Best Practices for Using the SAS® Scalable
Performance Data Server® in a SAS® Grid environment

Introduction

This document describes how to set up the SAS®RaSlEPerformance Data Server®,
SPD Server, to run in a SAS Grid environment. SRV& can be used in a grid for both
data loading and query. Adding SPD Server to aigdteases the availability of the data
service and provides a scalable environment for 88e3s.

Note: SAS used SPD Server and SAS Grid Manager wkecuting the previous two
SAS® Data Integration Server world records.

Setup overview

It is recommended that you have significant expeeewith setting up SPD Server
before configuring it to run on a SAS Grid. Intseg up SPD Server to run on a SAS
Grid, each grid node requires its own instancénefdroduct. These instances share the
SPD Server executables, all metadata, indexesaundl a@lata files. Sharing is
accomplished by having a clustered (shared) fitesy setup between all the SAS Grid
nodes. SAS processes executing on each grid rmodegnicate only with their local
SPDS server installed on the same grid node.

Requirements for setup

Clustered / shared file system - all SAS Grid nodes that require access to SPeBe

(via libname) require access to both the executadethe data. Clustered file systems
include but are not limited to: IBM's GPFS, NFShlx GFS, Sun's QFS and Veritas
CFS. File system logical layout must be the samewvemy grid node. Example: /spdsdata,
which points to a shared file system, must exisalbgrid nodes.

SPDS 4.3 or higher - these are the versions of SPD Server that heee tested on a
grid

Homogeneous server installation - all grid nodes must be the same hardware platfor
and operating system type

Programs wishing to access SPD Server must use libnames with the hostname set to
"localhost”. SAS processes executing across tliengaly not get executed on the same
grid node therefore it is important that they comimate only with the local SPD Server

instance. A hostname of localhost forces commuioicatith the local SPD Server
instance to eliminate the need to talk over thevoek.

Each SPD Server instance will sharethe SPD Server executable, but each grid node
will have its own SPD Server “audit” directory, t&si directory and "log" directory.
Some simple pathname changes need to be madernogpds file to enable this.

In the Best Practices for Configuring your 10 Subsystem3AS® Scalable
Performance Data Server® Tabfesper from SAS Technical Papers you will learrt tha
SPD Server tables are similar in nature to SAS filag but the number of file systems
required to support them is very different. Thipgais designed to augment the SAS
Global Forum 2007 pap@&est Practices for Configuring your IO Subsystem3AS®
Applicationsby covering additional information that pertainsSieD Server tables.

Detailed setup directions

1. Setup a shared file system between all seraetwigrid. Sample file systems to share

/shared/sas location of foundation SAS (SAS_9.1), SPD Server

/shared/datal location of shared data for all servers

/shared/home location of home directories for users

/shared/work (optional) some people prefer to put saswork on the locakesemd
rebtare it

/shared/spdsdata spd server data directory

/shared/spdsmeta spd server meta data directory

/shared/spdsindex spd server shared index diyecto
The size of these file systems will depend uporr yaeds.

SPD Server temporary directories cannot be shargdhey could be a subdirectory on a
shared file system if you want them on the SANasjer

2. Set up SAS and SAS Grid Manager. These prodnatibs can be shared across all
nodes.

Example:
shared/sas/SAS_9.x

3. Set up SPD Server on one of the grid servettseishared SAS directory (example:
/shared/sas/spds44). Install and test to makeitswgks correctly. Use and test your
shared file system as the data, index and SPD Seetadata directories. Making sure
this all works on a single server first is critical

4. Make a copy of the site directory, one for eggti node that will be running SPD
Server.

For example:
gridnodeO /shared/sas/spds/site0
gridnodel /shared/sas/spds/sitel
gridnode?2 /shared/sas/spds/site2
gridnode3 /shared/sas/spds/site3

5. Make a log directory for each grid node that d running SPDS

For example:
gridnodeO /shared/sas/spds/log0
gridnodel /shared/sas/spds/logl
gridnode?2 /shared/sas/spds/log2
gridnode3 /shared/sas/spds/log3

6. Make an Audit directory for each grid node that be running SPD Server

For example:
gridnodeO /shared/sas/spds/AuditO
gridnodel /shared/sas/spds/Auditl
gridnode?2 /shared/sas/spds/Audit2
gridnode3 /shared/sas/spds/Audit3

7 Modify the rc.spds file in each of the site dimries
(a) change the LOGDIR variable as follows:

for gridnode0 LOGDIR=$INSTDIR/log0

for gridnodel LOGDIR=$INSTDIR/logl

for gridnode2 LOGDIR=$INSTDIR/log2

for gridnode3 LOGDIR=$INSTDIR/log3

(b) use a shared libnames.parm file as this we#ikyou from having to edit a different
libnames.parm for each gridnode

in rd.spds set the LPARM environment variable:

Example: LPARM=$INSTDIR/libnames.parm

8. Start each server with the rc.spds script. Chedlee that all servers are up and
running.

9. Create a master script that can remotely stakristop all SPD Server servers. This can
be done with rsh if permissions for the SPD Seuger allow remote execution. For
example: via rhosts on UNIX).

When launching SAS programs on the grid, be suteséoa "localhost” enabled
libaname:

Example: Libname saslib SASSPDS IP=YES LIBGEN=YESHR="ANONYMOUS"
schema="saslib" Serv="5190" HOST="localhost";

Using localhost causes the SAS program to useotta instance of SPD Server on that
grid node.

Calculating Partition Size for SPD Server Tables

In the white papelPartitioning of SAS® Scalable Performance Data &@®\vTlablesve
discuss setting and controlling the data partitie of the SPDS Server tables. Setting
and controlling the partition size are the mosidasctions for managing data tables
that are stored with the SPD Server.

In Appendix A we provide a sas macro to calculatedorrect partition size of the SPD
Server table. You must set the correct partitiae girior to creating the SPD Server table.
Once the partition size is set, you cannot change i

Loading SPD Server Tables

When loading an SPD Server table always sort thie tay the variables used to JOIN
that SPD Server table to other SPD Server tablesnprove performance of filtering
data add the variables used in WHERE clauses tedtiePut these variables after the
join variables. If you have queries that do aggregar counts add these variables to the
sort after the join variables. When ordering thdéne, aggregations, and counts”
variables in the sort routine go from lowest caatliy to highest cardinality.

Always use compressian SPD Server domains. You can use the LIBNAMEa@pti
COMPRESS=YES or the SPD Server macro %let spdsd¢B+o ensure all tables
written to an SPD Server domain are compressed.

Always replace PROC APPENWIth SPD Server Cluster tables. The white paper
Scalability Solution for SAS® Dynamic Cluster Tabpgovides an overview of dynamic
cluster tables in SPD Server 4.3 as well as entmaacts that have been included in later
releasesNote: Where the enhancements are discussed, this paped@uments their
respective releases. Earlier releases of SPD Sempgorted two types of clustered data

tables: time-based partitioning and partition bluegin an experimental form). In SPD
Server 4.3 and later, dynamic cluster tables eradtle the partitioning of data based on
criteria in the data and parallel loading of thestér tables. Dynamic clusters also
enhance the manageability of tables. New tableooptias well as SQL planner
enhancements, have been added to take advantdgesefnew capabilities and to
improve query performance.

Always replace DATA STEP modify codeth PROC APPEND using the SPD Server
option (UNIQUESAVE=REP). To use PROC APPEND withNIQUESAVE=REP) the
SPD Server table must have a unique index.

Quering SPD Server Tables

Always use the following. IBNAME options
* IP=YES
o If the ANSI standard SQL submitted to SPD Serveuldaun faster in
pass-through sql, the query will be converted tssgirough sql on the fly,
 LIBGEN=YES
0 Required when SAS Marketing Automation uses SPDe3aables
0 A sgl planner that is used when certain queriesabenitted to SPD
Server.
 DISCONNECT=YES
o Kills the SPD Server proxy server when the LIBNANsEcleared.
* COMPRESS=YES
o0 Ensures compression is used when writing to the SéMer table.

Using SPD Server to Manage the Transient needs of SAS End-
Users

SAS end-users require disk space to hold tempalaty sets. To accomplish this IT
personnel must pre allocate disk space per SASused-Some companies allocate
100GB per SAS end-user for SASWORK. This causds Bpend cycles maintaining
symbolic links or ACLs at the operating system Igyer sas end-users. Another issue is
that half of the sas end-users are always pushmgrits of the 100GB while the other
half of the sas end-users rarely us any of thedGI®

Implementing SPD Server and moving the disk spdoeaded to SASWORK per SAS
end-user to the SPD Server domain USER accompligizethings. One, it provides
more space to the sas end-users that were bumpitggthe limit of the file system and
reduces the total amount of disk space allocatdldetdrue transient needs of SAS end-
users. Two, it leaves enough space in the hometdites of the SAS end-user to store
their sas code, EG projects, EM projects and dd#e3 projects but not SAS data sets.
This has a side of effect of stopping the prolifieraof SAS data sets because SAS end-
users cannot use their directories to store perniaas data sets. If the end-user requires
permanent sas data sets that space would be allioicad SPD Server Domain and the
ACLs on that domain would allow the SAS end-usesriate permanent SPD Server
tables.

Setting up the SPD Server Domain User

The transient space is allocated to the SPD Sdoreain called USER. To accomplish
this you would modify your LIBNAMES.PARMS to havedamain called USER:

libname=user pathname=/spdsl/metadata/user
roptions="datapath=('/spds2/data/user
'Ispds3/dasar'
'Ispds4/dasar’)
indexpath=("/spdsl/indexes/user’)

SAS end-user example

To enable SAS end-users to use the transient spagenust submit a LIBNAME
statement to point to the SPD Server domain USERHAs the LIBNAME option
TEMP=YES. TEMP=YES will create a sub-directorytie USER domain for each SAS
end-user. All transient data is stored in this iyesvkate subdirectory. Once the SAS
session ends, that sub-directory and all of iteots are deleted

Example SAS libname statement to point to SPD Seraasient domain USER

libname USER sasspds "user”
TEMP=yes

IP=yes

LIBGEN=yes
HOST="eecsun5z5"
SERV="5200"
USER="anonymous";

All one level names used in sas code are autontigtigatten to the SPD Server domain
USER. For example:

data TABLENAME;
set LIBREF. TABLENAME;

run;

proc print data=TABLENAME; RUN;

* would run successful, SPD Server table processed
USER.TABLENAME;

proc print data=USER.TABLENAME; RUN;

* would run successful, SPD Server table processed
USER.TABLENAME;

proc print data=WORK.TABLENAME; RUN;

* would FAIL because the SAS data set WORK. TABLENEM
does not exist;

Conclusion

Moving the disk space allocated to SASWORK into$fD Server domain USER has
the following benefits:

a.

Only one operating system id is used to write agadi data from the
operating systems file systems. This reduces ITsdpseliminating the
need to allocate/maintain permanent and transisktspace on a per SAS
end-user bases

A true understanding of how much transient spacegsired for your
SAS end-users will be gained over time.

The SPD Server audit logs provide usage informatioall tables in SPD
Server.

The proliferation of SAS data sets will not occur.

Increased security because your data is locked dlosishe of SPD Server
and can only be accessed when appropriate SPDr®eedentials are
provided.

Appendix A

Data Driven SPD Server Partition Size

Introduction

The macro documented in this appendix was created to provide a data driven process to
calculate and set the correct partition size for a new SPD Server table.

This macro has the following parameters:
 SOURCE - Source table being loaded into SPD Server

* PARTS - SAS recommends 2 parts per file system allocated to the data component of an
SPD Server domain

* FILESYSTEMS - the number of file systems dedicated to the data component of the SPD
Server domain. refer to !spdsroot/site/LIBNAMES.PARM

» FILE - a temp file that is used to store the SPDS statement used to set the correct
partition size

* NOBS - Data driven, the number of rows in the source table

* LRS -Data driven, the logical record length of the source table

This macro creates a report containing information about the source table and the SPD Server
table.

Notes/How to
This macro has been tested on the Solaris and Windows platforms.

Code

* Calculate SPDS Partition Size v 1.3

* Source

* Type: String

Group: General

Label: Source table being loaded into SPD Se rver
Attr: Modifiable, Required

PARTS
Type: Numeric
Group: General
Label: SPD Server R&D recommends 2 parts per
file system allocated for the data co mponent
of an SPD Server table
Attr: Modifiable, Required

FILESYSTEMS

Type: String

Group: General

Label: the number of files system dedicated to the
data component of the SPDS table, ref erto

LIBNAMES.PARM
Attr: Modifiable, Required

FILE
Type: String
Group: General
Label: a temp file that is used to store the SPDS
statement to set the correct partitio n size

Attr: Modifiable, Required

NOBS
Type: Numeric
Group: General
Label: the number of rows in the source tabl e being
loaded into the SPDS table
Attr: Data driven

LRS
Type: Numeric
Group: General
Label: the logical record length of the sour ce table
being loaded into the SPDS table.
Attr: Data driven

L I S TR N I R T B T N N . N S I R S T S R SR N N R S S I

%global Irs nobs partsize spdssize;
%macro
partsize(SOURCE=sashelp.voption,PARTS=2,FILESYSTEMS =10,FILE="/tmp/&sysu
serid..partsize.sas");
proc contents
data=&Source
out=contents (keep=length nobs)
noprint;
run;

data_null_;

set contents end=done;
Irs + length;
if done then do;
call symput ('Irs',trim(left(put(Irs,8.))));
call symput (‘'nobs',trim(left(put(nobs,8.))));
end;
run;

%if &nobs eq . %then %do;
proc sql;
create table nobs as select count(*)as nobs from

&SOURCE;
quit;
data _null_;
set nobs;
call symput (‘'nobs',trim(left(put(nobs,8.))))
run;
%end,;

data partsize;
file &FILE;
format observations logical_record_length
rows_per_filesystem file_systems

rows_per_partition parts bytes kbyte s mbytes gbytes

tbytes comma24.0;
observations=&NOBS;
file_systems=&FILESYSTEMS;
logical_record_length=&LRS;
parts=&PARTS,;
rows_per_filesystem=ceil(observations/file_sys
rows_per_partition=rows_per_filesystem/&PARTS;
partsize=CEIL((rows_per_filesystem *
logical_record_length) / (1024*1024));
partsize=CEIL(partsize/&parts);
if partsize <=16 then partsize=16;
bytes=&nobs*&lrs;
kbytes=bytes/1024;
mbytes=bytes/1024**2;
gbytes=bytes/1024**3;
tbytes=bytes/1024**4;
cpartsize=partsize || 'M’;
call symput
(‘partsize’ trim(left(put(cpartsize,$30.))));
put '%let spdssize=' cpartsize ';';
run;
options source2;
%inc &FILE;
options nosource2;
%put For the table &Source there are &NOBS rows wi
record length of &LRS bytes.;
%put Creating &parts partitions per data path, the
size for &Source is &PARTSIZE;
title "SPD Server Parition Size for &Source is &PA
proc print uniform Label,
Label parts='"Desired Number of Data Components
System per Table'

tems);

th a logical
partition
RTSIZE";

per File

rows_per_filesystem='"Number of Rows per File System'
rows_per_partition="Number of Rows per Partit ion'
Observations='Number of Rows in Table'
file_systems='"Number of File Systems for SPDS
Data Component’
partsize='Partition size of SPD Server Table'
logical_record_length="Logical Record length'
bytes='Bytes'
kbytes="Kilobytes'
mbytes="Megabytes'
ghbytes='Gigabytes'
tbytes="Terabytes'’;
var partsize observations logical_record_lengt h
file_systems parts rows_per_filesystem
rows_per_partition bytes kbytes mbytes
gbytes tbytes;
run;

title;
%mend;

%partsize(SOURCE-=train.sales_fact 2004,PARTS=2,FILE SYSTEMS=10,FILE="c:\
temp\&sysuserid..partsize.sas");

