megabytes) that the data
component partitions must be. This is a fixed size. This specification applies only to the data
component files.

Corresponding data set option: PARTSIZE=
Used in conjunction with system option: MINPARTSIZE=
Affected by LIBNAME option: DATAPATH=
Default: 128

Syntax
PARTSIZE=n

n
is the size of the partition in megabytes. The maximum value is 2047.

Details
SPD Engine data must be stored in multiple partitions in order for it to be
subsequently processed in parallel. Specifying PARTSIZE= forces the software to
partition SPD Engine data files at the given size. The actual size of the partition is
computed to accommodate the largest number of observations that will fit in the
specified size of n megabytes. ˇIf you have a table with an observation length greater
than 65K, you may find that the PARTSIZE= you specify and the actual partition size
do not match. To get these numbers to match, specify a PARTSIZE= that is a multiple
of 32 and the observation length.

By splitting (partitioning) the data portion of an SPD Engine data set into fixed-sized
files, the software can introduce a high degree of scalability for some operations. The
SPD Engine can spawn threads in parallel, up to one thread per partition for WHERE
evaluations, for example. Separate data partitions also allow the SPD Engine to process
the data without the overhead of file access contention between the threads. Because

30 PARTSIZE= LIBNAME Statement Option Chapter 3

each partition is one file, the trade-off for small partition size is that an increased
number of files (for example, UNIX i-nodes) are required to store the observations.

Scalability limitations using PARTSIZE= depend on how you configure and spread
the file systems specified in the DATAPATH= option across striped volumes. (You
should spread each individual volume’s striping configuration across multiple disk
controllers/SCSI channels in the disk storage array.) The goal for the configuration is to
maximize parallelism during data retrieval. Refer to Appendix 1, “Quick Guide to the
SPD Engine Disk-I/O Set-Up,” on page 75 for information on disk striping.

The PARTSIZE= specification is limited by the SPD Engine system option
MINPARTSIZE=, which is usually set and maintained by the system administrator.
MINPARTSIZE= ensures that an inexperienced user does not arbitrarily create small
partitions, thereby generating a large number of files.

The partition size determines a unit of work for many of the parallel operations that
require full data set scans, but more partitions does not always mean faster processing.
The trade-offs involve balancing the increased number of physical files (partitions)
required to store the data set against the amount of work that can be done in parallel
by having more partitions. More partitions means more open files in order to process
the data set, but a smaller number of observations in each partition. A general rule is
to have 10 or fewer partitions per data path, and 3 to 4 partitions per CPU.

To determine an adequate partition size for a new SPD Engine data set, you should
be aware of the following:

� the types of applications that will run against the data
� how much data you have
� how many CPUs will be available to the applications
� which disks are available for storing the partitions
� the relationship of these disks to the CPUs.

For example, if each CPU controls only one disk, then an appropriate partition size
would be one in which each disk contains approximately the same amount of data. If
each CPU controls two disks, then an appropriate partition size would be one in which
the load is balanced so that each CPU does approximately the same amount of work.
Refer to Appendix 1, “Quick Guide to the SPD Engine Disk-I/O Set-Up,” on page 75 for
more information on specifying a partition size.

Note: The PARTSIZE= value for a data set cannot be changed after a data set is
created. To change the PARTSIZE=, you must re-create the data set and specify a
different PARTSIZE= value on the LIBNAME statement or on the new (output) data
set. �

Note: Setting PARTSIZE=0 is not recommended. When PARTSIZE=0, the SPD
Engine uses the DATAPATH= file systems strictly as overflow space. That is, the SPD
Engine creates one partition in the first path and when that file is full, the SPD Engine
proceeds to the second path, and so on. �

Example

Using the COPY procedure, extract a set of observations from an existing data set to
create a non-indexed data set with a partition size of 32 megabytes:

libname sport spde ’conversion_area’ partsize=32;
proc copy in=local out=sport;

select racquets;
run;

SPD Engine LIBNAME Statement Options STARTOBS= LIBNAME Statement Option 31

You have 100 megabytes of data, four CPUs, and one disk per CPU.

Solution: Set the partition size to 8 megabytes. This creates 12.5 partitions
(100/8=12.5). Three partitions will be stored on each disk plus a 4-megabyte partition
on the first disk. (Remember, partitions are created in cyclical fashion as explained in
Chapter 2, “Creating and Loading SPD Engine Files,” on page 11.)

You have 100 megabytes of data, four CPUs, and two disks for each CPU as follows:
CPU1 controls disk1a and disk1b; CPU2 controls disk2a and disk2b; CPU3 controls
disk3a and disk3b; and CPU4 controls disk4a and disk4b.

Solution 1: Set partition size to 8 megabytes. Use the four "a" disks to store the data.
This creates three partitions on each disk, plus a 4-megabyte partition on the first disk.

Solution 2: Set partition size to 4 megabytes. Use all eight disks so that each
partition is 25 megabytes (100/4=25). This will place four partitions on the first disk
and three partitions on the other disks.

STARTOBS= LIBNAME Statement Option

Specifies the starting observation number in a user-defined range of observations to be processed.

Used with: ENDOBS=

Corresponding data set option: STARTOBS=

Default: the first observation in the data set
Restriction: Use STARTOBS= with input data sets only

Syntax
STARTOBS=n

n
is the number of the starting observation.

Details
By default, the SPD Engine processes the entire data set unless you specify a range of
observations with the STARTOBS= and ENDOBS= options. If the ENDOBS= option is
used without the STARTOBS= option, the implied value of STARTOBS= is 1. When
both options are used together, the value of STARTOBS= must be less than the value of
ENDOBS=.

In contrast to the Base SAS engine options FIRSTOBS= and OBS=, the STARTOBS=
and ENDOBS= SPD Engine options can be used on the LIBNAME statement. (Refer to

32 TEMP= LIBNAME Statement Option Chapter 3

Chapter 4, “SPD Engine Data Set Options,” on page 35 for information on using the
STARTOBS= data set option in WHERE processing.)

Example

This example prints the five observations that were qualified by the WHERE
expression (age >13 in PROC PRINT) out of the six observations that were processed
starting with the second observation in the data set:

libname growth spde ’D:\SchoolAge’ startobs=2;
data growth.teens;

input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;

proc print data=growth.teens;
where age >13;

run;

Output 3.2 STARTOBS=

The SAS System

Obs Name Sex Age Height Weight

2 Carol F 14 62.8 102.5
4 Janet F 15 62.5 112.5
5 Judy F 14 64.3 90.0
6 Philip M 16 72.0 150.0
7 William M 15 66.5 112.0

TEMP= LIBNAME Statement Option

Specifies to store the library in a temporary subdirectory of the primary directory.

Default: NO

Syntax
TEMP=YES | NO

YES

SPD Engine LIBNAME Statement Options SPD Engine LIBNAME Statement Options List 33

specifies to create the temporary subdirectory.

NO
specifies not to create a temporary subdirectory.

Details
The TEMP= option creates a temporary subdirectory of the primary directory named in
the LIBNAME statement. The subdirectory and all files contained in it are deleted at
the end of the session.

You can use TEMP= in conjunction with the SAS option USER= to create a temporary
directory to store interim data sets that can be referenced with a single-level name.

Example

This example illustrates two features: the use of the TEMP= libname option to
create a temporary library and the use of the USER= system option to allow the use of
single-level table names for SPD Engine tables. A directory is created under mydata.
The MASTERCOPY table has its metadata file stored there. The data and index for
MASTERCOPY will be created in the locations specified in the DATAPATH= and
INDEXPATH= options, respectively.

libname perm <masterdata>
libname mywork spde ’mydata’

datapath=(’/data01/mypath’ ’/data02/mypath’ ’/data03/mypath’ ’/data04/mypath’)
indexpath=(’index/mypath’) TEMP=YES;

option user=mywork;

data mastercopy (index=(lastname));
set perm.customer;
where region=’W’;

run;

SPD Engine LIBNAME Statement Options List
“BYSORT= LIBNAME Statement Option” on page 24

specifies for the SPD Engine to perform an automatic implicit sort when it
encounters a BY statement.

“DATAPATH= LIBNAME Statement Option” on page 26
specifies a list of paths in which to store data partitions (.dpf) for an SPD Engine
data set.

“ENDOBS= LIBNAME Statement Option” on page 26
specifies the end observation number in a user-defined range of observations to be
processed.

“INDEXPATH= LIBNAME Statement Option” on page 28
specifies a path or list of paths in which to store the two index component files
(.hbx and .idx) associated with an SPD Engine data set.

“METAPATH= LIBNAME Statement Option” on page 28

34 SPD Engine LIBNAME Statement Options List Chapter 3

specifies a list of overflow paths to store metadata (.mdf) component files for an
SPD Engine data set.

“PARTSIZE= LIBNAME Statement Option” on page 29
specifies, when an SPD Engine data set is created, the size (in megabytes) that the
data component partitions must be. This is a fixed-length size. This specification
applies only to partitions in the data component files.

“STARTOBS= LIBNAME Statement Option” on page 31
specifies the starting observation number in a user-defined range of observations
to be processed.

“TEMP= LIBNAME Statement Option” on page 32
specifies to store the library in a temporary subdirectory of the primary directory.

35

C H A P T E R

4
SPD Engine Data Set Options

Introduction to SPD Engine Data Set Options 35

Syntax 35
ASYNCINDEX= Data Set Option 36

BYNOEQUALS= Data Set Option 37

BYSORT= Data Set Option 39
COMPRESS= Data Set Option 41

ENDOBS= Data Set Option 42

IDXWHERE= Data Set Option 45
IOBLOCKSIZE= Data Set Option 46

PADCOMPRESS= Data Set Option 47
PARTSIZE= Data Set Option 48

SEGSIZE= Data Set Option 50

STARTOBS= Data Set Option 51
SYNCADD= Data Set Option 53

THREADNUM= Data Set Option 55

UNIQUESAVE= Data Set Option 56
WHERENOINDEX= Data Set Option 59

SPD Engine Data Set Options List 60
SAS Data Set Options That Behave Differently with the SPD Engine Than with the Base SAS

Engine 61

SAS Data Set Options Not Supported by the SPD Engine 61

Introduction to SPD Engine Data Set Options
Specifying data set options for the SPD Engine is the same as specifying data set

options for the Base SAS engine or SAS/ACCESS engines. This section provides details
on SPD Engine-specific data set options. Base SAS engine data set options that affect
the SPD Engine are also listed.

When using the options, remember that if a data set option is used subsequent to a
LIBNAME option of the same name, the value of the data set option takes precedence.

Syntax

(option-1=value-1 ... option-n=value-n)

Specify a data set option in parentheses after a SAS data set name. To specify
several data set options, separate them with spaces.

36 ASYNCINDEX= Data Set Option Chapter 4

ASYNCINDEX= Data Set Option

When creating multiple indexes on an SPD Engine data set, specifies to create the indexes in
parallel.

Valid in: DATA step and PROC step

Default: NO

Syntax
ASYNCINDEX=YES|NO

YES
creates the indexes in parallel (asynchronously).

NO
creates one index at a time (synchronously).

Details
The SPD Engine can create multiple indexes for a data set at the same time. To do this,
the SPD Engine spawns a single thread for each index created, then processes the
threads simultaneously. Although creating indexes in parallel is much faster than
creating one index at a time, the default for this option is NO because parallel creation
requires additional utility work space and additional memory, which might not be
available. If the index creation fails due to insufficient resources, set the system option
to MEMSIZE=0* or increase the size of the utility file space using the SPDEUTILLOC=
system option. You increase the memory space used for index sorting using the
SPDEINDEXSORTSIZE= system option. If you specify to create indexes in parallel,
specify large enough space using the SPDEUTILLOC= system option. See “Space
Requirement for Index Creation” on page 83.

Example

The DATASETS procedure has the flexibility to allow batched parallel index creation
by using multiple MODIFY groups. Instead of creating all of the indexes at once, which
would require a significant amount of space, you can create the indexes in groups as
shown in the next example:

proc datasets lib=main;
modify patients(asyncindex=yes);

index create PatientNo PatientClass;
run;
modify patients(asyncindex=yes);

index create LastName FirstName;
run;
modify patients(asyncindex=no);

index create FullName=(LastName FirstName)
ClassSex=(PatientClass PatientSex);

* for OpenVMS Alpha, increase the paging file quota (PGFLQUO); for OS/390 or z/OS, increase the REGION size.

SPD Engine Data Set Options BYNOEQUALS= Data Set Option 37

run;
quit;

BYNOEQUALS= Data Set Option

Specifies whether the output order of data set observations with identical values for the BY
variable are guaranteed to be in data set order.

Valid in: DATA step and PROC step
Used with: Data set option BYSORT=YES
Default: NO

Syntax
BYNOEQUALS=YES | NO

YES
does not guarantee that the output order of data set observations with identical
values for a BY variable will be in data set order.

NO
guarantees that the output order of data set observations with identical values for
a BY variable will be in data set order.

Details
When a group of observations with identical values in the BY statement is output, the
order of the observations in the output will be the same as the data set order, because
the default is BYNOEQUALS=NO. By specifying YES, the processing time is decreased,
but the observations are not guaranteed to be output in data set order.

The data set or LIBNAME option BYSORT= must be YES (the default), because the
BYNOEQUALS= option has no effect when BYSORT=NO.

The following table shows when the SPD Engine preserves physical order in the
output.

Table 4.1 SPD Engines Preserves Physical Order

Condition: Data Set Order Preserved?

If BY is present YES (BYNOEQUALS=NO and BYSORT=YES
by default

If BY is present and BYNOEQUALS=YES NO

If BY is present and BYSORT=NO YES (because no implicit sort occurs)

38 BYNOEQUALS= Data Set Option Chapter 4

Condition: Data Set Order Preserved?

If neither BY nor WHERE is present YES

If WHERE is present NO

Examples

Example 1: BYNOEQUALS=YES

In this example, the observations with identical BY values on the key variable are
output in unpredictable order, because BYNOEQUALS=YES:

title ’With BYNOEQUALS=YES’
proc print data=tempdata.housreps(bynoequals=yes);

by state;
where state in (’CA’ ’TX’);

run;

The output is shown below.

With BYNOEQUALS=YES
State=CA

Obs Representative District
26 Berman, Howard L. 26th
55 Calvert, Ken 43d
60 Capps, Lois 22d
76 Cardoza, Dennis 18th
22 Becerra, Xavier 30th
9 Baca, Joe 42d

80 Cox, Christopher 47th
38 Bono, Mary 44th
89 Cunningham, Randy "Duke" 50th

State=TX

Obs Representative District

87 Culberson, John Abney 7th
20 Barton, Joe 6th
75 Combest, Larry 19th
36 Bonilla, Henry 23d
8 Armey, Richard K. 26th

23 Bentsen, Ken 25th
44 Brady, Kevin 8th

Example 2: BYNOEQUALS=NO
This example shows the output with BYNOEQUALS=NO:

title ’With BYNOEQUALS=NO’;
proc print data=tempdata.housreps(bynoequals=no);

by state;
where state in (’CA’ ’TX’);

run;

The output is shown below.

SPD Engine Data Set Options BYSORT= Data Set Option 39

With BYNOEQUALS=NO

State=CA

Obs Representative District

9 Baca, Joe 42d
22 Becerra, Xavier 30th
26 Berman, Howard L. 26th
38 Bono, Mary 44th
55 Calvert, Ken 43d
60 Capps, Lois 22d
76 Cardoza, Dennis 18th
80 Cox, Christopher 47th
89 Cunningham, Randy "Duke" 50th

State=TX

Obs Representative District

8 Armey, Richard K. 26th
20 Barton, Joe 6th
23 Bentsen, Ken 25th
36 Bonilla, Henry 23d
44 Brady, Kevin 8th
75 Combest, Larry 19th
87 Culberson, John Abney 7th

BYSORT= Data Set Option

Specifies for the SPD Engine to perform an automatic implicit sort when it encounters a BY
statement.

Valid in: DATA step and PROC step

Affects data set option: BYNOEQUALS=

Default: YES

Syntax
BYSORT=YES | NO

YES
specifies to implicitly sort the data based on the BY variables whenever a BY
statement is encountered, rather than explicitly invoking the SORT procedure prior
to a BY statement.

NO
specifies not to sort the data based on the BY variables. Specifying NO means that
the data must already be sorted prior to the BY statement.

Details
DATA or PROC step processing using the default Base SAS engine requires that if
there is no index or if the observations are not in order, the data set must be sorted

40 BYSORT= Data Set Option Chapter 4

before a BY statement is issued. In contrast, by default the SPD Engine sorts the data
returned to the application if the observations are not in order. Unlike PROC SORT,
which creates a new sorted data set, the SPD Engine’s implicit sort does not change the
permanent data set and does not create a new data set. However, utility file space is
used. See SPDEUTILLOC= system option in Chapter 5, “SPD Engine System Options,”
on page 63.

The default is BYSORT=YES. A BYSORT=YES argument allows the implicit sort,
which outputs the observations in BY group order. If the data set option
BYNOEQUALS=YES, then the observations within a group might possibly be output in
a different order from the order in the data set. Set BYNOEQUALS=NO to preserve
data set order.

The BYSORT=NO argument means that the data must already be ordered on the
specified BY variables. This can be the result of a previous explicit sort, an index on the
specified variable(s), or the data set having been created in BY variable order. When
BYSORT=NO, grouped data is delivered to the application in data set order. The data
set option BYNOEQUALS= has no effect when BYSORT=NO.

If you specify the BYSORT= option in the LIBNAME statement, it can be overridden
by specifying BYSORT= in the PROC or DATA steps. Therefore, if you set
BYSORT=NO in the LIBNAME statement and subsequently a BY statement is
encountered, unless your data has been explicitly sorted already, an error will occur.
Set BYSORT=YES in the DATA or PROC step, for input or update opens, to override
BYSORT=NO in the LIBNAME statement.

Examples

Example 1: BYSORT=YES by default
Group formatting with BYSORT= YES by default:

libname growth spde ’D:\SchoolAge’;
data growth.teens;

input Name $ Sex $ Age Height Weight;
datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
William M 15 66.5 112.0
;

proc print data=growth.teens; by sex;
run;

Even though the data was not explicitly sorted, no error occurred because
BYSORT=YES is the default. The output is shown below.

SPD Engine Data Set Options COMPRESS= Data Set Option 41

The SAS System

Sex=F
Obs Name Age Height Weight

2 Carol 14 62.8 102.5
4 Janet 15 62.5 112.5
5 Judy 14 64.3 90.0

Sex=M
Obs Name Age Height Weight

1 Alfred 14 69.0 112.5
3 James 13 57.3 83.0
6 Philip 16 72.0 150.0
7 William 15 66.5 112.0

Example 2: BYSORT=NO With BYSORT=NO in the PROC PRINT statement, SAS
returns an error whenever implicit sorting is suppressed (BYSORT=NO), the data must
be sorted on the BY variable prior to the BY statement, for example by using PROC
SORT.

libname growth spde ’D:\SchoolAge’;
proc print data=growth.teens (bysort=no); by sex;run;

ERROR: Data set GROWTH.TEENS is not sorted in ascending sequence.
The current by-group has Sex = M and the next by-group has Sex = F.

NOTE: SAS stopped processing this step because of errors.

COMPRESS= Data Set Option

Specifies to compress SPD Engine data sets on disk as they are being created.

Valid in: DATA step and PROC step
Related data set options: IOBLOCKSIZE=, PADCOMPRESS=
Default: NO

Syntax
COMPRESS= YES|NO

YES
performs the run-length compression on the data set.

NO
performs no data set compression.

Details
When COMPRESS=YES, the SPD Engine compresses by blocks the data component file
as it is created. To specify the number of observations that you want to store in a

42 ENDOBS= Data Set Option Chapter 4

compressed block, use the data set option IOBLOCKSIZE= when you create the data
set. To add padding to the compressed block, specify PADCOMPRESS= when updating
the compressed file or when creating the data set.

Unlike the default Base SAS engine, the SPD Engine does not support BINARY or
user-specified compression. In addition, if you are migrating a Base SAS engine data
set that is both compressed and encrypted, the encryption is preserved but the
compression is dropped.

Note: Once a compressed data set is created, you cannot change its block size. To
resize the block, you must copy the data set to a new data set, setting IOBLOCKSIZE=
to the block size desired for the output data set. Therefore, if the size of the data set is
expected to increase, it is recommended that you use the PADCOMPRESS= option if
updates in place will occur. �

Using COMPRESS= when creating an SPD Engine data set from a Base SAS engine data
set. If you are creating an SPD Engine data set from a compressed Base SAS engine
data set, the COPY procedure preserves the compression if the Base SAS engine data
set was compressed with YES or CHAR. If the Base SAS engine data set was
compressed with BINARY, you must create a new SPD Engine data set using either
PROC APPEND or the DATA step and specifying COMPRESS=YES.

Examples

Example 1: Using the DATA Step

libname v9lib v9 ’.’;
libname spdelib spde ’.’;
data v9lib.a(compress=binary); y=1; run;

data spdelib.a(compress=yes); set v9lib.a; run;

Example 2: Using PROC APPEND

libname v9lib v9 ’.’;
libname spdelib spde ’.’;

data v9lib.a(compress=binary); y=1; run;

proc append base=spdelib.a(compress=yes); data=v9lib.a; run;

ENDOBS= Data Set Option

Specifies the end observation number in a user-defined range of observations to be processed.

Valid in: DATA step and PROC step
Used with data set option: STARTOBS=
Default: the last observation in the data set
Restriction: Use ENDOBS= with input data sets only

Syntax
ENDOBS=n

SPD Engine Data Set Options ENDOBS= Data Set Option 43

n
is the number of the end observation.

Details
By default, the SPD Engine processes the entire data set unless you specify a range of
observations with STARTOBS= or ENDOBS=. If the STARTOBS= option is used
without the ENDOBS= option, the implied value of ENDOBS= is the end of the data
set. When both options are used together, the value of ENDOBS= must be greater than
the value of STARTOBS=.

The ENDOBS data set option in the SPD Engine works the same way as the OBS=
data set option in the default Base SAS engine except when specified for a WHERE
expression.

Using ENDOBS= with a WHERE Expression In contrast to the Base SAS engine option
OBS=, when ENDOBS= is used with WHERE, the ENDOBS= value represents the last
observation to process rather than the number of observations to return. The following
examples show the difference.

Examples

Example 1: ENDOBS= with SPD Engine A data set is created and processed by the
SPD Engine with ENDOBS=5 specified. The WHERE expression is applied to the data
set ending with observation number 5. The PRINT procedure prints four observations,
which is the set of all observations qualified by the WHERE expression.

libname growth spde ’c:\temp’;
data growth.teens;

input Name $ Sex $ Age Height Weight;
list;

datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.0
Alice F 14 65.1 91.0
William M 15 66.5 112.0
;

proc print data=growth.teens (endobs=5);
where age >13;
title ’WHERE age>13 using SPD Engine’;

run;

44 ENDOBS= Data Set Option Chapter 4

Output 4.1 Four Observations Printed

WHERE age>13 using SPD Engine

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5
2 Carol F 14 62.8 102.5
4 Janet F 15 62.5 112.5
5 Judy F 14 64.3 90.0

Example 2: OBS= with the V9 Base SAS Engine The same data set as in Example 1 is
processed by the default Base SAS engine with OBS=5 specified. PROC PRINT prints
five observations from the set of all observations qualified by the WHERE expression,
ending with the 5th qualified observation.

libname growth v9 ’c:\temp’;
data growth.teens;

input Name $ Sex $ Age Height Weight;
list;

datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
;

proc print data=growth.teens (obs=5);
where age >13;
title ’WHERE age>13 using V9’;

run;

Output 4.2 Five Observations Printed

WHERE age >13 using V9

Obs Name Sex Age Height Weight

1 Alfred M 14 69.0 112.5
2 Carol F 14 62.8 102.5
4 Janet F 15 62.5 112.5
5 Judy F 14 64.3 90.0
6 Philip M 16 72.0 150.0

SPD Engine Data Set Options IDXWHERE= Data Set Option 45

IDXWHERE= Data Set Option

Specifies to use indexes when processing WHERE expressions in the SPD Engine.

Valid in: DATA step and PROC step
Default: YES

Syntax
IDXWHERE=YES | NO

YES
uses indexes when processing WHERE expressions.

NO
ignores indexes when processing WHERE expressions.

Details
IDXWHERE= is primarily a tool to use along with the SPD Engine’s WHERE
expression planning software called WHINIT to test the performance of index use with
WHERE processing in various applications. Set the SAS system option MSGLEVEL=I
so the WHERE processing information will be output to the SAS log.

The SPD Engine supports four WHERE-expression evaluation strategies. Three of
these, strategies 1, 3, and 4, use available indexes and execute the indexed part of the
WHERE expression. Evaluation strategy 2 executes the non-indexed part of the
expression.

The first example below, shows that the evaluation strategy 2 is used in the WHERE
evaluation because IDXWHERE=NO was specified. The second example shows that the
evaluation strategy 1 was used because IDXWHERE=YES was specified.

Examples: WHINIT Log Output (MSGLEVEL=I)

Output 4.3 IDXWHERE=NO

34 options msglevel=i;
35 proc means data=permdata.customer(idxwhere=no);
36 var sales;
37 where state="CA";
38 run;

whinit: WHERE (sstate=’CA’)
whinit returns: ALL EVAL2
NOTE: There were 2981 observations read from the data set PERMDATA.CUSTOMER.

WHERE state=’CA’;

46 IOBLOCKSIZE= Data Set Option Chapter 4

Output 4.4 IDXWHERE=YES

39 proc means data=permdata.customer(idxwhere=yes);
40 var sales;
41 where state="CA";
42 run;

whinit: WHERE (sstate=’CA’)
--

whinit: SBM-INDEX STATE uses 45% of segs (WITHIN maxsegratio 75%)
whinit returns: ALL EVAL1(w/SEGLIST)
NOTE: There were 2981 observations read from the data set PERMDATA.CUSTOMER.

WHERE state=’CA’;

CAUTION:
Do not arbitrarily suppress index use when using both WHERE and BY statements in
combination. When you include both a WHERE expression to filter the observations
from an SPD Engine data set and a BY expression to order them in a desired way,
the filtered observations qualified by the WHERE expression are fed directly into a
sort step as part of the parallel WHERE expression evaluation and the final ordered
observation set is produced as the result. Index use for WHERE processing greatly
improves the filtering performance feeding into the sort step. �

IOBLOCKSIZE= Data Set Option

Specifies the number of observations in a block to be stored in or read from an SPD Engine data
component file that is compressed.

Valid in: DATA step and PROC step

Affects data set options: COMPRESS=, PADCOMPRESS=

Default: 4096

Syntax
IOBLOCKSIZE=n

n
is the number of observations in the block. This number must be a multiple of 1024.

Details
The software reads and stores compressed observations in a data component file in
blocks. IOBLOCKSIZE= specifies how many observations are in the compressed blocks.
When you create the SPD Engine data set with COMPRESS=YES specified, the SPD
Engine compresses the data component file by blocks as it creates it. To specify the
number of observations that you want to store in a compressed block, use the data set
option IOBLOCKSIZE= when you create the data set.

The IOBLOCKSIZE= value affects the physical organization of the compressed data
component file on disk. Once a compressed data set is created, you cannot change its

SPD Engine Data Set Options PADCOMPRESS= Data Set Option 47

block size. To resize the block, you must copy the data set to a new data set, setting
IOBLOCKSIZE= to the block size desired for the output data set. Since compression is
retained when a Base SAS Engine data set is copied to the SPD Engine, you don’t have
to specify COMPRESS= or IOBLOCKSIZE= unless you want to specify a block size
other than the default.

The default is 4096 observations. Specify an IOBLOCKSIZE= value that
complements the data to be accessed: access to data that is randomly distributed favors
a smaller block size, say 4096 observations, because accessing many smaller blocks is
faster than accessing many larger blocks. In contrast, access to data that is uniformly
or sequentially distributed or that requires a full data set scan favors a large block size,
for example 65,536 observations.

Note: See the PADCOMPRESS= option to add pad space to compressed data sets
without changing the compression block size. �

Example
/*IOBLOCKSIZE set to 64K */
data sport.maillist(ioblocksize=65536 compress=yes);

/*IOBLOCKSIZE set to 1K */
data sport.maillist(ioblocksize=1024 compress=yes);

PADCOMPRESS= Data Set Option

Specifies a number of bytes to add to compression blocks in a data set opened for UPDATE.

Valid in: DATA step and PROC step

Related to data set option: COMPRESS=, IOBLOCKSIZE=

Default: 0

Syntax
PADCOMPRESS= n

n
is the number of bytes to add.

Details
Compressed SPD Engine data sets occupy blocks of space on the disk. The number of
observations in a block is specified when the data set is created using the
IOBLOCKSIZE= data set option. When the data set is updated, it is possible that a
new block fragment will need to be created to hold the update. More updates might
then create new fragments, which in turn increases the number of I/O operations
needed to read a data set.

48 PARTSIZE= Data Set Option Chapter 4

By increasing the block padding in certain situations where many updates to the
data set are expected, fragmentation can be kept to a minimum. However, adding
padding can also waste space if you do not update the data set.

You must weigh the cost of padding all compression blocks against the cost of
possible fragmentation of some compression blocks.

Specifying the PADCOMPRESS= data set option when you create or update a data
set adds space to all of the blocks as they are written back to the disk. The
PADCOMPRESS setting is not retained in the data set’s metadata.

PARTSIZE= Data Set Option

When an SPD Engine data set is created, specifies the largest size (in megabytes) that the data
component partitions must be. This is a fixed size. This specification applies only to the data
component files.

Valid in: DATA step and PROC step
Used in conjunction with system option: MINPARTSIZE=
Corresponding LIBNAME Option: PARTSIZE=
Affected by LIBNAME option: DATAPATH=
Default: 128

Syntax
PARTSIZE=n

n
is the size of the partition in megabytes. The maximum value is 2047.

Details
Multiple partitions are necessary to read the data in parallel. The option PARTSIZE=
forces the software to partition SPD Engine data files at the specified size. The actual
size is computed to accommodate the largest number of observations that will fit in the
specified size of n megabytes. If you have a table with an observation length greater
than 65K, you may find that the PARTSIZE= you specify and the actual partition size
do not match. To get these numbers to match, specify a PARTSIZE= that is a multiple
of 32 and the observation length.

By splitting (partitioning) the data portion of an SPD Engine data set into fixed-sized
files, the software can introduce a high degree of scalability for some operations. The
SPD Engine can spawn threads in parallel, up to one thread per partition for WHERE
evaluations, for example. Separate data partitions also allow the SPD Engine to process
the data without the overhead of file access contention between the threads. Because
each partition is one file, the trade-off for small partition size is that an increased
number of files (for example, UNIX i-nodes) are required to store the observations.

Scalability limitations using PARTSIZE= depend on how you configure and spread
the file systems specified in the DATAPATH= option across striped volumes. (You
should spread each individual volume’s striping configuration across multiple disk
controllers/SCSI channels in the disk storage array.) The goal for the configuration, at
the hardware level, is to maximize parallelism during data retrieval. For more

SPD Engine Data Set Options PARTSIZE= Data Set Option 49

information about disk-striping, see Appendix 1, “Quick Guide to the SPD Engine
Disk-I/O Set-Up,” on page 75.

The PARTSIZE= specification is limited by the SPD Engine system option
MINPARTSIZE=, which is usually maintained by the system administrator.
MINPARTSIZE= ensures that an inexperienced user does not arbitrarily create small
partitions, thereby generating a large number of data files.

The partition size determines a unit of work for many of the parallel operations that
require full data set scans. But more partitions does not always mean faster processing.
The trade-offs involve balancing the increased number of physical files (partitions)
required to store the data set versus the amount of work that can be done in parallel by
having more partitions. More partitions means more open files in order to process the
data set, but a smaller number of observations in each partition. A general rule is to
have 10 or fewer partitions per data path, and 3 to 4 partitions per CPU. (Some
operating systems have a limit on the number of open files allowed.)

To determine an adequate partition size for a new SPD Engine data set, you should
be aware of the following:

� the types of applications that will run against the data

� how much data you have

� how many CPUs will be available to the applications

� which disks are available for storing the partitions

� the relationship of these disks to the CPUs.

For example, if each CPU controls only one disk, then an appropriate partition size
would be one in which each disk contains approximately the same amount of data. If
each CPU controls two disks, then an appropriate partition size would be one in which
the load is balanced so that each CPU does approximately the same amount of work.
Refer to Appendix 1, “Quick Guide to the SPD Engine Disk-I/O Set-Up,” on page 75 for
more information on specifying a partition sizes.

Note: The PARTSIZE= value for a data set cannot be changed after a data set is
created. To change the PARTSIZE=, you must re-create the data set and specify a
different PARTSIZE= value on the LIBNAME statement or on the new (output) data
set. �

Note: Setting PARTSIZE=0 is not recommended. When PARTSIZE=0, the SPD
Engine uses the DATAPATH= file systems strictly as overflow space. That is, the SPD
Engine creates one partition in the first path and when that file is full, the SPD Engine
proceeds to the second path, and so on. �

Example: Using PROC SQL

Using the COPY procedure, extract a set of observations from an existing data set to
create a non-indexed data set with a partition size of 32 megabytes:

libname spdecen spde ’D:\CensusData’;
proc sql;

create data set spdecen.hr80spde (partsize=32)
as
select state,age,sex,hour89,industry,occup
from spde cen.precs where hour89 > 40;

quit;

You have 100 megabytes of data, four CPUs, and one disk per CPU.

50 SEGSIZE= Data Set Option Chapter 4

Solution: Set the partition size to 8 megabytes. This creates 12.5 partitions
(100/8=12.5). Three partitions are stored on each disk plus a 4-megabyte partition on
the first disk. (Remember, partitions are created in cyclical fashion as explained in
Chapter 2, “Creating and Loading SPD Engine Files,” on page 11.)

You have 100 megabytes of data, four CPUs, and two disks per CPU as follows:
CPU1 controls disk1a and disk1b; CPU2 controls disk2a and disk2b; CPU3 controls
disk3a and disk3b; and CPU4 controls disk4a and disk4b.

Solution 1: Set partition size to 8 megabytes. Use the four "a" disks to store the data.
This creates three partitions on each disk, plus a 4-megabyte partition on the first disk.

Solution 2: Set partition size to 4 megabytes. Use all eight disks so each partition is
25 megabytes (100/4=25). This creates four partitions on the first disk and three on the
other disks.

SEGSIZE= Data Set Option

Specifies the number of observations to use as the segment size for indexes in an SPD Engine
data set.

Valid in: DATA step and PROC step

Default: 8192

Syntax
SEGSIZE=n

n
is the number of observations to include in an index file segment; n must be a
multiple of 1024. The minimum SEGSIZE= value is 1024 observations.

Details
The segment is the logical portion of a table that is accessible to a WHERE thread as a
unit of work. For example, a segment size of 8192 will logically divide the table into
segments containing rows 1–8192, 8193–16384, and so on.

The size of the index segment determines the structure of the index file and cannot
be changed after the SPD Engine data set is created.

Note: Tests show that modifying the size of the index segment does not significantly
increase performance. �

SPD Engine Data Set Options STARTOBS= Data Set Option 51

Example

This DATA statement specifies a segment size of 65,536 observations for the index
component of the data set MYLIB.MYDATA:

data mylib.mydata (segsize=65536);

STARTOBS= Data Set Option

Specifies the starting observation number in a user-defined range of observations to be processed.

Valid in: DATA step and PROC step
Default: the first observation in the data set
Restriction: STARTOBS= should not be used with the OBS= Base SAS engine data set
option
Restriction: Use STARTOBS= with input data sets only

Syntax
STARTOBS=n

n
is the number of the starting observation.

Details
By default, the SPD Engine processes the entire data set unless you specify a range of
observations with the STARTOBS= and ENDOBS= options. If the ENDOBS= option is
used without the STARTOBS= option, the implied value of STARTOBS= is 1. When
both options are used together, the value of STARTOBS= must be less than the value of
ENDOBS=.

The STARTOBS= data set option used in the SPD Engine works the same way as the
FIRSTOBS= data set option used with the default Base SAS engine except when
specified for a WHERE expression.

Using STARTOBS= with a WHERE Expression When STARTOBS= is used with
WHERE, the STARTOBS= value represents the first observation on which to apply the
WHERE expression. Compare this to the default Base SAS engine data set option
FIRSTOBS=, which specifies the starting observation number within the subset of data
qualified by the WHERE expression.

Examples

Example 1: STARTOBS= with SPD Engine A data set is created and processed by the
SPD Engine with STARTOBS=5 specified. The WHERE expression is applied to the
data set beginning with observation number 5. PROC PRINT prints six observations,
which is the set of observations qualified by the WHERE expression.

libname growth spde ’c:\temp’;
data growth.teens;

52 STARTOBS= Data Set Option Chapter 4

input Name $ Sex $ Age Height Weight;
list;

datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
Mike M 16 67.0 105.1
;

proc print data=growth.teens (startobs=5);
where age >13;
title ’WHERE age>13 using SPD Engine’;

run;

Output 4.5 Six Observations Printed

WHERE age>13 using SPD Engine

Obs Name Sex Age Height Weight

5 Judy F 14 64.3 90.0
6 Philip M 16 72.0 150.0
7 Zeke M 14 71.1 105.1
8 Alice F 14 65.1 91.0
9 William M 15 66.5 112.0

10 Mike M 16 67.0 105.1

Example 2: FIRSTOBS= with the Default Base SAS Engine The same data set as in
Example 1 is processed by the default Base SAS engine with FIRSTOBS=5 specified.
PROC PRINT prints five observations from the set of all observations qualified by the
WHERE expression, starting with the 5th qualified observation. FIRSTOBS= is not
supported in the SPD Engine.

libname growth v9 ’c:\temp’;
data growth.teens;

input Name $ Sex $ Age Height Weight;
list;

datalines;
Alfred M 14 69.0 112.5
Carol F 14 62.8 102.5
James M 13 57.3 83.0
Janet F 15 62.5 112.5
Judy F 14 64.3 90.0
Philip M 16 72.0 150.0
Zeke M 14 71.1 105.1
Alice F 14 65.1 91.0
William M 15 66.5 112.0
Mike M 16 67.0 105.1
;

SPD Engine Data Set Options SYNCADD= Data Set Option 53

proc print data=growth.teens (firstobs=5);
where age >13;
title ’WHERE age>13 using the V9 Engine’;

run;

Output 4.6 Six Observations Printed

WHERE age>13 using the V9 Engine

Obs Name Sex Age Height Weight

5 Judy F 14 64.3 90.0
6 Philip M 16 72.0 150.0
7 Zeke M 14 71.1 105.1
8 Alice F 14 65.1 91.0
9 William M 15 66.5 112.0

10 Mike M 16 67.0 105.1

SYNCADD= Data Set Option

Specifies to process one observation at a time or multiple observations at a time.

Valid in: PROC SQL

Affects the data set option: UNIQUESAVE=

Default: NO

Syntax
SYNCADD=YES|NO

YES
processes a single observation at a time (synchronously).

NO
processes multiple observations at a time (asynchronously).

Details
When SYNCADD=YES, observations are processed one at a time. With PROC SQL, if
you are adding observations to a data set with a unique index, then when the SPD
Engine encounters an observation with a non-unique value, the add operation is
aborted, all transactions just added are backed out, and the original data set on disk is
unchanged.

When SYNCADD=NO, observations are added in blocks (pipelining), which is
usually faster. If you are adding observations to a data set with a unique index and the
SPD Engine encounters a observation with a duplicate index value, the SPD Engine
rejects the observation but continues processing. A status code is issued only at the end
of the append or insert operation.

54 SYNCADD= Data Set Option Chapter 4

To save the rejected observations in a separate data set, set the UNIQUESAVE= data
set option to YES.

Example

In this example, two data sets, UQ01A and UQ01B, are created. On UQ01A, PROC
SQL creates a unique composite index and then inserts new values into the data set
with SYNCADD=NO (inserting blocks of data). Duplicates are stored in a separate file
because UNIQUESAVE= is set to YES.

Then PROC SQL creates a unique composite index on UQ01B and inserts new values
with SYNCADD=YES. SQL stops when duplicate values are encountered and restores
the data set. (Version 8 behavior). Even though UNIQUESAVE=YES, it is ignored. The
SAS log is shown below:

1097 libname userfile spde ’c:\temp’;
NOTE: Libref SPDS USERFILE was successfully assigned as follows:

Engine: SPD Engine
Physical Name: d3727.na.sas.com:528c:\temp\

1098
1099 data uq01a uq01b;
1100 input z $ 1-20 x y;
1101 list;
1102 datalines;

RULE:----+----1----+----2----+----3----+----4----+----5----+----6----+----7
1103 one 1 10
1104 two 2 20
1105 three 3 30
1106 four 4 40
1107 five 5 50
NOTE: The data set USER.UQ01A has 5 observations and 3 variables.
NOTE: The data set USER.UQ01B has 5 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.51 seconds
cpu time 0.06 seconds

1108 ;
1109
1110
1111 proc sql sortseq=ascii exec noerrorstop;
1112 create unique index comp
1113 on uq01a (x, y);
NOTE: Composite index comp has been defined.
1114 insert into uq01a(syncadd=no,uniquesave=yes)
1115 values(’rollback1’, -80, -80)
1116 values(’rollback2’,-90, -90)
1117 values(’nonunique’, 2, 20)
1118 ;
NOTE: 3 observations were inserted into USER.UQ01A.

WARNING: Duplicate values not allowed on index comp for file USER.UQ01A.
(Occurred 1 times.)

NOTE: Duplicate records have been stored in file USER._D2DAAF7.

SPD Engine Data Set Options THREADNUM= Data Set Option 55

NOTE: PROCEDURE SQL used (Total process time):
real time 0.99 seconds
cpu time 0.05 seconds

1119 proc sql sortseq=ascii exec noerrorstop;
1120 create unique index comp
1121 on uq01b (x, y);
NOTE: Composite index comp has been defined.
1122 insert into uq01b(syncadd=yes,uniquesave=yes)
1123 set z=’rollback3’, x=-60, y=-60
1124 set z=’rollback4’, x=-70, y=-70
1125 set z=’nonunique’, x=2, y=20;
ERROR: Duplicate values not allowed on index comp for file UQ01B.
NOTE: Deleting the successful inserts before error noted above to restore

data set to a consistent state.
1126
NOTE: PROCEDURE SQL used (Total process time):

real time 0.26 seconds
cpu time 0.17 seconds

1127 proc compare data=uq01a compare=uq01b;run;

NOTE: There were 7 observations read from the data set USER.UQ01A.
NOTE: There were 5 observations read from the data set USER.UQ01B.
NOTE: PROCEDURE COMPARE used (Total process time):

real time 0.51 seconds
cpu time 0.05 seconds

THREADNUM= Data Set Option

Specifies the number of I/O threads the SPD Engine can spawn for processing an SPD Engine data
set.

Valid in: DATA step and PROC step

Affected by system option: SPDEMAXTHREADS=

Default: The value of the SPDEMAXTHREADS= system option, if set; otherwise, the
default is 2 times the number of CPUs on your machine.

Syntax

THREADNUM=n

n
specifies the number of threads.

56 UNIQUESAVE= Data Set Option Chapter 4

Details
THREADNUM= allows you to specify the maximum number of I/O threads that the
SPD Engine will spawn for processing a data set. The THREADNUM= value applies to
any SPD Engine I/O processing, including:

� WHERE expression processing
� parallel index creation
� I/O requested by thread-enabled applications.

Adjusting THREADNUM= enables the system administrator to adjust the level of
CPU resources the SPD Engine can use for any process. For example in a 64-bit
processor system, setting THREADNUM=4 limits the process to at most four CPUs,
thereby enabling greater throughput for other users or applications.

When THREADNUM= is greater than 1, parallel processing is likely to occur and
therefore, physical order might not be preserved in the output.

You can also use this option to explore scalability for WHERE expression evaluations.
SPDEMAXTHREADS=, a configurable system option, imposes an upper limit on the

consumption of system resources, and therefore constrains the THREADNUM= value.

Note: The SAS system option NOTHREADS does not affect the SPD Engine. �

Note: Setting THREADNUM= to 1 means no parallel processing will occur, which is
behavior consistent with the default Base SAS engine. �

Example

The SPD Engine system option SPDEMAXTHREADS= is set to 128 for the session.
Explore the effects of parallelism on a given query by using a SAS macro such as the
following:

%macro dotest(maxthr);
%do nthr=1 %to &maxthr

data _null_;
set spde cen.precs(threadnum= &nthr);

where occup= ’022’
and state in(’37’,’03’,’06’,’36’);

run
%mend dotest;

UNIQUESAVE= Data Set Option
Specifies to save observations with non-unique key values (the rejected observations) to a
separate data set when appending or inserting observations to data sets with unique indexes.

Valid in: PROC APPEND and PROC SQL
Affected by the data set option: SYNCADD=NO
Used in conjunction with automatic macro variable: SPSUSDS
Default: NO

Syntax
UNIQUESAVE=YES|NO

SPD Engine Data Set Options UNIQUESAVE= Data Set Option 57

YES
if SYNCADD=NO, writes rejected observations to a separate, system-created data
set, which can be accessed by a reference to the macro variable SPDSUSDS.

NO
does not write rejected observations to a separate data set.

Details
Use UNIQUESAVE=YES when you are adding observations to a data set with unique
indexes and the data set option SYNCADD=NO is set.

SYNCADD=NO specifies for an append or insert operation to process observations in
blocks (pipelining) rather than one at a time. Duplicate index values are detected only
after all the observations are applied to a data set. With UNIQUESAVE=YES, the
rejected observations are saved to a separate data set whose name is stored in the SPD
Engine macro variable SPDSUSDS. You can then specify the macro variable in place of
the data set name to identify the rejected observations.

Note: When SYNCADD=YES, the UNIQUESAVE= option is ignored. See the
SYNCADD= data set option for more information. �

Examples

In this example, two data sets with unique indexes on the variable "name" are
created and then appended together using PROC APPEND with UNIQUESAVE=YES.
The SAS log is shown below:

1 libname employee spde ’c:\temp’;
NOTE: Libref EMPLOYEE was successfully assigned as follows:

Engine: SPD Engine
Physical Name: c:\temp\

2 data employee.emp1 (index=(name/unique));
3 input name $ exten;
4 list; datalines;

RULE:----+----1----+----2----+----3----+----4----+----5----+----6----+
5 Jill 4344
6 Jack 5589
7 Jim 8888
8 Sam 3334
NOTE: The data set EMPLOYEE.EMP1 has 4 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 9.98 seconds
cpu time 1.28 seconds

9 run;

10 data employee.emp2 (index=(name/unique));
11 input name $ exten;
12 list; datalines;

RULE:----+----1----+----2----+----3----+----4----+----5----+----6----+
13 Jack 4443

58 UNIQUESAVE= Data Set Option Chapter 4

14 Ann 8438
15 Sam 3334
16 Susan 5321
17 Donna 3332
NOTE: The data set EMPLOYEE.EMP2 has 5 observations and 2 variables.
NOTE: DATA statement used (Total process time):

real time 0.04 seconds
cpu time 0.04 seconds

18 run;

19 proc append data=employee.emp2 base=employee.emp1
20 (syncadd=no uniquesave=yes);
21 run;

NOTE: Appending EMPLOYEE.EMP2 to EMPLOYEE.EMP1.
NOTE: There were 5 observations read from the data set EMPLOYEE.EMP2.
NOTE: 3 observations added.
NOTE: The data set EMPLOYEE.EMP1 has 7 observations and 2 variables.
WARNING: Duplicate values not allowed on index name for file

EMPLOYEE.EMP1. (Occurred 2 times.)
NOTE: Duplicate records have been stored in file EMPLOYEE._D3596FF.
NOTE: PROCEDURE APPEND used (Total process time):

real time 6.25 seconds
cpu time 1.26 seconds

22 proc print data=employee.emp1;
23 title ’Listing of Final Data Set’;
24 run;

NOTE: There were 7 observations read from the data set EMPLOYEE.EMP1.
NOTE: PROCEDURE PRINT used (Total process time):

real time 2.09 seconds
cpu time 0.40 seconds

25
26 proc print data=&spdsusds;
27 title ’Listing of Rejected observations’;
28 run;

NOTE: There were 2 observations read from the data set EMPLOYEE._D3596FF.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

SPD Engine Data Set Options WHERENOINDEX= Data Set Option 59

Output 4.7 UNIQUESAVE=YES

Listing of Final Data Set

Obs name exten
1 Jill 4344
2 Jack 5589
3 Jim 8888
4 Sam 3334
5 Ann 8438
6 Susan 5321
7 Donna 3332

Listing of Rejected observations""

Obs name exten XXX00000
1 Jack 4443 name
2 Sam 3334 name

WHERENOINDEX= Data Set Option

Specifies, when making WHERE expression evaluations, a list of indexes to exclude.

Valid in: DATA step and PROC step
Default: blank

Syntax
WHERENOINDEX=(name1 name2...)

(name1 name2...)
a list of index names that you wish to exclude from the WHERE planner.

Example

The data set PRECS is defined with indexes:

proc datasets lib=spde cen
modify precs;
index create stser=(state serialno) occind=(occup industry) hour89;

quit;

When evaluating the next query, we want the SPD Engine not to use the indexes for
either the STATE and HOUR89 variables.

In this case, we know that our AND combination of the conditions for the OCCUP
and INDUSTRY variables will produce a very small yield. Few observations satisfy the
respective conditions. To avoid the extra index I/O (machine time) that the query
requires for a full-indexed evaluation, use the following SAS code:

proc sql;
create data set hr80spde
as select state, age, sex, hour89, industry, occup from spde cen.precs

60 SPD Engine Data Set Options List Chapter 4

(wherenoindex=(stser hour89))
where occup=’022’
and state in(’37’,’03’,’06’,’36’)
and industry=’012’
and hour89 > 40;

quit;

Note: Specify the index names in the WHERENOINDEX list, not the variable
names. In the example, both the composite index for the STATE variable, STSER, and
the simple index, HOUR89, are excluded from consideration. �

SPD Engine Data Set Options List
“ASYNCINDEX= Data Set Option” on page 36

specifies to create indexes in parallel.

“BYNOEQUALS= Data Set Option” on page 37
specifies the index output order of data set observations with identical values for
the BY variable.

“BYSORT= Data Set Option” on page 39
specifies for the SPD Engine to perform an automatic implicit sort when it
encounters a BY statement.

“COMPRESS= Data Set Option” on page 41
compresses data sets on disk.

“ENDOBS= Data Set Option” on page 42
specifies the ending observation number in a user-defined range for WHERE
expressions.

“IDXWHERE= Data Set Option” on page 45
controls using indexes for WHERE processing.

“IOBLOCKSIZE= Data Set Option” on page 46
specifies the number of observations in a block.

“PADCOMPRESS= Data Set Option” on page 47
specifies a number of bytes to add to compression blocks in a data set opened for
UPDATE.

“PARTSIZE= Data Set Option” on page 48
specifies the partition size of the data component files. This is also a LIBNAME
option.

SEGSIZE=
specifies the number of observations to use as the segment size for indexes in an
SPD Engine data set.

“STARTOBS= Data Set Option” on page 51
specifies the starting observation number in a user-defined for WHERE
expressions.

“SYNCADD= Data Set Option” on page 53
specifies to append one observation or a block of observations at a time.

“THREADNUM= Data Set Option” on page 55
specifies the number of threads to use for the SPD Engine processing.

“UNIQUESAVE= Data Set Option” on page 56

SPD Engine Data Set Options SAS Data Set Options Not Supported by the SPD Engine 61

specifies to save in a separate file any observations that were rejected due to
non-unique key values during an append to a data set with unique indexes when
SYNCADD=NO.

“WHERENOINDEX= Data Set Option” on page 59
specifies a list of indexes to exclude for WHERE evaluations.

SAS Data Set Options That Behave Differently with the SPD Engine
Than with the Base SAS Engine

CNTLLEV=
Only the value MEM is accepted.

COMPRESS=
Only YES and NO values are accepted.

MSGLEVEL=I
Produces WHERE optimization information in the SAS log.

SAS Data Set Options Not Supported by the SPD Engine

� BUFNO=
� DLDMGACTION=
� ENCODING=
� GENMAX=
� GENNUM=
� IDXNAME=
� OUTREP=
� POINTOBS=
� REUSE=
� TOBSNO=

62

63

C H A P T E R

5
SPD Engine System Options

Introduction to SPD Engine System Options 63

Syntax 63
COMPRESS= System Option 64

MAXSEGRATIO= System Option 64

MINPARTSIZE= System Option 66
SPDEINDEXSORTSIZE= System Option 66

SPDEMAXTHREADS= System Option 67

SPDESORTSIZE= System Option 68
SPDEUTILLOC= System Option 68

SPDEWHEVAL= System Option 69
SPD Engine System Options List 71

SAS System Options That Behave Differently with SPD Engine 71

Introduction to SPD Engine System Options

SAS system options are instructions that affect your SAS session. They control the
way that SAS performs operations such as SAS system initialization, hardware and
software interfacing, and the input, processing, and output of jobs and SAS files. The
SPD Engine system options work the same way as other SAS system options. This
section discusses SPD Engine-specific system options and Base SAS system options that
behave differently with the SPD Engine.

Syntax

OPTIONS option(s);

where

option
specifies one or more SPD Engine system options you want to change.

The following example specifies the SPD Engine system option MAXSEGRATIO=:

options maxsegratio=50;

Note: Operating Environment Information: On the command line or in a
configuration file, the syntax is specific to your operating environment. For details, see
the SAS documentation for your operating environment. �

64 COMPRESS= System Option Chapter 5

COMPRESS= System Option

Specifies to compress the SPD Engine data sets on disk as they are being created.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window
Default: NO

Syntax
COMPRESS= YES|NO

YES
performs the run-length compression on the data set.

NO
performs no data set compression.

Details
When COMPRESS=YES, the SPD Engine compresses by blocks the data component file
as it is created. To specify the number of observations that you want to store in a
compressed block, use the data set option IOBLOCKSIZE= when you create the data
set. To add padding to the compressed block, specify PADCOMPRESS= when updating
the compressed file or when creating the data set.

Unlike the default Base SAS engine, the SPD Engine does not support BINARY or
user-specified compression. In addition, if you are migrating a Base SAS engine data
set that is both compressed and encrypted, the encryption is preserved but the
compression is dropped.

Note: Once a compressed data set is created, you cannot change its block size. To
resize the block, you must copy the data set to a new data set, setting IOBLOCKSIZE=
to the block size desired for the output data set. Therefore, if the size of the data set is
expected to increase, it is recommended that you use the PADCOMPRESS= option, if
updates in place will occur. �

Using COMPRESS= when creating an SPD Engine data set from a Base SAS engine data
set. If you are creating an SPD Engine data set from a compressed Base SAS engine
data set, the COPY procedure preserves the compression if the Base SAS engine data
set was compressed with YES or CHAR. If the Base SAS engine data set was
compressed with BINARY, you must create a new SPD Engine data set using either
PROC APPEND or the DATA step and specify COMPRESS=YES.

MAXSEGRATIO= System Option

When evaluating a WHERE expression that contains indexed variables, controls what percentage
of index segments to identify as candidate segments before processing the WHERE expression.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window

SPD Engine System Options MAXSEGRATIO= System Option 65

Affected by data set option: SEGSIZE=

Default: 75

Syntax
MAXSEGRATIO=n

n
specifies an upper limit for the percentage of index segments that the SPD Engine
identifies as containing the value referenced in the WHERE expression. The default
is 75, which specifies for the SPD Engine to use the index to identify segments that
contain the particular WHERE expression value and to stop identifying candidate
segments when more than 75% of all segments are found to contain the value.

The range of valid values is integers between 0–100. If n=0, the SPD Engine does
not try to identify candidate segments but instead applies the WHERE expression to
all segments. If n=100, the SPD Engine checks 100% of the segments in order to
identify candidate segments and then applies the WHERE expression only to those
candidate segments.

Details
For WHERE queries on indexed variables, the SPD Engine can first determine the
number of index segments that contain one or more variable values that match one or
more of the conditions in the WHERE expression. Often a substantial performance gain
can be realized if the WHERE expression is applied only to the segments that contain
observations satisfying the WHERE expression.

The SPD Engine uses the value of MAXSEGRATIO= to determine at what point the
cost of applying the WHERE expression to every segment would be less than the cost of
continuing to identify candidate segments. When the calculated ratio exceeds the ratio
specified in MAXSEGRATIO=, the SPD Engine stops the process of identifying
candidate segments and instead applies the WHERE expression to all segments.

Note: For a few tables, 75 percent might not be the optimal setting. To determine a
better setting, run a performance benchmark, adjust the percentage, and rerun the
performance benchmark. Comparing results will show you how the specific data
population you are querying responds to shifting the index-segment ratio. �

Example

The following specification causes the SPD Engine to begin identifying index
segments that might satisfy the WHERE expression until the percentage of identified
segments, compared to the total number of segments, exceeds 65. If the percentage
exceeds 65, the SPD Engine stops identifying candidate segments and simply applies
the WHERE expression to all segments:

options maxsegratio=65;

The following specification causes the SPD Engine to apply the WHERE expression
to all segments without first identifying any candidate segments:

66 MINPARTSIZE= System Option Chapter 5

options maxsegratio=0;

The following specification causes the SPD Engine to begin identifying index
segments and to not stop until it has pre-evaluated all segments (100%). Then, the
WHERE expression is applied to all candidate segments that were identified.

options maxsegratio=100;

MINPARTSIZE= System Option

Specifies a minimum partition size to use for creating SPD Engine data sets.

Valid in: configuration file, SAS invocation

Related to: PARTSIZE= data set and LIBNAME option

Default: 0

Syntax
MINPARTSIZE=n | nK | nM | nG

n
specifies the minimum partition size in bytes, kilobytes, megabytes, or gigabytes,
respectively. The upper limit for the minimum partition size is 2047 megabytes.

Details
Specifying MINPARTSIZE= sets a lower limit to the partition size that can be specified
with the PARTSIZE= option. The MINPARTSIZE= specification could affect whether
the partitions are created with approximately the same number of observations. A
small partition size means more open files during processing. Your operating system
might have a limit on the number of open files allowed.

SPDEINDEXSORTSIZE= System Option

Specifies the size of memory space that the sorting utility can use when sorting values for creating
an index.

Valid in: configuration file, SAS invocation, OPTIONS statement, Systems Options
window

Affected by data set option: MEMSIZE=

Default: 32 megabytes

SPD Engine System Options SPDEMAXTHREADS= System Option 67

Syntax
SPDEINDEXSORTSIZE=n | nK | nM | nG

n
specifies the amount of memory in bytes, kilobytes, megabytes, or gigabytes,
respectively. If n=0, the sort utility uses its default. The valid value range is from
1,048,576 to 10,736,369,664 bytes.

Details
The SPDEINDEXSORTSIZE= option specifies the maximum amount of memory that
can be used for sorting when creating an index. When indexes are created in parallel
(because ASYNCINDEX=YES), the value you specify in SPDEINDEXSORTSIZE= is
divided up among all the concurrent index creation threads.

If the index creation fails due to insufficient memory, restart SAS with the system
option MEMSIZE=0*, or increase the size of the utility file space using the
SPDEUTILLOC= system option. You increase the memory space used for index sorting
using the SPDEINDEXSORTSIZE= system option. If you specify to create indexes in
parallel, specify large enough space using the SPDEUTILLOC= system option.

SPDEMAXTHREADS= System Option

Specifies the upper limit on the number of threads that the SPD Engine can spawn for I/O
processing.

Valid in: configuration file, SAS invocation
Default: 0

Syntax
SPDEMAXTHREADS=n

n
the maximum number of threads the SPD Engine can spawn. The range of valid
values is 0–65,536. The default is zero, which means that the SPD Engine uses the
value of THREADNUM= if set; otherwise, the SPD Engine sets the number of
threads to spawn as equivalent to two times the number of CPUs on your machine.

Details
Specifying SPDEMAXTHREADS= sets an upper limit on the number of threads to
spawn for the SPD Engine processing, including WHERE expression processing,

* for OpenVMS Alpha, increase the paging file quota (PGFLQUO); for OS/390 or z/OS, increase the REGION size.

68 SPDESORTSIZE= System Option Chapter 5

parallel index creation, and any I/O processing requested by thread-enabled
applications such as SAS thread-enabled procedures. SPDEMAXTHREADS= constrains
the THREADNUM= data set option.

SPDESORTSIZE= System Option

Specifies the size of memory space needed for sorting operations used by the SPD Engine.

Valid in: configuration file, SAS invocation, OPTIONS statement, System Options
window
Default: 32 megabytes

Syntax
SPDESORTSIZE=n | nK | nM | nG

n
specifies the amount of memory in bytes, kilobytes, megabytes, or gigabytes,
respectively. If n=0, the sort utility uses its default. The range of valid values is from
1,048,576 to 10,736,369,664 bytes.

Details
Because the SPD Engine can perform the implicit sort in parallel, the sort size you
specify for SPDESORTSIZE= should be multiplied by the number of processes that will
be in parallel; this total should be less than the physical memory available to your
process. Proper specification of SPDESORTSIZE= can improve performance by
restricting the swapping of memory that is controlled by the operating environment.

If the sort process needs more memory than you specify, restart SAS with the system
option MEMSIZE=0* or increase the size of the utility file space using the
SPDEUTILLOC= system option. You increase the memory space used for index sorting
using the SPDEINDEXSORTSIZE= system option. If you specify to create indexes in
parallel, specify large enough space using the SPDEUTILLOC= system option.

Note: The SORTSIZE= option documented for the Base SAS engine affects PROC
SORT operations. The SPDESORTSIZE= specification affects sorting operations specific
to the SPD Engine. �

SPDEUTILLOC= System Option

Specifies one or more file system locations in which the SPD Engine can temporarily store utility
files.

* for OpenVMS Alpha, increase the paging file quota (PGFLQUO); for OS/390 or z/OS, increase the REGION size.

SPD Engine System Options SPDEWHEVAL= System Option 69

Valid in: configuration file or SAS invocation

Syntax
SPDEUTILLOC= location | (location-1 ...location-n)

location
an existing directory where the utility files are created.

(location-1 ...location-n)
a series of existing directories where the utility files are created. Utility files are
partitioned at file size (limit) of 2 gigabytes.

Note: Location can be enclosed in single or double quotation marks. Quotation
marks are required if location contains embedded blanks. �

Details
The SPD Engine creates temporary utility files during certain processing, such as
implicit sorting and creating indexes. To successfully complete the process, you must be
sure that enough space exists to store the utility files. The SPDEUTILLOC= system
option allows you to specify an adequate amount of space for processing. However, for
the OpenVMS Alpha operating environment, the libraries must be ODS-5 files.

SAS recommends that you always specify SPDEUTILLOC= to ensure you have
enough space for processes that create utility files. If SPDEUTILLOC= is not specified,
each operating environment has one or more default locations. The following table
shows the default utility file locations.

Table 5.1 Default Utility File Locations

Operating Environment Default Location 1 Else, Default Location 2

UNIX UTILLOC= SAS system option,
if specified

SASWORK

Windows UTILLOC= SAS system option,
if specified

SASWORK

z/OS UTILLOC= SAS system option,
if specified

SASWORK

OpenVMS Alpha UTILLOC= SAS system option,
if specified

WORK= SAS system option, if
specifies an ODS-5 directory.1

1 If the WORK= SAS system option does not specify an ODS-5 directory, and if the SAS session was started
with an ODS-5 file specification of SASROOT, the utility files will be created in the SASROOT directory.
Otherwise, there will be no default location, and the LIBNAME assignment will fail.

SPDEWHEVAL= System Option

Specifies the process used to determine which observations meet the condition(s) of a WHERE
expression.

70 SPDEWHEVAL= System Option Chapter 5

Valid in: configuration file, SAS invocation
Default: COST

Syntax
SPDEWHEVAL=COST | EVAL1 | EVAL3EVAL4

COST
specifies that the SPD Engine decides which evaluation strategy to use in order to
optimize the WHERE expression. This process also calculates the number of threads
to be used, which minimizes the overhead of spawning underutilized threads. This is
the default.

EVAL1
is a multi-threaded index evaluation strategy that can quickly determine the rows
that satisfy the WHERE expression, using multiple threads. The number of threads
that are spawned to retrieve the observations is equal to the THREADNUM= value.

EVAL3EVAL4
is a single-threaded index evaluation strategy that is used for a simple or compound
WHERE expression in which all of the key variables have a simple index and no
condition tests for non-equality. Multi-threading might be used to retrieve the
observations.

Details
COST, the default setting for SPDEWHEVAL=, analyzes the WHERE expression and
any available indexes. Based on the analysis, the SPD Engine chooses an evaluation
strategy in order to optimize the WHERE expression. The evaluation strategy can be
EVAL1, EVAL3, EVAL4, or a strategy that sequentially reads the data if no indexes are
available or if the analysis shows that using the index(es) will not improve processing
time.

COST also optimizes the number of threads to use for processing the WHERE
expression. COST determines and spawns the number of threads that can be efficiently
used. Based on the value of THREADNUM=, COST can save significant processing
time by not spawning threads that are underutilized.

COST is the recommended value for SPDEWHEVAL= unless the WHERE expression
exactly meets one of the other evaluation strategy criterion. It is strongly recommended
that benchmark tests be used in order to determine if a value other than COST is more
efficient.

For example, EVAL1 might prove more efficient if the WHERE expression is complex
and there are multiple indexes for the variables. EVAL1 spawns multiple threads in
order to determine which segments meet the conditions of the WHERE expression.
Multiple threads can also be used to retrieve the observations.

Note: In a few situations, COST might not perform the best. To determine if
changing the value to EVAL1 or EVAL3EVAL4 can produce better performance, run a
performance benchmark, change the value, and re-run the performance benchmark.
Comparing results will show you how the specific data population you are querying
responds to rules-based WHERE planning. �

SPD Engine System Options SAS System Options That Behave Differently with SPD Engine 71

SPD Engine System Options List
“COMPRESS= System Option” on page 64

specifies to compress the SPD Engine data set on disk as they are being created.

MAXSEGRATIO=
When evaluating a WHERE expression that contains indexed variables, controls
what percentage of index segments to identify as candidate segments before
processing the WHERE expression.

“MINPARTSIZE= System Option” on page 66
specifies a minimum partition size to use for creating SPD Engine data sets.

“SPDEINDEXSORTSIZE= System Option” on page 66
specifies the size of memory space that the sorting utility can use when sorting
values for creating an index.

“SPDEMAXTHREADS= System Option” on page 67
specifies the upper limit on the number of threads that the SPD Engine can spawn
for I/O processing.

“SPDESORTSIZE= System Option” on page 68
specifies the size of memory space needed for sorting operations used by the SPD
Engine.

“SPDEUTILLOC= System Option” on page 68
specifies one or more file system locations in which the SPD Engine can
temporarily store utility files.

SPDEWHEVAL=
specifies the process used to determine which observations meet the condition(s) of
a WHERE expression.

SAS System Options That Behave Differently with SPD Engine
MSGLEVEL=

The value I enables WHINIT planner output.

COMPRESS=
Does not accept BINARY as an argument; cannot perform user-defined
compression.

DLDMGACTION=
Does not affect the SPD Engine. If an SPD Engine data set is damaged, it must be
restored from a system backup file.

72

73

P A R T3

Appendix

Appendix 1.Quick Guide to the SPD Engine Disk-I/O Set-Up 75

Appendix 2.Recommended Reading 89

74

75

A P P E N D I X

1
Quick Guide to the SPD Engine
Disk-I/O Set-Up

SPD Engine Disk-I/O Set-Up 75

Disk Striping and RAIDs 76
Metadata Area Configuration 77

Assigning a Metadata Area 77

Metadata Space Requirements 77
Data Area Configuration 77

Assigning a Data Area 78

Data Partition Size 78
Data Area Set-Up 78

Data Space Requirements 81
Index Area Configuration 81

Assigning an Index Area 81

Index Space Requirements 82
Estimate for HBX file size 82

Example 82

Estimate for IDX file size 82
Example 83

Space Requirement for Index Creation 83
Work Area Configuration 84

Configuration Validation Program 85

Preparation 85
Running the Program 86

Interpreting the Results 87

SPD Engine Disk-I/O Set-Up
The SPD Engine usually uses four different areas to store the various components

that make up an SPD Engine data set:
� metadata area
� data area
� index area
� work area.

These areas have different disk set-up requirements that utilize one or more RAID
(redundant array of independent disks) levels.

76 Disk Striping and RAIDs Appendix 1

Disk Striping and RAIDs

The SPD Engine disk configuration is best performed using RAIDs.
A defining feature of almost all RAID levels is disk striping (RAID-1 is the

exception). Striping is the process of organizing the linear address space of a volume
into pieces that are spread across a collection of disk drive partitions. For example, you
might configure a volume across two 1-gigabyte partitions on separate disk drives (for
example, A and B) with a stripe size of 64 kilobytes. Stripe 0 lives on drive A, stripe 1
lives on drive B, stripe 2 lives on drive A, and so on.

By distributing the stripes of a volume across multiple disks, it is possible

� to achieve parallelism at the disk I/O level

� to use multiple threads to drive a block of I/O.

This also reduces contention and data transfer latency for a large block I/O requests
because the physical transfer can be split across multiple disk controllers and drives.

Note: Important: Regardless of RAID level, disk volumes should be hardware
striped, not software striped. This is a significant way to improve performance. Without
hardware striping, I/O will bottleneck and constrain performance. A stripe size of
64 kilobytes is a good value. �

The following is a brief summary of RAID levels relevant to the SPD Engine.

RAID 0 (also referred to as striped set)
High performance with low availability. I/O requests are chopped into multiple
smaller pieces, each of which is stored on its own disk. Physically losing a disk
means that all the data on the array is lost. No redundancy exists to recover
volume stripes on a failed disk. A striped set requires a minimum of two disks.
The disks should be identical. The net capacity of a RAID 0 array equals the sum
of the single disk capacities.

RAID 1 (also referred to as mirror)
Disk mirroring for high availability. Every block is duplicated on another mirror
disk, which is also referred to as shadowing. In the event that one disk is lost, the
mirror disk is likely to be intact, preserving the data. RAID 1 can also improve
read performance because a device driver has two potential sources for the same
data. The system can choose the drive that has the least load/latency at a given
point in time. Two identical disks are required. The net capacity of a RAID 1
array equals that of one of its disks.

RAID 5 (also referred to as striped set with rotating ECC)
Good performance and availability at the expense of resources. An error-correcting
code (ECC) is generated for each stripe written to disk. The ECC distributes the
data in each logical stripe across physical stripes in such a way that if a given disk
in the volume is lost, data in the logical stripe can still be recovered from the
remaining physical stripes. The downside of a RAID 5 is resource utilization;
RAID 5 requires extra CPU cycles and extra disk space to transform and manage
data using the ECC model. If one disk is lost, rebuilding the array takes
significant time because all the remaining disks have to be read in order to rebuild
the missing ECC and data. The net capacity of a RAID 5 array consisting of N
disks is equal to the sum of the capacities of N–1 of these disks. This is because
the capacity of one disk is needed to store the ECC information. Usually RAID 5
arrays consist of three or five disks. The minimum is three disks.

Quick Guide to the SPD Engine Disk-I/O Set-Up Data Area Configuration 77

RAID 10 (also referred to as striped mirrors, RAID 1+0)
Many RAID systems offer a combination of RAID 1 (pure disk mirroring) and
RAID 0 (striping) to provide both redundancy and I/O parallelism this
configuration (also referred to as RAID 1+0). Advantages are the same as for
RAID 1 and RAID 0. A RAID 10 array can survive the loss of multiple disks. The
only disadvantage is the requirement for twice as many hard disks as the pure
RAID 0 solution. Generally, this configuration tends to be a top performer if you
have the disk resources to pursue it. If one disk is lost in a RAID 10 array, only
the mirror of this disk has to be read in order to recover from that situation. Raid
10 is not to be confused with RAID 0+1 (also referred to as mirrored stripes),
which has slightly different characteristics. The net capacity of RAID 10 is the
sum of the capacity of half of its disks.

Non-RAID (also referred to as just a bunch of disks or JBOD)
This is actually not a RAID level and is only mentioned for completeness. This
refers to a couple of hard disks, which can be stand-alone or concatenated to
achieve higher capacity than a single disks. JBODs do not feature redundancy and
are slower than most RAID levels.

Metadata Area Configuration
The metadata area keeps information about the data and its indexes. It is vital not

to lose any metadata. Therefore this area needs disk set-up, which features primarily
redundancy, such as RAID 1, also known as mirroring.

Assigning a Metadata Area
The physical metadata location is determined by the primary path definition in the

LIBNAME statement. In the example code below, the primary path is /SPDEMETA1:

libname mydomain SPDE ’/spdemeta1’
metapath=(’/spdemeta2’)
datapath=(’/spdedata1’ ’/spdedata2’ ’/spdedata3’ ’spdedata4’)
indexpath=(’/spdeindex1’ ’/spdeindex2’);

The “METAPATH= LIBNAME Statement Option” on page 28 specifies a list of overflow
paths to store metadata file partitions (MDF components) for a data set.

Metadata Space Requirements
The approximate metadata space consumption is
space in bytes = 12KB + (#variables * 12) + (5KB * #indexes)

This estimate increases if you delete observations from the data set or use compression
on the data. In general, the size of this component file is small (below 1 megabyte).

Data Area Configuration
The data area is where the data component files are stored. The data area requires

specific set-up in order to provide high I/O-throughput as well as scalability and
availability.

78 Assigning a Data Area Appendix 1

Assigning a Data Area
The physical data location is determined by the “DATAPATH= LIBNAME Statement

Option” on page 26:

libname mydomain SPDE ’/spdemeta1’
metapath=(’/spdemeta2’)
datapath=(’/spdedata1’ ’/spdedata2’ ’/spdedata3’ ’/spdedata4’)
indexpath=(’/spdeindex1’ ’/spdeindex2’);

In order to achieve parallel access to the data, the data set is partitioned into multiple
physical operating system files (referred to as .DPF components), which should be
stored on multiple disks. The DATAPATH= option specifies a list of file systems (under
UNIX systems) or disk drives (under Windows) where the data partitions are stored.
The first data partition will be stored on the first file system in the list, the second
partition on the second file system and so on. After the final file system has been
reached, the next partition will again be stored on the first file system. Hence the data
file systems will roughly be filled up equally.

The set-up of the data file systems is crucial to the performance that will be achieved
when retrieving the data.

The DATAPATH= option is optional. If it’s omitted, all .DPF components will be
stored in the primary path. This will work at the expense of performance and scalability.

Data Partition Size
The data partition size should be chosen in a way so that three or four partitions of

each data set reside in each data path. The number of partitions per data path should
not exceed ten. The main disadvantage of having too many partitions is that too many
physical files will be opened when the data set is opened. This has a negative impact on
operating system resources and on other applications, which are executed at the same
time. Having too many partitions does not help with better performance either. As a
guideline for determining a reasonable partition size, use the following formula:

partition size=(#observations*obs length) / (#data file systems*max partitions per file
system)

The partition size should then be rounded up to values like 16, 64, 128, 256 megabytes
and so on.

Data Area Set-Up
On an N-way computer, aim to have N identical data paths to spread the data

partitions across. A data path is a file system on UNIX or a logical disk drive on
Windows. It is good practice to have one I/O-controller per data path. Depending on the
I/O-bandwidth of the disks, multiple controllers could be required. Keep the set-up as
simple as possible; that is, there should be a one-to-one mapping between hard disks
(spindles) or groups (RAID) of them on one side and file systems or logical disk drives
on the other side.

For instance, on a four-way machine, the simplest possible set-up is to use four hard
disks and make one file system or logical disk drive per hard disk as shown in the
following figure.

Quick Guide to the SPD Engine Disk-I/O Set-Up Data Area Set-Up 79

Figure A1.1 Four Single Disk Drives

In order to achieve best performance, reserve the disk drives for the SPD Engine
storage usage exclusively. In order to get better performance, each of these disk drives
could be replaced by a stripe-set of many disks (RAID 0); see the following figure.
Usually, better performance can be achieved with wider striping.

Figure A1.2 Four RAID 0 Arrays, Each Striped across Two Disks

However, if any one of the disks in the above figure fails, then all the data will be
lost, because there is no redundancy in striping. In order to achieve redundancy, each of
these RAID 0 arrays needs to be replaced with either a mirrored disk array (RAID 1) or
a mirrored stripe-set (RAID 10) or a RAID 5 array.

RAID 10 features the best performance while maintaining redundancy at the same
time. It requires at least four disks in each array. RAID 5, also referred to as striping
with rotating error correction code (ECC), has the best ratio of redundancy and
performance versus cost on the other side. A minimum configuration requires only three
disks per array as shown in the following figure. There is a small penalty when writing
to RAID 5, as the ECC information needs to be refreshed every time the data is changed.

Figure A1.3 Four RAID 5 Arrays, Each Striped across Three Disks

Normally, the hard disks in disk arrays are organized in groups, each of which is
connected to its own hard disk controller. The following figure shows two disk towers
with eight hard disks and two disk controllers each. Four disks are grouped with each
controller.

80 Data Area Set-Up Appendix 1

Figure A1.4 Two Hard Disk Towers

Assuming that each of the disks runs at a throughput of 35 megabytes and each
controller features two channels that operate at 80 megabytes each, two disks can
effectively saturate one controller channel. The disks need to be carefully striped across
the existing controller channels when creating stripe-sets and disk mirrors.

Figure A1.5 Four RAID 10 Data Paths

In order to create four RAID 10 data paths for the SPD Engine to partition the data
across, the left disk array is considered to be the actual data array, while the right one
is the mirror. See the above figure.

For the first data path, the two uppermost disks in the left array are combined to a
stripe-set across two disks. Both disks are connected to different controllers, to avoid
any sort of contention. The combined throughput of this stripe-set should be around
60 megabytes in practice. In the right array, the two uppermost disks are defined to be
the mirrors of the respective disks in the left array. This gives almost the combined
throughput of four disks connected to four controllers when reading from multiple
processes, as the I/O subsystem has the choice of serving the request by reading from
either the original data disks or their mirrors. Doing the same with the next three rows
of disks, the result is four data paths for parallel I/O. Each data path is striped over
two disks, which are mirrored in the other array.

The overall throughput when launching four threads should be approximately
4*60MB or 240MB. As the striping and mirroring is symmetric across all components,
this also gives reasonable load-balancing in parallel. The theoretical limitation is
640 megabytes, as the four controllers can run at 160 megabytes across two channels.

Quick Guide to the SPD Engine Disk-I/O Set-Up Assigning an Index Area 81

Different vendor’s hardware devices might show different results in this area. However,
in principle, these numbers should be a good guideline.

Data Space Requirements
The estimated data space consumption for an uncompressed data set is
space in bytes = #observations * obs length

The space consumption for compressed data sets will obviously vary with the
compression factor for the data set as a whole.

Index Area Configuration
The index component files are stored in the index area. With regard to disk set-up,

this should be a stripe-set of multiple disks (RAID 0) for good I/O-performance.
Reliability, availability, and serviceability (RAS) concerns could eventually dictate to
choose any sort of redundancy, too. In this case, a RAID 5 array or a combination of
mirroring and striping (RAID 10) would be appropriate.

Assigning an Index Area
The physical index location is determined by the “INDEXPATH= LIBNAME

Statement Option” on page 28:

libname mydomain SPDE ’/spdemeta1’
metapath=(’/spdemeta2’)
datapath=(’/spdedata1’ ’/spdedata2’ ’/spdedata3’ ’spdedata4’)
indexpath=(’/spdeindex1’ ’/spdeindex2’);

The INDEXPATH= option specifies a list of file systems where the index partitions
are stored. The index component file will be stored on the first file system until it fills
up. Then the next file system in the list will be used.

The INDEXPATH= option is optional. If it’s omitted from the LIBNAME= statement,
all index files (IDX and HBX component files) will be stored in the primary path
location. Usually this is not a good idea when good performance is expected.

It is strongly recommended to configure INDEXPATH= using a volume manager file
system that is striped across multiple disks, as shown in the following figure, to allow
adequate index performance, both when evaluating WHERE clauses and creating
indices in parallel.

Figure A1.6 Index Area Striped across Six Disks, S1 through S6

In a real-life production environment, the INDEXPATH= option is likely to point to a
RAID 5 array as shown in the following figure. This is most cost-effective while
maintaining a good read performance and availability at the same time. As indices are

82 Index Space Requirements Appendix 1

not constantly built or refreshed, the lower write performance of RAID 5 should not be
an obstacle here.

Figure
A1.7 Index Area on a RAID 5 Array Striped across Five Disks with Rotating ECC

Index Space Requirements
An SPD Engine index uses two component files. The IDX file is the segmented view

of the index, and the HBX file is the global portion of the index. You can estimate space
consumption roughly for the HBX component of an index as follows.

Estimate for HBX file size
To estimate the size, in bytes, of the HBX file for a given index, use this formula:

HBX size = (number of unique values) * (22.5 + length) * factor

where length is the length (in bytes) of all variables combined in the index, and
factor takes the following values:

if length < 100, then factor = 1.2 – (0.002 * length)

if length >= 100, then factor = 1.04 + (0.0002 * length)

Note: The estimate for the file size provides a maximum for a newly built index.
The estimate might be on the low side for lengths larger than 500 bytes. �

Note: The formula does not apply to files smaller than one megabyte. �

Example
For an index on a character variable of length 10 that has 500,000 unique values,

here is the calculation:

HBX = 500000 * (22.5 + 10) * (1.2 – 0.002*10)

= 19175000 bytes

The actual size is 19,152,896 bytes.

Estimate for IDX file size
The IDX component file contains the per-value segment lists and bitmaps portion of

the index. Estimating disk space consumption for this file is much more difficult than
for the HBX component file. This is because the IDX file size depends on the
distribution of the key values across the data. If a key variable’s value is contained in
many segments, then a larger segment list is required, and therefore a greater number
of per-segment bitmaps are required.

Quick Guide to the SPD Engine Disk-I/O Set-Up Index Space Requirements 83

The size also depends on the number of updates or appends performed on the index.
The IDX files of an indexed data set initially created with N observations consumes
considerably less space than the IDX files of an identical data set on which several
append or updates were performed afterward.

With the above in mind, to get a worst-case estimate for space consumption of the
IDX component of an index, use the following formula:

IDX size = 8192 + (D * (24 + (P * (16 + (S / 8)))))

where
D is the number of discrete values that occur in more than one observation
P is the average number of segments that contain each value
S is the segment size.

This estimate does not take into consideration the compression factor for the
bitmaps, which could be substantial. The fewer occurrences of a value in a given
segment, the more the bitmap for that segment can be compressed. The uncompressed
bitmap size is the (segment size/8) component of the algorithm.

Example
To estimate the disk usage for a non-unique index on a variable with a length of 8,

where the variable contains 1024 discrete values, and each value is in an average of 4
segments with a segment size of 8192 observations, the calculations would be (rounding
up the HBX result to a whole number)

HBX size = 1024 * (22.5 + 8) * (1.2 – (0.002 * 8)) = 36979 bytes
IDX size = 8192 + (1024 * (24 + (4 * (16 + (8192/8))))) = 4285440 bytes

To estimate the disk usage of a unique index on a variable with a length of 8 that
contains 100,000 values, the calculations would be

HBX size = 100000 * (22.5 + 8) * (1.2 – (0.002 * 8)) = 3611200 bytes
IDX size = 8192 + (0 * (24 + (4 * (16 + (8192/8))))) = 8192 bytes

Note: The size of the IDX file for a unique index will always be 8192 bytes because
the unique index contains no values that are in more than one observation. �

Space Requirement for Index Creation
There is a hidden requirement for work area space when creating indexes or when

appending indexes in the SPD Engine. This need arises from the fact that the SPD
Engine sorts the observations by the key value before adding the key values to the
index. This greatly improves the index create/append performance but comes with a
price—the temporary disk space that holds the sorted keys while the index
create/append is in progress.

You can estimate the work area space for index creation as follows for a given
indexed variable:

space in bytes = #obs * (8 + sortlength)

where
#obs is the number of observations in the data set if creating; or number of

observations in the append if appending.
sortlength is the sum of the length of the variables that make up the index. For

example, to create the index for a numeric variable on a data set with 1,000,000
rows, the calculation would be 1,000,000 * (8 + 8) = 16,000,000 bytes. To create a
compound index of two variables (lengths 5 and 7) on the same data set, the
calculation would be 1,000,000 * (5 + 7 + 8) = 20,000,000 bytes.

84 Work Area Configuration Appendix 1

If you create the indexes in parallel by using the ASYNCINDEX=YES data set
option, you must sum the space requirements for each index that you create in the
same create phase.

The same applies to PROC APPEND runs when you append to a data set with
indices. In this case, all of the indices are refreshed in parallel, so you must sum the
workspace requirement across all indexes.

Work Area Configuration
The work area is where temporary files are created. For example, temporary utility

files can be generated during the SPD Engine operations that need extra space, like
index creation as noted above, or sorting operation of very large files.

Normally a stripe-set of multiple disks (RAID 0) should be sufficient to gain good
I/O-throughput. However, again, RAS could also dictate to choose redundancy (RAID 5
or RAID 10) because a loss of the work area could stop the SPD Engine from
functioning entirely.

Using “SPDEUTILLOC= System Option” on page 68 to specify multiple storage
locations can reduce out-of-space conditions and improve performance. We strongly
recommend that you configure SPDEUTILLOC= to use a volume manager file system
that is striped across multiple disks in order to provide optimum performance and to
allow adequate temporary workspace performance, as shown in the following figure.

Figure A1.8 Work Area Striped across Eight Disks

In a production environment, you will probably point SPDEUTILLOC= to a RAID 5
array or, even better, a RAID 10 array as shown on the following figure. Writing and
reading in the work area will probably happen equally often. While RAID 5 is most
cost-effective, a RAID 10 would give highest performance and availability, plus there is
no write penalty because no ECC information has to be updated. The mirroring will be
done during idle times without virtually affecting any requests.

Figure A1.9 Work Area Striped across Four Disks and Mirrored

Quick Guide to the SPD Engine Disk-I/O Set-Up Preparation 85

Configuration Validation Program
The SAS program SPDECONF.SAS, described here, measures I/O scalability and can

help you determine whether the system is properly configured.
The program creates a data set with two numeric variables. It then proceeds to

repeatedly read the entire data set, each time doubling the number of threads used (by
increasing the setting for “THREADNUM= Data Set Option” on page 55) until the
maximum number is reached. The resulting SAS log file shows timing statistics for
each cycle. By examining this information you can determine whether your system is
configured correctly.

Preparation
1 Before you run the program, you must customize it. Gather the following

information:
� the number of CPUs in your machine.
� the number of disks on which you will store data. This number equals the

number of paths specified in the “DATAPATH= LIBNAME Statement Option”
on page 26.

� the amount of RAM in your machine.

2 Use the first two items above to determine the value you must use for the
“SPDEMAXTHREADS= System Option” on page 67. That option must be specified
either in the SAS configuration file or on the SAS invocation line. (For details on
the syntax, refer to Chapter 5, “SPD Engine System Options,” on page 63.) Set
SPDEMAXTHREADS= to the larger of the following:

� 8 number of CPUs
� 2 number of paths in the DATAPATH= option.

CAUTION:
Use this value for the validation test only. It is probably too high for most
kinds of processing. Following the test, be sure to reset the value, and
restart SAS.

For example, if the machine has six CPUs and the LIBNAME statement is

LIBNAME SCALE SPDE ’/primary-path’ DATAPATH=(’/data01’ ’/data02’
’/data03’ ’/data04’ ’/data05’ ’/data06’ ’/data07’);

then you set SPDEMAXTHREADS=48 (the larger of 8 6 and 2 7).

3 Now you must edit the SPDECONF.SAS program to set the NROWS macro
variable. Set NROWS such that the resulting data set is more than twice the
available RAM. For example, if the available RAM is 1 gigabyte, set
NROWS=150000000, which is 2G/16 rounded up. The number 16 is used because
the data set has two numeric variables, and therefore each observation is 16 bytes
long. This calculation for NROWS is used to create a data set that is large enough
to overcome the beneficial effects of caching by the operating system.

Here is SPDECONF.SAS. Edit the items to fit your operating environment.

options source2 fullstimer;

%let nrows = nrows;

86 Running the Program Appendix 1

/* LIBNAME statement */
LIBNAME SCALE SPDE ’/primary-path’ DATAPATH=(’/path01’ ’/path02’

’/path03’ ’/path04’ ’/path05’ ’/path06’ ’/path07’);

data scale.test;
do i = 1 to &nrows;

x = mod(i,33);
output;

end;
run;

%macro ioscale(maxth);
%put "SPDEMAXTHREADS = &maxth";
%let tcnt = 1;
%do %while(&tcnt le &maxth);

%put "THREADNUM = &tcnt";
data _null_;

set scale.test(threadnum=&tcnt);
where x = 33;

run;
%let tcnt = %eval(&tcnt * 2);
%end;

%mend;

%ioscale(%sysfunc(getoption(spdemaxthreads)));
%ioscale(%sysfunc(getoption(spdemaxthreads)));
%ioscale(%sysfunc(getoption(spdemaxthreads)));

proc datasets lib=scale kill;
run;
quit;

Running the Program
Follow these steps to run the SPDECONF.SAS program:
1 You must take the following precautions before you run the %IOSCALE macro,

because it measures performance:
� Ensure that no other programs are running on the machine.
� Ensure that no other users can access the machine during the test.
� Ensure that SPDEMAXTHREADS= is set.

2 Create the SCALE.TEST data set.

Quick Guide to the SPD Engine Disk-I/O Set-Up Interpreting the Results 87

3 Run the %IOSCALE macro three times, noting the time for each run.
4 To complete your results, use the following code to create the same data set with

the Base SAS engine:

data testbase.test;
do i = 1 to &nrows;

x = mod(i,33);
output;

end;
run;

Run the following DATA step against the TESTBASE.TEST data set:

data _null_;
set scale.test;
where x=33;

run;

As in step 3, write down the real time that it took to run the DATA _NULL_.

Interpreting the Results
First, average the results from the three %IOSCALE macros. (You will find the data

you need in the log file for the program, SPDECONF.LOG). If the machine is correctly
configured, you should see these results:

� The real time for each successive DATA step should ideally follow the curve 1/
THREADNUM. That is, it should take half as much time to process with each
successive doubling of the number of threads.

At the very least, for the first several iterations, the time for each successive
DATA step should decline and then after some point the curve should begin to
flatten or bottom out.

� The time with one thread should be less than or equal to the time to process the
DATA step with the Base SAS engine.

If the results do not fit the criteria above, something is wrong with the configuration
and must be corrected.

Once you get a curve with the characteristics listed above, set the value of the
invocation option SPDEMAXTHREADS= in the SAS configuration file to the value of
THREADNUM= where the curve flattens/bottoms (see the graph below). This will
generally be the most efficient configuration for WHERE-clause processing but might
not be best for other kinds of processing. In any case, if you need to specify fewer
threads for any individual SAS job, you can use THREADNUM= to override
SPDEMAXTHREADS= temporarily. See “THREADNUM= Data Set Option” on page 55
and “SPDEMAXTHREADS= System Option” on page 67 for details about these options.

The following graph summarizes the results from an actual use of the
SPDECONF.SAS program. The data set has 2 numeric variables and 1 billion
observations. The WHERE expression asks for a record that is not in the data set.
Without any indexes, the SPD Engine is forced to do a full scan of the data file. Note
that the number of threads is a surrogate for the number of CPUs. The scalability
levels off with eight threads, which is the number of CPUs on the test machine.
Specifying a number of threads larger than 2 or 3 times the number of available CPUs
does not improve performance.

88 Interpreting the Results Appendix 1

Figure A1.10 Time to Read 1 Billion Rows

Note:

� This type of scalability might not be seen when all the data file systems reside on
the same RAID 5 array, consisting of only three or five disks, in which case the
curve will be more or less flat all the way through. You might want to try altering
your hardware set-up. A much better set-up would be to place each data file system
on its own RAID 5 array. Then rerun this test to see if there are improvements.

� Not only the scalability but also the overall throughput in megabytes per second is
a figure that should be calculated in order to know whether the set-up is
appropriate. To calculate this number, just take the size of the data set, in
megabytes, and divide it by the real time the step took in seconds. This number
should come as close as 70 to 80 percent to the theoretical maximum of your I/
O-bandwidth, if the set-up is correct.

� Make sure you assign data paths that use separate I/O controllers and that you
use hardware striping.

� On some systems, DATAPATHs are not needed if the LIBNAME domain’s primary
directory is on a file system with hardware striping across multiple controllers.

� Check your SPDEMAXTHREADS system option. If the THREADNUM value
exceeds the SPDEMAXTHREADS setting, then SPDEMAXTHREADS will take
precedence. You need to temporarily change SPDEMAXTHREADS to the
artificially high value for this test and then restore it after the test is complete.
Remember that the Base SAS software needs to be restarted in order to pick up
the change to SPDEMAXTHREADS.

�

89

A P P E N D I X

2
Recommended Reading

Recommended Reading 89

Recommended Reading

Here is the recommended reading list for this title:
� Base SAS Procedures Guide
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

90

91

Glossary

block (of data)
a group of observations in a data set. If an application is thread-enabled, it can read,
write, and process the observations faster when they are delivered as a block than
when they are delivered as individual observations.

compound WHERE expression
a WHERE expression that contains more than one operator, as in WHERE X=1 and
Y>3. See also WHERE expression.

controller
a computer component that manages the interaction between the computer and a
peripheral device such as a disk or a RAID. For example, a controller manages data
I/O between a CPU and a disk drive. A computer can contain many controllers. A
single CPU can command more than one controller, and a single controller can
command multiple disks.

CPU-bound application
an application whose performance is constrained by the speed at which computations
can be performed on the data. Multiple CPUs and threading technology can alleviate
this problem.

data partition
a physical file that contains data and which is part of a collection of physical files
that comprise the data component of an SPD Engine data set. See also partition,
partitioned data set.

I/O-bound application
an application whose performance is constrained by the speed at which data can be
delivered for processing. Multiple CPUs, partitioned I/O, threading technology, RAID
(redundant array of independent disks) technology, or a combination of these can
alleviate this problem.

light-weight process thread
a single-threaded subprocess that is created and controlled independently, usually
with operating system calls. Multiple light-weight process threads can be active at
one time on symmetric multiprocessing (SMP) hardware or in thread-enabled
operating systems.

multi-threading
See threading.

92 Glossary

ODS-5 (On-Disk Structure Level 5)
a file system structure that is implemented by OpenVMS Alpha Version 7.2. ODS-5
allows longer filenames, supports more legal characters within filenames, preserves
case within filenames, supports deeper directory structures, and provides better
compatibility with other file systems such as those used with UNIX or Windows.

parallel I/O
a method of input and output that takes advantage of multiple CPUs and multiple
controllers, with multiple disks per controller to read or write data in independent
threads.

parallel processing
a method of processing that uses multiple CPUs to process independent threads of an
application²s computations. See also threading.

partition
part or all of a logical file that spans devices or directories. In the SPD Engine, a
partition is one physical file. Data files, index files, and metadata files can all be
partitioned, resulting in data partitions, index partitions, and metadata partitions,
respectively. Partitioning a file can improve performance for very large data sets. See
also data partition, partitioned data set.

partitioned data set
in the SPD Engine, a data set whose data is stored in multiple physical files
(partitions) so that it can span storage devices. One or more partitions can be read in
parallel by using threads. This improves the speed of I/O and processing for very
large data sets. See also parallel processing, partition, thread.

primary path
the location in which SPD Engine metadata files are stored. The other SPD Engine
component files (data files and index files) are stored in separate storage paths in
order to take advantage of the performance boost of multiple CPUs.

process
a functional unit of a program or task. In a thread-enabled operating system, a
process can consist of a single thread, or it can contain many threads that collectively
perform a complex function. See also thread, thread-enabled operating system.

RAID (redundant array of independent disks)
a type of storage system that comprises many disks and which implements
interleaved storage techniques that were developed at the University of California at
Berkeley. RAIDs can have several levels. For example, a level-0 RAID combines two
or more hard drives into one logical disk drive. Various RAID levels provide various
levels of redundancy and storage capability. A RAID provides large amounts of data
storage inexpensively. Also, because the same data is stored in different places, I/O
operations can overlap, which can result in improved performance. See also
redundancy.

redundancy
a characteristic of computing systems in which multiple interchangeable components
are provided in order to minimize the effects of failures, errors, or both. For example,
if data is stored redundantly (in a RAID, for example), then if one disk is lost, the
data is still available on another disk. See also RAID (redundant array of
independent disks).

SASROOT
a term that represents the name of the directory or folder in which SAS is installed
at your site or on your computer.

scalability

Glossary 93

the ability of a software application to function well with little degradation in
performance despite changes in the volume of computations or operations that it
performs and despite changes in the computing environment. Scalable software is
able to take full advantage of increases in computing capability such as those that
are provided by the use of SMP hardware and threaded processing. See also scalable
software, server scalability, SMP (symmetric multiprocessing).

Scalable Performance Data Engine
See SPD (Scalable Performance Data) Engine.

scalable software
software that responds to increased computing capability on SMP hardware in the
expected way. For example, if the number of CPUs is increased, the time to solution
for a CPU-bound problem decreases by a proportionate amount. And if the
throughput of the I/O system is increased, the time to solution for an I/O-bound
problem decreases by a proportionate amount. See also server scalability, SMP
(symmetric multiprocessing), time to solution.

server scalability
the ability of a server to take advantage of SMP hardware and threaded processing
in order to process multiple client requests simultaneously. That is, the increase in
computing capacity that SMP hardware provides increases proportionately the
number of transactions that can be processed per unit of time. See also SMP
(symmetric multiprocessing), threaded processing.

SMP (symmetric multiprocessing)
a hardware and software architecture that can improve the speed of I/O and
processing. An SMP machine has multiple CPUs and a thread-enabled operating
system. An SMP machine is usually configured with multiple controllers and with
multiple disk drives per controller.

spawn
to start a process or a process thread such as a light-weight process thread (LWPT).
See also thread.

SPD (Scalable Performance Data) Engine
a SAS engine that is able to deliver data to applications rapidly because it organizes
the data into a streamlined file format. The SPD Engine also reads and writes
partitioned data sets, which enable it to use multiple CPUs to perform parallel I/O
functions. See also parallel I/O.

SPD Engine data file
the data component of an SPD Engine data set. In contrast to SAS data files, SPD
Engine data files contain only data; they do not contain metadata. The SPD Engine
does not support data views. See also SPD Engine data set.

SPD Engine data set
a data set created by the SPD Engine that has up to four component files: one for
data, one for metadata, and two for any indexes. The minimum number of
component files is two: data and metadata. Data is separated from the metadata for
SPD Engine file organization.

symmetric multiprocessing
See SMP (symmetric multiprocessing).

thread
a single path of execution of a process in a single CPU, or a basic unit of program
execution in a thread-enabled operating system. In an SMP environment, which uses
multiple CPUs, multiple threads can be spawned and processed simultaneously.
Regardless of whether there is one CPU or many, each thread is an independent flow

94 Glossary

of control that is scheduled by the operating system. See also SMP (symmetric
multiprocessing), thread-enabled operating system, threading.

thread-enabled operating system
an operating system that can coordinate symmetric access by multiple CPUs to a
shared main memory space. This coordinated access enables threads from the same
process to share data very efficiently.

thread-enabled procedure
a SAS procedure that supports threaded I/O or threaded processing.

threaded I/O
I/O that is performed by multiple threads in order to increase its speed. In order for
threaded I/O to improve performance significantly, the application that is performing
the I/O must be capable of processing the data rapidly as well. See also I/O-bound
application.

threaded processing
processing that is performed in multiple threads on multiple CPUs in order to
improve the speed of CPU-bound applications. See also CPU-bound application.

threading
a high-performance method of data I/O or data processing in which the I/O or
processing is divided into multiple threads that are executed in parallel. In the
boss-worker model of threading, the same code for the I/O or calculation process is
executed simultaneously in separate threads on multiple CPUs. In the pipeline
model, a process is divided into steps, which are then executed simultaneously in
separate threads on multiple CPUs. See also parallel I/O, parallel processing, SMP
(symmetric multiprocessing).

time to solution
the elapsed time that is required for completing a task. Time-to- solution
measurements are used to compare the performance of software applications in
different computing environments. In other words, they can be used to measure
scalability. See also scalability.

WHERE expression
a type of SAS expression that specifies a condition for selecting observations for
processing by a DATA step or a PROC step. WHERE expressions can contain special
operators that are not available in other SAS expressions. WHERE expressions can
appear in a WHERE statement, a WHERE= data set option, a WHERE clause, or a
WHERE command. See also compound WHERE expression.

Index 95

Index

A
APPEND procedure

converting Base SAS engine data sets 15
ASYNCINDEX= data set option 36

B
Base SAS engine

compared with SPD Engine 5
converting data sets for SPD Engine 7, 14

BYNOEQUALS= data set option 37
BYSORT= data set option 39
BYSORT= option

LIBNAME statement, SPD Engine 24

C
component files 4

anticipating space for 12
configuring space for 12
naming conventions 16
storing 8

COMPRESS= data set option 41
COMPRESS= system option 64, 71
compressing SPD Engine data sets 41, 64
compression blocks

adding bytes to 47
number of observations in 46

configuration validation program 85
converting data sets

Base SAS engine to SPD Engine 7, 14
COPY procedure

converting Base SAS engine data sets 15

D
data area

assigning 78
configuring 77
data partition size 78
set-up 78
space requirements 81

data component files 5
data organization 4
data partitions

size of 29, 48, 66, 78

storing 14, 26

data paths 78

data set options

list of 60

not supported by SPD Engine 61

SPD Engine 35

SPD Engine vs. Base SAS engine 61

syntax 35

data sets

compressing for SPD Engine 41, 64

converting for SPD Engine 7, 8, 14

creating SPD Engine data sets 16

interim data sets 6

loading SPD Engine data sets 16

partition size 48, 66

threads for SPD Engine data sets 55

DATAPATH= option

LIBNAME statement, SPD Engine 26

directory paths

multiple 8

disk-I/O set-up 75

disk striping 14, 76

DLDMGACTION= system option 71

E
ENDOBS= data set option 43

WHERE expression with 43

ENDOBS= option

LIBNAME statement, SPD Engine 27

engines

SPD Engine 3

F
file sharing 8

file systems

SPD Engine 6

G
group formatting 25

I
I/O performance 8

I/O scalability 85

I/O threads

number to spawn 55

IDX files

size estimate 82

IDXWHERE= data set option 45

implicit sorting 9, 24, 39

index area

assigning 81

configuring 81

index component files 5

storing 14, 28

indexes

efficiency 17

excluding from WHERE evaluation plan-
ner 59

parallel creation 9, 18, 36

parallel updates 18

queries with 9

segment size 50

segments in WHERE expressions 65

sorting values for creating 67

space requirements for creating 83

unique indexes 57

WHERE expressions with 45

INDEXPATH= option

LIBNAME statement, SPD Engine 28

interim data sets

temporary storage of 6

IOBLOCKSIZE= data set option 46

L
LIBNAME statement, SPD Engine 23

introduction 23

options list 33

syntax 23

libraries

allocating space 11

SPD Engine 6

storing in temporary subdirectory 32

loading SPD Engine data sets 16

96 Index

M
MAXSEGRATIO= system option 65

metadata area

assigning 77

configuring 77

space requirements 77

metadata component files 5

overflow partitions 28

storing 13, 28

METAPATH= option

LIBNAME statement, SPD Engine 28

MINPARTSIZE= system option 66

MSGLEVEL= system option 71

N
naming conventions

component files 16

O
observations

appending with unique indexes 57

end number 27, 43

inserting with unique indexes 57

meeting conditions of WHERE expres-
sions 70

number for index segment size 50

number in compressed blocks 46

output order of 37

saving with non-unique key values 57

starting number 31, 51

synchronous vs. asynchronous processing 53

output

physical order in 37

P
PADCOMPRESS= data set option 47

parallel index creation 9, 18, 36

parallel index updates 18

parallelism 12

PARTSIZE= data set option 48

PARTSIZE= option

LIBNAME statement, SPD Engine 29

performance

I/O performance 8

processing performance 9

physical order of output 37

primary path 12

processing performance 9

Q
queries

indexes with 9

R
RAIDs 14, 76

redundant arrays of independent disks
(RAIDs) 14, 76

S
saving observations

with non-unique key values 57

scalability

I/O scalability 85

Scalable Performance Data Engine

See SPD Engine

segments

size for indexes 50

SEGSIZE= data set option 50

sharing files 8

SMP machines 4

sort utility

memory space for 67

sorting

implicit sorting 9, 24, 39

memory space for 68

values for index creation 67

SPD Engine 3

compared with Base SAS engine 5

converting Base SAS engine data sets 7, 14

converting SPD Server data sets 8

data organization 4

file systems 6

libraries 6

SPD Server

converting data sets for SPD Engine 8

SPDECONF.SAS 85

SPDEINDEXSORTSIZE= system option 67

SPDEMAXTHREADS= system option 67

SPDESORTSIZE= system option 68

SPDEUTILLOC= system option 69
SPDEWHEVAL= system option 70
SQL procedure

partitioning SPD Engine data sets 49
STARTOBS= data set option 51

WHERE expression with 51
STARTOBS= option

LIBNAME statement, SPD Engine 31
symmetric multiprocessing (SMP) 4
SYNCADD= data set option 53
system options

different behavior for SPD Engine 71
list of 71
SPD Engine 63
syntax 63

T
TEMP= option

LIBNAME statement, SPD Engine 32
temporary storage

interim data sets 6
THREADNUM= data set option 55
threads 3

number to spawn 55
upper limit for SPD Engine 67

U
unique indexes 57
UNIQUESAVE= data set option 57
utility files 6

storing 69

W
WHERE evaluation planner 9

excluding indexes 59
WHERE expressions

ENDOBS= data set option with 43
excluding indexes 59
index segments in 65
indexes with 45
observations meeting conditions of 70
STARTOBS= data set option with 51

WHERE optimization 9
WHERENOINDEX= data set option 59
work area

configuring 84

Your Turn

If you have comments or suggestions about the SAS 9.1 Scalable Performance Data
Engine: Reference, please send them to us on a photocopy of this page, or send us
electronic mail.

For comments about this document, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

.

	Table of Contents
	Contents

	What’s New
	Overview

	Usage
	Overview: The SPD Engine
	Introduction to the SPD Engine
	Using the SMP Machine
	How the SPD Engine Organizes SAS Data
	Metadata Component Files
	Index Component Files
	Data Component Files

	Comparing the Base SAS Engine and the SPD Engine
	The SPD Engine Libraries and File Systems
	Utility File Workspace
	Temporary Storage of Interim Data Sets
	Other Similarities/Differences between the Base SAS Engine Data Sets and the SPD Engine Data Sets

	Interoperability of the Base SAS Engine and the SPD Engine Data Sets
	Interoperability of the SPD Engine and the SPD Server Data Sets
	Sharing the SPD Engine Files
	Features That Enhance I/O Performance
	Multiple Directory Paths
	Physical Separation of the Data File and the Associated Indexes
	WHERE Optimization

	Features That Boost Processing Performance
	Implicit Sort Capabilities
	Queries Using Indexes
	Parallel Index Creation

	The SPD Engine Options

	Creating and Loading SPD Engine Files
	Introduction for Creating and Loading SPD Engine Files
	Allocating the Library Space
	Configuring Space for All Components in a Single Path
	Configuring Separate Library Space for Each Component File
	Anticipating the Space for Each Component File
	Storage of the Metadata Component Files

	Efficiency Using Disk Striping and Large Disk Arrays
	Converting Base SAS Engine Data Sets to SPD Engine Data Sets
	Converting Base SAS Engine Data Sets Using PROC COPY
	Converting Base SAS Engine Data Sets Using PROC APPEND

	Creating and Loading New SPD Engine Data Sets
	SPD Engine Component File Naming Conventions
	Efficient Indexing in the SPD Engine
	Parallel Index Creation
	Parallel Index Updates

	Reference
	SPD Engine LIBNAME Statement Options
	Introduction to the SPD Engine LIBNAME Statement
	SPD Engine LIBNAME Statement Syntax
	SPD Engine LIBNAME Statement Options List

	SPD Engine Data Set Options
	Introduction to SPD Engine Data Set Options
	Syntax
	SPD Engine Data Set Options List
	SAS Data Set Options That Behave Differently with the SPD Engine Than with the Base SAS Engine
	SAS Data Set Options Not Supported by the SPD Engine

	SPD Engine System Options
	Introduction to SPD Engine System Options
	Syntax
	SPD Engine System Options List
	SAS System Options That Behave Differently with SPD Engine

	Appendix
	Quick Guide to the SPD Engine Disk- I/ O Set- Up
	SPD Engine Disk-I/O Set-Up
	Disk Striping and RAIDs
	Metadata Area Configuration
	Assigning a Metadata Area
	Metadata Space Requirements

	Data Area Configuration
	Assigning a Data Area
	Data Partition Size
	Data Area Set-Up
	Data Space Requirements

	Index Area Configuration
	Assigning an Index Area
	Index Space Requirements

	Work Area Configuration
	Configuration Validation Program
	Preparation
	Running the Program
	Interpreting the Results

	Recommended Reading
	Recommended Reading

	Glossary
	Index

