
Paper 52-28

- 1 -

A Beginner's Guide to Incorporating SAS Output in Microsoft Office Applications

Vincent DelGobbo, SAS Institute Inc., Cary, NC

ABSTRACT
This paper provides techniques for incorporating the output from
SAS software, regardless of the install platform, in Microsoft
Excel and Word (versions 2000 and later). The paper focuses on
the use of the Output Delivery System (ODS) and SAS servers.

INTRODUCTION
After reading this paper you should be able to incorporate just
about any output from your SAS code into a Microsoft Excel or
Word document. In addition, the data and sample SAS code
used in this paper bring to light formatting issues that you may
encounter when attempting to import HTML output generated by
the Output Delivery System (ODS) into Office documents.

For information about generating other types of output and
techniques for using those types of output in Excel and Word,
refer to this author's SUGI 27 paper (DelGobbo, 2002).

SAMPLE SCENARIO
Figure 1 shows the SAS output that we will incorporate into both
Excel and Word.

Figure 1. ODS-generated HTML output in a Web browser.

The chart in the top half of Figure 1 was generated using PROC
GCHART while the table was generated with PROC TABULATE.
ODS was used to generate the HTML file that contains both the
chart and the table. As we will see later, when you open this
HTML file in Excel or Word, it will look very much as it does when
viewed in a Web browser (Figure 1).

The SAS data set used in this scenario is a modified version of
the data set available in the SAS Sample Library program named

ODSREP2.SAS. The modified data set and associated SAS
formats are shown in their entirety in the Appendix.

The high-level steps to place your SAS output into Excel or Word
documents are:

1. Run your SAS code, using ODS to generate HTML.

2. Store the HTML output in a network-accessible
location.

3. Open the output file(s) in Excel or Word.

The remainder of this paper discusses these steps in detail, and
provides solutions to common formatting problems you may
encounter.

GENERATING AND STORING THE OUTPUT
The sample PROC GHART and PROC TABULATE code used in
this paper can be found in the Appendix. The following sections
explain the SAS code and how to store the output file. All code
was tested using Version 9 SAS software.

PROC GCHART CODE

The GCHART code used in this example is fairly straightforward.
A horizontal, 3D bar chart is generated from the SALES data set.
This chart displays wholesale and retail sales information by
region for three different products.

The chart is output as a GIF image using the GIF570
SAS/GRAPH device driver. Both Excel and Word can render
GIF images when referenced in HTML files. While you can use
the ACTIVEX driver to render the chart using the SAS/GRAPH
ActiveX® Control, Excel had problems importing the control at the
time of this writing.

STORING THE OUTPUT

When it comes to choosing where to store your output, you have
a number of options, including:

• Local disk (where SAS software is installed)

• Network accessible disk

• Web server

There are several good reasons to store your SAS output on a
Web server:

1. The files are available to anyone with network
access.

2. The HTML files can be accessed by a Web
browser in addition to Excel and Word.

3. You can take advantage of Web server
authentication and security models.

If you place the files where others can access them over a
network, you should set file permissions to prevent accidental
alteration.

In our sample scenario, we will store the ODS-generated files on
a Web server.

GENERATING THE HTML OUTPUT

Although there are several options that you can specify to control
the appearance of your HTML output, the sample code presented
in this paper uses only a few of these options.

2

To generate the HTML output and store it on a Web server, use
the following ODS statements:

%let HTMROOT=path-to-Web-server/sugi28/;

� ods listing close;

� ods html path = "&HTMROOT" (URL="")
 body = 'salesreport.htm'
 style = Banker;

The ODS statement at � turns off the standard "line printer"
ODS destination, since we are only concerned with generating
HTML output.

The ODS statement at � generates the HTML output and GIF
image, and stores them on the Web server. The PATH attribute
is used to specify where the HTML output and GIF image will
reside. The name of the HTML file will be "salesreport.htm", and
the output color scheme is controlled by the "Banker" style.

The value of HTMROOT must point to a subdirectory your Web
server can read because this is where the HTML and GIF files will
be stored. In this case, the directory "sugi28" is under the main
root of the Web server. If you are using Microsoft Internet
Information Server (IIS), HTMROOT would typically be
c:\inetpub\wwwroot\sugi28\.

Based on the values of HTMROOT and URL, ODS will generate
an HTML tag with this format:

The file name of the GIF image is controlled by the NAME option
of the HBAR3D statement (see code in the Appendix).

The "Banker" style is new for Version 9. To see a list of ODS
styles that are available for use, submit this SAS code:

ods listing;
proc template; list styles; run;

You are free to use any style you wish, but Excel or Word may
import some styles better than others. Methods for correcting
formatting problems you may encounter are presented in the
section "Correcting Common Formatting Problems in Excel and
Word". Please refer to the Appendix for an important note
concerning HTML.

OPENING THE OUTPUT IN EXCEL AND WORD
To open the ODS-generated HTML file with Microsoft Word,
follow these steps:

1. In Word select File è Open…

2. In the "File name" field, specify
 http://Web-server/sugi28/
where Web-server corresponds to the domain
name for your Web server. Click Open. You
should see a list of files available on your Web
server.

3. Select salesreport.htm and click Open to import
the HTML file.

If you don't see a list of available files after step 2, you may have
to configure your Web server to allow directory listing.
Alternatively, you can specify the full path to the file you wish to
open:

http://Web-server/sugi28/salesreport.htm

When the file is displayed in Word, it should look very similar to
Figure 2:

Figure 2. salesreport.htm opened with Word 2002.

Word does a good job of importing the HTML file; it looks very
much like the file viewed with a Web browser (Figure 1).
However, depending on the version of SAS and MS Office
software, you may notice that cell borders are drawn incorrectly,
as is the case with Figure 2.

When you follow similar steps to open the file with Excel, you will
notice that the background color for some of the cells is gray
instead of green, the leading zeros in the product numbers have
been dropped, and there are no cell borders (see Figure 3).

Figure 3. salesreport.htm opened with Excel 2002.

3

CORRECTING COMMON FORMATTING

PROBLEMS IN EXCEL AND WORD
Many formatting problems you encounter when importing HTML
output into Excel and Word can be corrected with Cascading
Style Sheet (CSS) attributes. Starting in version 8 of SAS
software, a number of SAS procedures support the STYLE
option. This option can be used to alter the CSS attributes that
are generated by SAS procedures and are then embedded in
HTML pages. The following sections describe how to use style
attributes.

For detailed information on the STYLE option, refer to the SAS
Online Documentation ("Available Documentation") for ODS
and/or the specific procedure you are interested in. Pass and
McNeill (2002a, 2002b) have written excellent papers covering
this topic with respect to the Tabulate and Report procedures.
Extensive information about CSS is available on the W3C Web
site ("Cascading Style Sheets").

CORRECTING CELL BACKGROUND COLOR

The HTML generated by ODS specified #C4E4B8 for the green
background color of some of the cells, but, because Excel has a
limited color palette that does not support that particular color,
Excel mapped the green to gray.

Figure 4. HTML colors supported by Excel 2000 and later.

By examining Figures 1 and 4, you can see that color #CCFFCC
is similar to the original green generated by ODS, and can be
used as a reasonable substitute. Note that using this new color
will slightly change the appearance of the original Web page, as
well as the output rendered by Excel and Word.

To generate the ODS HTML using the new color, you must
modify the original PROC TABULATE code (available in the
Appendix) as shown below. The modifications are shown in bold.

proc tabulate data=sales;

 class region product saletype /

 style={background=#CCFFCC};

 classlev product /

 style={background=#CCFFCC};

 classlev region saletype /

 style={background=#CCFFCC};

 var quantity amount /

 style={background=#CCFFCC};

 keyword all sum /

 style={background=#CCFFCC};

 keylabel all="Total";
 table region*product,(saletype=' ' all) *
 (quantity*f=comma7.

 amount*f=dollar8.) /

 box={style={background=#CCFFCC}};

run; quit;

The CLASSLEV statement assigns style information to class-
level variable values. The ODS style attribute background
generates the following CSS attribute for all the cells that were
gray:

background-color: #CCFFCC;

ALTERING THE CELL BORDERS

You can see from Figures 2 and 3 that some or all of the cell
borders of the table are missing in the Word and Excel
documents. You can use the STYLE option to explicitly set the
border color and width to values that are supported by Excel and
Word. These further modifications to the PROC TABULATE code
are shown in bold.

proc tabulate data=sales

 style={bordercolor=silver borderwidth=1};

 class region product saletype /
 style={background=#CCFFCC

 bordercolor=silver borderwidth=1};

 classlev product /
 style={background=#CCFFCC

 bordercolor=silver borderwidth=1};

 classlev region saletype /
 style={background=#CCFFCC

 bordercolor=silver borderwidth=1};

 var quantity amount /
 style={background=#CCFFCC

 bordercolor=silver borderwidth=1};

 keyword all sum /
 style={background=#CCFFCC

 bordercolor=silver borderwidth=1};

 keylabel all="Total";
 table region*product,(saletype=' ' all) *
 (quantity*f=comma7.
 amount*f=dollar8.) /
 box={style={background=#CCFFCC

 bordercolor=silver borderwidth=1}};

run; quit;

The ODS style attributes bordercolor and borderwidth
generate the following CSS attributes, which are added to all
table cells:

border-color: silver; border: 1;

ASSIGNING EXCEL NUMBER FORMATS

When the HTML file is opened with Excel (see Figure 3), Excel
applies the General format to the product numbers, thus dropping
leading zeros. This, too, can be corrected with CSS.

Up to this point, we have been indirectly setting CSS attributes
through the ODS style attributes. For example, the CSS attribute
background-color was set by the ODS style attribute
background.

If you know the name of the CSS attribute you want to set, you
can set it directly using the SAS STYLE option attribute
HTMLSTYLE. To assign an Excel format, use the proprietary
Microsoft CSS attribute mso-number-format. You also need
to know the definition for the Excel format that you want to
assign.

In our case, we want to use the Excel format 00000, which
instructs Excel that the cell will contain a 5-digit number, and that
leading zeroes are retained. This is comparable to the SAS Z5.
format. To make Excel to use this format when importing HTML,

4

change the CLASSLEV statement for the variable PRODUCT:

classlev product /
 style={background=#CCFFCC
 bordercolor=silver borderwidth=1

 HTMLSTYLE="mso-number-format:00000"

 };

This technique is very useful for correcting cases where Excel
automatically assigns an incorrect format. Table A-1 in the
Appendix shows several common mso-number-format
settings.

Because the mso-number-format is only recognized by Excel,
you may use it in any HTML files that you intend to open with
other applications, such as a Web browser or Microsoft Word.

Microsoft has published a reference document that describes
several of their proprietary CSS extensions that are recognized
by Office applications ("Microsoft Office HTML and XML
Reference").

For more information about Excel number formats, search for
"create a custom number format" in the Excel help system.

Figures 5 and 6 show the final output viewed in Word and Excel.
You can see that these two figures are similar to each other and
to Figure 1, the original HTML rendered in a Web browser.

Figure 5. Final HTML file opened with Word 2002.

Figure 6. Final HTML file opened with Excel 2002.

CORRECTING OTHER EXCEL FORMAT PROBLEMS

Although we did not encounter them in this example, there are
other problems that you may come across when attempting to
open HTML files with Excel or Word.

One such problem is where Excel misinterprets data that was
meant to be represented as a ratio. Consider the following SAS
code:

data ratio;
 ratio = '1/4'; output;
 ratio = '2/3'; output;
 ratio = '3/4'; output;
run;
ods listing close;
ods html … ;
 proc print data=ratio noobs;
 var ratio;
 run;
ods html close;

Figure 7 (left side) shows that Excel misinterprets the ratios as
dates when it imports them.

Figure 7. Excel 2002 misinterprets ratios as dates.

You can correct this problem by making a simple modification to
the PROC PRINT code:

proc print data=ratio noobs;

 var ratio / style(data)={htmlstyle=

 "mso-number-format:\#\/\#"};

run;

5

Note that since PROC PRINT supports multiple VAR statements,
you can use additional statements to print other variables in a
data set. This makes it very easy to modify the style attributes of
any number of variables.

Another problem you may encounter is when blank spaces used
for formatting are "compressed" when your HTML is rendered.
This is not due to a problem with Excel or Word, but is rather the
way HTML is rendered. Unless text appears between HTML tags
that preserve blanks, such as <PRE>, multiple spaces are
rendered as 1 space. To correct this problem, use the ASIS
attribute:

proc print data=your-dataset;

 var your-variable / style={asis=yes};

run;

ADVANCED TOPICS
If you have licensed SAS/IntrNet® software, you can dynamically
incorporate SAS output into Excel and Word using the
Application Dispatcher. You can perform similar tasks with the
Stored Process Server, which is new for Release 9.1. In addition,
both SAS/IntrNet software and the Stored Process Server can be
used with Excel Web Queries to simplify the process.

SAS SERVER TECHNOLOGY

The Application Dispatcher and the Stored Process Server
enable you to execute SAS programs from a Web browser or any
other client that can open an HTTP connection to either of these
SAS servers (which can run on any platform where SAS is
licensed). The SAS programs that you execute from the browser
can consist of any combination of DATA step, PROC, MACRO,
or SCL code. Thus, all of the code shown up to this point can be
executed using either Application Dispatcher or the Stored
Process Server.

Program execution is typically initiated by accessing a URL that
points to the SAS server program. Parameters passed to that
server program are included as name/value pairs in the URL.
The SAS server takes these name/value pairs and constructs
SAS MACRO variables with the same name. Thus, any
parameter included in the URL is available for use by your SAS
program.

For an example, we'll look at the PROC TABULATE code we
have been using. If you want a user to specify the cell border
color, you first need to modify all the STYLE options to use a
variable instead of a specific value (recall that previously the
border color was hard coded as "silver"):

bordercolor=&BDRCOLOR

With this change the color can be specified each time the
program is executed. The code is executed on the SAS server
via a URL such as:

http://path-to-server?_program=program-
name&bdrcolor=RED

Now, the value specified in the URL for the parameter named
BDRCOLOR will be used by the TABULATE code.

This is just a sample of how you can take advantage of SAS
server technologies. For details about the operation of the
Application Dispatcher or the Stored Process Server, refer to the
respective documentation ("Application Dispatcher" and
"Overview of SAS Stored Processes"). Other server-based
techniques are discussed in this author's SUGI 27 paper
(DelGobbo, 2002).

Up to this point we have entered in the Excel and Word Open
dialog boxes a URL that points to a static HTML file. To
dynamically create your SAS output and place it into an Excel or
Word document, type the server-based URL into the Open dialog
box.

EXCEL WEB QUERIES

All of the examples we have looked at so far consist of typing a
URL into the Excel or Word Open dialog. This URL can point to
static HTML or to a server-based SAS program that dynamically
generates HTML. While this procedure works well, Excel has a
feature that allows the URL to be placed into a text file so you
don't have to type it over and over again. This feature is known
as a Web Query.

In Excel 97 and later, Web Queries enable you to incorporate
HTML from a Web server, a local drive, or a network drive,
directly into your worksheet. To do so you must first create a
Web Query file that contains the URL of the HTML you wish to
retrieve. In the case of a SAS server program discussed in the
previous section, that Web Query file would look something like
this:

WEB
1

http://path-to-server?_program=program-
name&bdrcolor=RED

Note that the SAS server program may be run on any platform,
but it must output HTML. Any number of parameters can be
passed to the SAS program using the URL. The parameter
values can be hard coded or dynamic, enabling you to specify the
value each time the query executes. Documentation on creating
Web Queries is available from Microsoft ("XL97: How to Create
Web Query (.iqy) Files", "Get and Analyze Data from the Web in
Excel 2000" and "Getting Data from the Web in Excel 2002").

To run a Web Query, use the appropriate menu selection for your
version of Excel:

Excel 97 Data è Get External Data è Run Web Query…

Excel 2000 Data è Get External Data è Run Saved Query…

Excel 2002 Data è Import External Data è Import Data…

You can then navigate to the Web Query file and execute it. The
resulting HTML is automatically included in your worksheet.

If you save the workbook and open it at a later date, you can
easily retrieve a fresh copy of the HTML (or rerun the SAS server
program) by right clicking on a table cell and choosing "Refresh
Data".

SAS/ACCESS® TO PC FILES

Starting with Release 9.1 of SAS/ACCESS to PC Files, you have
read and write access to Excel workbooks from a UNIX
environment. This means that if you license this product on a
UNIX platform, you have native access to Excel files. In previous
releases, such access was only possible with Windows versions
of SAS software. Release 9.1 of SAS/ACCESS to PC Files also
includes support for many new file types, as well as enhance-
ments to the Import/Export procedure and Wizard. For more
information about this product, refer to Plemmons' (2003) SUGI
28 paper.

VISUAL BASIC®

Key and Shamlin (2002) document a number ways you can move
data back and forth between SAS and Office using Visual Basic,
Visual Basic for Applications (VBA), and ADO. SAS distributes a
set of OLE DB providers ("Welcome to the SAS 9 Data Providers:
ADO/OLE DB Cookbook") that enable you to implement tools
customized to your needs for moving data between Microsoft
Office applications and SAS. A sample Microsoft Office addin is

6

available which illustrates more specifically how such tools can
be created ("Overview of the SAS Office Wizard Addin Sample").
This author's paper (DelGobbo, 2002) provides additional
techniques for using Visual Basic for Applications with Excel and
Word.

FUTURE PLANS
We are currently investigating ways to make SAS content more
accessible to Office applications. One such project is
determining the feasibility of using ODS to generate XML that is
supported by Excel and Word. The benefit would be more robust
support for Excel and Word, thus reducing the amount of hand
editing you need to do to get the results you desire.

Work is continuing on a product that will provide new ways to
access and reuse SAS capabilities directly from Microsoft Office.
The first release of this product enables you to

• embed SAS data and analytical results into Office
applications

• provide robust data exchange between SAS servers and
Office applications

• execute SAS logic running as a SAS Stored Process on
remote or local servers

• interact with a SAS server via a user-friendly GUI.

CONCLUSION
Using ODS to generate HTML output is an effective means of
incorporating SAS output in Excel and Word documents.
Although you may encounter formatting problems when using this
technique, you can use ODS and CSS style attributes to
overcome many of these problems.

SAS Institute continues to work toward better Microsoft Office
integration, and future releases of SAS software will provide more
robust means of using SAS content with Office applications.

APPENDIX
Sample SAS Formats and SAS data set

proc format;
 value citysize 1 = 'Small'
 2 = 'Medium'
 3 = 'Large';

 value region 1 = 'Northeast'
 2 = 'North Central'
 3 = 'Southern'
 4 = 'Western';

 value $saletyp 'R'='Retail'
 'W'='Wholesale';
run; quit;

data sales;
input region citysize pop product saletype $
 quantity amount;
format region region.
 citysize citysize.
 pop comma7.
 product z5.
 saletype $saletyp.
 quantity comma7.
 amount dollar8.;

label region = "Region"
 citysize = "City Size"
 pop = "Population"
 product = "Product Number"

 saletype = "Sale Type"
 quantity = "Quantity"
 amount = "Amount";
cards;
2 1 25000 100 R 150 3750.00
1 1 37000 100 R 200 5000.00
3 1 48000 100 R 410 10250.00
4 1 32000 100 R 180 4500.00
2 2 125000 100 R 350 8750.00
1 2 237000 100 R 600 15000.00
3 2 348000 100 R 710 17750.00
4 2 432000 100 R 780 19500.00
1 3 837000 100 R 800 20000.00
3 3 748000 100 R 760 19000.00
4 3 932000 100 R 880 22000.00
2 1 25000 100 W 150 3000.00
1 1 37000 100 W 200 4000.00
4 1 32000 100 W 180 3600.00
2 2 125000 100 W 350 7000.00
1 2 237000 100 W 600 12000.00
3 2 348000 100 W 710 14200.00
4 2 432000 100 W 780 15600.00
2 3 625000 100 W 750 15000.00
1 3 837000 100 W 800 16000.00
3 3 748000 100 W 760 15200.00
4 3 932000 100 W 880 17600.00
2 1 25000 200 R 165 4125.00
1 1 37000 200 R 215 5375.00
3 1 48000 200 R 425 10425.00
4 1 32000 200 R 195 4875.00
2 2 125000 200 R 365 9125.00
1 2 237000 200 R 615 15375.00
3 2 348000 200 R 725 19125.00
4 2 432000 200 R 795 19875.00
1 3 837000 200 R 815 20375.00
3 3 748000 200 R 775 19375.00
4 3 932000 200 R 895 22375.00
2 1 25000 200 W 165 3300.00
1 1 37000 200 W 215 4300.00
4 1 32000 200 W 195 3900.00
2 2 125000 200 W 365 7300.00
1 2 237000 200 W 615 12300.00
3 2 348000 200 W 725 14500.00
4 2 432000 200 W 795 15900.00
2 3 625000 200 W 765 15300.00
1 3 837000 200 W 815 16300.00
3 3 748000 200 W 775 15500.00
4 3 932000 200 W 895 17900.00
2 1 25000 300 R 157 3925.00
1 1 37000 300 R 208 5200.00
3 1 48000 300 R 419 10475.00
4 1 32000 300 R 186 4650.00
2 2 125000 300 R 351 8725.00
1 2 237000 300 R 610 15250.00
3 2 348000 300 R 714 17850.00
4 2 432000 300 R 785 19625.00
1 3 837000 300 R 806 20150.00
3 3 748000 300 R 768 19200.00
4 3 932000 300 R 880 22000.00
2 1 25000 300 W 157 3140.00
1 1 37000 300 W 208 4160.00
4 1 32000 300 W 186 3720.00
2 2 125000 300 W 351 7020.00
1 2 237000 300 W 610 12200.00
3 2 348000 300 W 714 14280.00
4 2 432000 300 W 785 15700.00
2 3 625000 300 W 757 15140.00
1 3 837000 300 W 806 16120.00
3 3 748000 300 W 768 15360.00
4 3 932000 300 W 880 17600.00
;
run;

7

Sample PROC GHART and PROC TABULATE Code

%let HTMROOT=path-to-Web-server/sugi28/;

ods listing close;
ods html path = "&HTMROOT" (URL="")
 body = 'salesreport.htm'
 style = Banker;

goptions reset=all;
goptions device=gif570
 ftext=swissb
 ftitle=swissl
 cback=cxffffcd
 goutmode=replace;
title 'North American Sales Report';
footnote;

pattern1 c=cxffa53d v=solid;
pattern2 c=cxf7df54 v=solid;
pattern3 c=cxc4e4b8 v=solid;

proc gchart data=sales;
 hbar3d saletype / type=sum
 nostats
 sumvar=amount
 subgroup=product
 group=region
 discrete
 shape=cylinder
 cframe=cxffffcd
 name='salesrep'
 noheading;
run; quit;

title; footnote;

proc tabulate data=sales;
 class region product saletype;
 var quantity amount;
 keyword all sum;
 keylabel all="Total";
 table region*product,(saletype=' ' all) *
 (quantity*f=comma7.
 amount*f=dollar8.);
run; quit;

ods html close;

Important Note Concerning HTML

Starting in SAS 9.1, the ODS HTML destination generates HTML
that is compliant with the HTML 4.0 specification. Your version of
Microsoft Office may or may not support this HTML. If you
experience gross formatting errors when opening your HTML files
in Excel or Word, try using these ODS statements:

ods tagsets.MSOffice2K body=…;
 * SAS code here;
ods tagsets.MSOffice2K close;

You can also try using this code to generate SAS 8.2-style HTML:

ods HTML3 body=…;
 * SAS code here;
ods HTML3 close;

Table A-1. Commonly encountered values for mso-number-

format.

SAS Data Value mso-number-format

1234567890.1230 \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\.0000

1,234,567,890.1230 \#\,\#\#\#\,\#\#\#\,\#\#\#\.0000

1.234.567.890,1230 \#\.#\#\#\.\#\#\#\.\#\#\#\,0000

$1,234,567,890.30 \$\#\,\#\#\#\,\#\#\#\,\#\#\#\.00

$1.234.567.890,30 \$\#\.\#\#\#\.\#\#\#\.\#\#\#\,00

01340 00000

(919) 677-8000
'\[<=9999999\]\#\#\#\-\#\#\#\#\;\(\#\#\#\\)\
\#\#\#\\-\#\#\#\#'

919-677-8000
\[<=9999999\]\#\#\#\-\#\#\#\#\;\#\#\#\-\#\#\#\-
\#\#\#\#

919.677.8000
\[<=9999999\]\#\#\#\.\#\#\#\#;\#\#\#\.\#\#\#\.\#\
#\#\#

16/03/02 dd\/mm\/yy

16/03/2002 dd\/mm\/yyyy

16-03-02 dd\-mm\-yy

16-03-2002 dd\-mm\-yyyy

16.03.02 dd\.mm\.yy

16.03.2002 dd\.mm\.yyyy

03/16/02 mm\/dd\/yy

03/16/2002 mm\/dd\/yyyy

03.16.02 mm\.dd\.yy

03.16.2002 mm\.dd\.yyyy

Note: the letter "V" does not appear in any of the mso-number-
format definitions. What you are seeing is a combination of a
backslash ("\") and a forward slash ("/") characters.

REFERENCES
"Application Dispatcher," SAS Institute Inc. Available

http://support.sas.com/rnd/web/intrnet/dispatch.html

"Available Documentation," SAS Institute Inc. Available
http://support.sas.com/documentation/onlinedoc/

"Cascading Style Sheets," World Wide Web Consortium.
Available http://www.w3.org/Style/CSS/

DelGobbo, V. (2002), "Techniques for SAS Enabling Microsoft
Office in a Cross-Platform Environment," Proceedings of the
Twenty-seventh Annual SAS Users Group International
Conference, 27, CD-ROM. Paper 174. Available
http://www2.sas.com/proceedings/sugi27/p174-27.pdf

"Get and Analyze Data from the Web in Excel 2000," Microsoft
Corporation. Available

http://office.microsoft.com/assistance/2000/ExWQA.aspx

"Getting Data from the Web in Excel 2002," Microsoft
Corporation. Available
http://office.microsoft.com/assistance/2002/articles/GetDataFrom
TheWebInExcel.aspx

Key, D. and Shamlin, D. (2002), "Using SAS® Data to Drive
Microsoft® Office," Proceedings of the Twenty-seventh Annual
SAS Users Group International Conference, 27, CD-ROM. Paper
123. Available http://www2.sas.com/proceedings/sugi27/p123-
27.pdf

"Microsoft Office HTML and XML Reference," Microsoft
Corporation. Available
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnoffxml/html/ofxml2k.asp

8

"Overview of SAS Stored Processes," SAS Institute Inc.
Available
http://support.sas.com/rnd/itech/doc9/dev_guide/stprocess/index.
html

"Overview of the SAS Office Wizard Addin Sample," SAS
Institute Inc. Available
http://support.sas.com/rnd/eai/samples/OffWiz/index.html

Pass, R. and McNeill, S. (2002), "PROC TABULATE: Doin' It in
Style," Proceedings of the Twenty-seventh Annual SAS Users
Group International Conference, 27, CD-ROM. Paper 189.
Available http://www.ita.doc.gov/td/industry/otea/dcsug/HOW-
TABULATE-STYLE.pdf

Pass, R. and McNeill, S. (2002), "PROC REPORT: Doin' It in
Style," Proceedings of the Twenty-seventh Annual SAS Users
Group International Conference, 27, CD-ROM. Paper 187.
Available http://www2.sas.com/proceedings/sugi27/p187-27.pdf

Plemmons, H. (2003), "How to Access PC File Data Objects
Directly from UNIX®," Proceedings of the Twenty-eighth Annual
SAS Users Group International Conference, 28, CD-ROM. Paper
156. Available: http://www2.sas.com/proceedings/sugi28/156-
28.pdf

"Welcome to the SAS 9 Data Providers: ADO/OLE DB
Cookbook," SAS Institute Inc. Available
http://support.sas.com/rnd/eai/oledb/index.htm

"XL97: How to Create Web Query (.iqy) Files," Microsoft
Corporation, Microsoft Product Support Services, March 18,
2002. Available
http://support.microsoft.com/default.aspx?scid=kb;EN-
US;q157482

ACKNOWLEDGMENTS
The author would like to thank Chris Barrett and Bryan Wolfe of
SAS Institute Inc. for their valuable contributions to this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Vincent DelGobbo

 SAS Institute Inc.

 SAS Campus Drive

 Cary, NC 27513

 Phone: (919) 677-8000

 http://support.sas.com/rnd/web/

If your registered in-house or local SAS users group would like to
request this presentation as your annual SAS presentation (as a
seminar, talk or workshop) at an upcoming meeting, please
submit an online User Group Request Form
(http://support.sas.com/usergroups/namerica/lug-form.html) at
least eight weeks in advance.

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

