

 1

Figure 1. Columns in the SAS Adverse Event Table

Moving Data and Analytical Results between SAS®

and Microsoft Office

Vincent DelGobbo, SAS Institute Inc., Cary, NC

ABSTRACT

Transferring data between SAS and Microsoft Office can be difficult, especially when SAS is not installed on a
Windows platform. This paper discusses using the HTML and XML support in Base SAS software to move data
between SAS and Microsoft Office (versions 2002 and later). You can use the techniques described here regardless
of the platform on which SAS software is installed.

INTRODUCTION

After reading this paper, you should be able to import most SAS output into a Microsoft Excel or Word document, as
well as import Excel workbooks into SAS. The data and sample SAS code that’s used in this paper reveal formatting
issues that you might encounter when attempting to import HTML and XML output that’s generated by the Output
Delivery System (ODS) into Microsoft Office documents. The TEMPLATE procedure is used to correct these
problems by modifying an ODS style. This paper also explains and provides code for importing Excel workbooks
into SAS tables. All code was tested with SAS 9.1 and Microsoft Office XP Service Pack 3.

For information about generating other types of output and techniques for using that output in Excel and Word, see
”Techniques for SAS Enabling Microsoft Office in a Cross-Platform Environment” in the Proceedings of the Twenty-
Seventh Annual SUGI Conference (DelGobbo, 2002).

SAMPLE SAS DATA

Figure 1 shows the column
properties of the data that we
are going to move to Excel and
Word. The data is adverse
event information for a fictitious
drug.

Notice that labels were applied
to each column in order to
create a more attractive table
when imported into the
Microsoft Office applications.

The two columns AESEV and
AESEVC represent the severity
of the adverse event. As
illustrated in Figure 2, the same
data is represented in two ways:
the AESEV column contains a
numeric value for the severity,
and the AESEVC column
contains a character value for
the severity. Later in this paper,
the SAS code uses both
columns.

2

Figure 2. Partial View of the SAS Adverse Event Table

Notice that the Code column contains values that have leading zeros. By using an ODS style override, you can
retain the leading zeros when importing the Code data into Excel. Microsoft Word retains leading zeros by default.

ODS BASICS

ODS is the part of Base SAS software that enables you to generate different types of output from your procedure
code. An ODS tagset controls the type of output that’s generated (HTML, RTF, PDF, etc.); an ODS style controls the
appearance of the output. In this paper, we use a tagset that creates HTML output that can be opened with Excel
and Word, and a tagset that creates XML that can be opened by Excel. The latter tagset creates an Excel workbook
that has multiple worksheets.

Extensible Markup Language (XML) defines and formats data for easy exchange. XML is similar to HTML in that it
uses tags. Unlike HTML tags that control how data is rendered, XML tags describe the structure and meaning of data
but do not control how it is rendered.

The ODS statements that generate content that’s compatible with Microsoft Office follow this general form:

� ods listing close;

� ods TagsetName style=StyleName file= ... ;

 * your SAS code here;

� ods TagsetName close;

The first ODS statement (�) turns off the standard "line printer" ODS destination. We only want to generate HTML
and XML output for use with Excel and Word.

The second ODS statement (�) generates the HTML or XML output, depending on the tagset that you use, and
stores the output in a file of your choosing. The STYLE option controls the appearance of the output, such as the
font and color scheme. To see a list of ODS styles that are available for use at your site, submit the following SAS
code:

ods listing;

proc template; list styles; run; quit;

The third ODS statement (�) closes and releases the HTML or XML file so that it can be opened with Excel or Word.

3

Later in this paper, we discuss using both the ODS tagset named MSOffice2K to create HTML output and the
ExcelXP tagset to create XML output from the PRINT and TABULATE procedures. In both cases, appearance
characteristics such as colors and fonts are controlled by the ODS style named Banker.

Although you can store your output on a local disk (where SAS software is installed), a network-accessible disk, or a
Web server, here are some good reasons to store your SAS output on a Web server:

• The files are available to anyone who has network access.

• The HTML and XML files can be accessed by a Web browser in addition to Excel and Word.

• You can take advantage of Web-server authentication and security models.

If you place the files where others can access them over a network, you should set file permissions to prevent
accidental alteration.

OPENING ODS OUTPUT WITH EXCEL AND WORD

To open an ODS-generated file that’s stored on a Web server, follow these steps:

1. In Excel or Word, select File è Open.

2. In the "File name" field, specify http://Web-server/directory/
where Web-server corresponds to the domain name for your Web server.

3. Click Open. (You should see a list of files that are available on your Web server.)

4. Select the file that you want to open and click Open to import the HTML or XML file.

If you don't see a list of available files after step 3, you might have to configure your Web server to allow directory
listing. Alternatively, you can specify the full path to the file that you want to open.

http://Web-server/directory/filename

To open ODS-generated files from a local or network-accessible disk, follow the same steps, except in step 2 you
should either navigate to the desired file or type the filename and path in the "File name" field.

Excel and Word will read and convert the HTML or XML file (Excel only) to their respective native formats. After that,
you can perform any Excel or Word function on the data.

USING ODS TO GENERATE HTML FOR EXCEL AND WORD

The following SAS code generates HTML output for use with Excel and Word:

ods listing close;

ods tagsets.MSOffice2K style=Banker file='aedata.htm';

 title; footnote;

 proc print data=pharma.phcae noobs label;

 by protocol;

 var patient visit aedate aecode aetext aesev aesevc frequency;

 run; quit;

 proc tabulate data=pharma.phcae;

 by protocol;

 var aesev;

 class aetext aesevc;

 table aetext*aesevc,aesev*pctn;

 keyword all pctn;

 keylabel pctn='Percent';

 run; quit;

ods tagsets.MSOffice2K close;

The preceding code uses the MSOffice2K tagset to generate the HTML file and the Banker style to control the
appearance of the HTML. Figure 3 shows the resulting HTML file that’s opened in Word.

4

Figure 3. ODS HTML Output Viewed Using Microsoft Word

Word does a good job of preserving the format and nature of the SAS output. The results shown in Figure 3 very
closely match what you would see if you opened the HTML file with a Web browser. Note that all the SAS output is
in a single document; Figure 3 shows two different views of the single document.

However, opening the same HTML output in Excel (Figure 4) reveals that there are some formatting and data issues.
The background color for some of the cells is gray instead of green. The dates are formatted differently than they
were in Word. The leading zeros in the adverse event code have been dropped. The cause and a means of
correcting these problems are discussed in the section "Correcting Common Formatting Problems". Notice that all
the SAS output is in a single worksheet. Figure 4 displays two different views of the single worksheet.

5

Figure 4. ODS HTML Output Viewed Using Microsoft Excel

USING ODS TO GENERATE XML FOR EXCEL

Up to this point, we used an ODS tagset to create HTML that is imported into Excel, but Excel is also capable of
reading XML files. It does an especially good job of handling files that conform to the Microsoft XML Spreadsheet
Specification ("XML Spreadsheet Reference", Microsoft Corp.). The SAS®9 ExcelXP tagset generates this form of
XML for use with Microsoft Excel. The main benefit of using the ExcelXP (XML) tagset is that each table of the SAS
output is placed into a separate worksheet in the workbook, in contrast to a single worksheet as shown in Figure 4
when using the MSOffice2K (HTML) tagset.

6

However, there are some disadvantages to using the ExcelXP tagset that you should be aware of:

• The tagset is experimental. This means that limited testing has been performed on it, and its functionality
might change in the future.

• The tagset has not yet been optimized. It can take an unexpectedly long time to generate an XML file.
This problem was partially rectified in SAS® 9.1.3.

• You cannot use graphics in your SAS XML output because Excel does not support embedded graphics in
an XML file.

• Because Excel does not automatically resize text-based columns when reading an XML file, when you first
open the XML file, most of the columns are not wide enough to show all the data or headings. A future
release of the ExcelXP tagset may correct this problem.

Significant enhancements have been made to the ExcelXP tagset since the initial release of SAS 9.1. You can
download a recent version of the ExcelXP tagset from the SAS Presents Web site at
http://support.sas.com/saspresents. Find the entry "From SAS to Excel via XML". The download contains a file
named "excelxp.sas", which contains the SAS code for creating the ExcelXP tagset. Save a copy of this file, and
submit the following SAS code to make the tagset available:

� libname myLib 'directory-for-tagset'; * location to store the tagset;

� ods path myLib.tmplmst(update) sashelp.tmplmst(read);

 %include 'excelxp.sas';

The LIBNAME statement (�) specifies where to store the tagset. Although you can store the tagset in the WORK
library temporarily, it’s more efficient to create the tagset and store it in a permanent library so that you can reference
it in other SAS programs.

The ODS PATH statement (�) specifies the locations and the order in which to search for ODS tagsets and styles.
Notice that the access mode for myLib.tmplmst is specified as "update" and the access mode for

sashelp.tmplmst is specified as "read". Because ODS searches the PATH in the order given and because the

access mode for myLib.tmplmst is “update”, PROC TEMPLATE will store the tagset in a file named

tmplmst.sas7bitm in the directory that’s associated with the MYLIB library.

You can use the ExcelXP tagset by specifying the tagset name in an ODS statement and open the resulting XML file
with Excel. To continue using the sample code shown earlier (page 3), simply change the ODS statement as shown
here:

ods listing close;

ods tagsets.ExcelXP style=Banker file='aedata.xml';

 * PROC PRINT and PROC TABULATE code here;

ods tagsets.ExcelXP close;

Figure 5 shows the results of opening the XML file with Excel. As was the case with the HTML file, some cell
background colors appear gray instead of green, and the leading zeros in the adverse event code have been
dropped. Additionally, border lines are missing from all cells. However, unlike HTML, all the tables created by the
PRINT and TABULATE procedures appear in their own worksheet.

The next section discusses how to correct the formatting issues noted previously.

7

Figure 5. ODS XML Output Viewed Using Microsoft Excel after Resizing Columns Manually

CORRECTING COMMON FORMATTING PROBLEMS

When Excel and Word import HTML or XML files, the files are converted to native Excel or Word format. Sometimes
this conversion process is less than perfect, with Word generally handling the conversion better than Excel.
Although you can use the features of Excel and Word to manually correct the appearance of the file, doing so will be
cumbersome if you have a large number of files to correct. It’s much more efficient to have ODS generate a file
that’s compatible with Microsoft Office in the first place. This is accomplished by creating custom ODS styles and by
using ODS style overrides.

USING STYLE OVERRIDES TO CORRECT OUTPUT-SPECIFIC PROBLEMS

Although ODS styles define a particular appearance for your SAS output, you can change the attributes that are
defined in the style at run time by using a "style override". Style overrides are supported by the PRINT, TABULATE,
and REPORT procedures, and are best used for changing a small number of features that are associated with a
particular output. In this example case, style overrides can be used to correct the missing leading zeros and
improperly formatted date columns in the HTML and XML files that were imported into Excel.

When an HTML or XML file is opened, Excel automatically assigns an Excel format based on the data in the cells.
Sometimes, the default format is not the best choice. Fortunately, we can use a style override to instruct ODS to
assign a specific Excel format to a column. Because only the output from the PRINT procedure was affected, the
VAR statement is the only line of code that needs to be changed.

To correct the date formatting and the missing leading zeros problems in the HTML file in Figure 4, change the
single VAR statement, in the sample code given earlier (page 3), to the following:

8

Figure 6. Default HTML Colors Supported by

 Excel 2000 and Later

var patient visit;

var aedate / style={htmlstyle="mso-number-format:ddmmmyyyy"};

var aecode / style={htmlstyle="mso-number-format:00000000"};

var aetext aesev aesevc frequency;

The VAR statements instruct ODS to assign the special Excel format "ddmmmyyyy" for the AEDATE column and the
"00000000" format for the AECODE column. The first format is self-explanatory; the second format is comparable to
the SAS Z8. format. The HTML file that’s created by ODS can be viewed in Excel, Word, or a Web browser,
because Web browsers ignore the proprietary Microsoft mso-number-format style information when they render the
HTML. Complete code for correcting the HTML output can be found in the Appendix in the section "Corrected Code
to Export SAS Output to Excel or Word as HTML".

You can use the same concept to correct the leading zeros problem in the XML file shown in Figure 5, but the syntax
is slightly different:

var patient visit aedate;

var aecode / style={tagattr="\00000000"};

var aetext aesev aesevc frequency;

The next section describes how to correct the remainder of the formatting problems. The complete program for
correcting the XML output can be found in the Appendix in the section "Corrected Code to Export SAS Output to
Excel as XML". For more information about Excel formats, see ”A Beginner’s Guide to Incorporating SAS® Output in
Microsoft Office Applications” in the Proceedings of the Twenty-Eighth Annual SUGI Conference (DelGobbo, 2003).

USING PROC TEMPLATE TO CORRECT GLOBAL STYLE PROBLEMS

Global problems are those that affect all output that’s generated by ODS. For example, all header and row header
cell background colors are wrong in all ODS output, as illustrated by Figures 4 and 5. Because these problems
affect all output that’s generated by ODS, it’s more efficient to make a correction to the ODS style, rather than using
an override in each of your SAS programs.

Excel mapped the green to gray because the shade of green that’s specified by ODS is not supported by Excel by
default. If you view the HTML source code and identify the cells that are affected, you’ll notice that the cells are
assigned the Cascading Style Sheet (CSS) class Header or RowHeader. That is, the HTML contains
class="Header" or class="RowHeader" in the TH tags. If you further examine the HTML file, you’ll see the following
CSS definitions for the Header and RowHeader classes:

.Header

{

 font-family: 'Times New Roman', Times, serif;

 font-size: 14pt;

 font-weight: bold;

 font-style: normal;

 color: #033366;

 background-color: #C4E4B8;

}

.RowHeader

{

 font-family: 'Times New Roman', Times, serif;

 font-size: 14pt;

 font-weight: bold;

 font-style: normal;

 color: #033366;

 background-color: #C4E4B8;

}

Both of these classes use the HTML color #C4E4B8. However, in Figure 6, you’ll see that this color is not supported

by Excel by default; therefore, Excel maps this color to gray. Excel does support a shade of green, #CCFFCC, that’s

very close to the original, and we’ll show you how to modify
the Banker style to use this new shade of green by using
the TEMPLATE procedure.

The TEMPLATE procedure is part of Base SAS. PROC
TEMPLATE can be used to list, create, and modify ODS
styles and tagsets. Because an in-depth discussion of
this procedure is beyond the scope of this paper, see the
chapters about the TEMPLATE Procedure in the ODS
documentation (SAS Institute Inc., 1999, 2004).

9

Before you can make a change to a style, you must first determine the nature of the change that needs to be made.
Submit the following SAS code to list the source of the Banker style:

ods listing;

proc template;

 source styles.Banker;

run; quit;

By examining the output, you will see that the following colors are used:

replace colors /

 'headerfgemph' = cx033366

 'headerbgemph' = cxFFFFCD

 'headerfgstrong' = cx033366

 'headerbgstrong' = cxFFFFCD

 'headerfg' = cx033366

 'headerbg' = cxC4E4B8

 . . .

Notice that SAS uses the cx notation to represent hexadecimal color values and HTML uses the symbol #. If you

compare the preceding code to Figure 6, you’ll see that the Banker style is using 3 colors that are not supported by
Excel: cx033366, cxFFFFCD, and cxC4E4B8. However, Excel maps cx033366 to #003366, which is so close

that you will probably not notice the difference. Similarly, cxFFFFCD is mapped to #FFFFCC, which is also a very

good match. Thus, the only change that’s needed to the Banker style is to substitute cxCCFFCC for cxC4E4B8.

This is accomplished with the following code (the complete code is in the Appendix in the section "Code for Creating
the MSOBanker Style"):

libname myLib 'directory-for-style'; * location to store the style;

ods path myLib.tmplmst(update) sashelp.tmplmst(read);

proc template;

 define style styles.MSOBanker;

 parent = styles.Banker;

 replace colors /

 'headerfgemph' = cx033366

 'headerbgemph' = cxFFFFCD

 'headerfgstrong' = cx033366

 'headerbgstrong' = cxFFFFCD

 'headerfg' = cx033366

 'headerbg' = cxCCFFCC

 . . .

This new style, named MSOBanker, will be stored in myLib.tmplmst. It has all the attributes of the parent Banker

style; the only difference is that the header and row header cell background colors will be #CCFFCC instead of

#C4E4B8.

You can use the MSOBanker style to create a new HTML file by specifying the style name in an ODS statement and
opening the resulting HTML file with Excel or Word. To continue using the original sample code (page 3) with the
style overrides discussed in the preceding section, change the ODS statement as shown next:

ods listing close;

ods tagsets.MSOffice2K style=MSOBanker file='aedata.htm';

 * PROC PRINT code w/ style overrides and PROC TABULATE code here;

ods tagsets.MSOffice2K close;

Figures 7 and 8 show the results of opening the HTML file with Word and Excel, respectively. All the formatting
problems have been corrected by using a combination of style overrides and the new MSOBanker style. Complete
code for correcting the HTML output can be found in the Appendix in the section "Corrected Code to Export SAS
Output to Excel or Word as HTML".

10

Figure 7. Corrected ODS HTML Output Viewed Using Microsoft Word

11

Figure 8. Corrected ODS HTML Output Viewed Using Microsoft Excel

We will now focus on making the final corrections to the XML file that’s generated by ODS. In a previous section, we
discussed using style overrides to handle the missing leading zeros problem when the XML file is opened by using
Excel. There are still two outstanding issues with the format of the XML file: the green background is mapped to
gray by Excel, and all cell border lines are missing. Both of these problems can be solved by creating a new ODS
style to use with Excel.

If you examine the XML file that’s generated by ODS and identify the cells that have missing border lines, you’ll see
StyleID="Header", StyleID="RowHeader", and StyleID="Data" in the Cell tags. When you further examine the XML

12

file, you’ll see the following definitions for the Header, RowHeader, and Data styles:

<Style ss:ID="Header">

<ss:Borders>

<ss:Border ss:Position="Left" />

<ss:Border ss:Position="Top" />

<ss:Border ss:Position="Right" />

<ss:Border ss:Position="Bottom" />

</ss:Borders>

<Interior ss:Color="#C4E4B8"
ss:Pattern="Solid" />

 . . .

</Style>

<Style ss:ID="RowHeader">

<ss:Borders>

<ss:Border ss:Position="Left" />

<ss:Border ss:Position="Top" />

<ss:Border ss:Position="Right" />

<ss:Border ss:Position="Bottom" />

</ss:Borders>

<Interior ss:Color="#C4E4B8"
ss:Pattern="Solid" />

 . . .

</Style>

<Style ss:ID="Data">

<ss:Borders>

<ss:Border ss:Position="Left" />

<ss:Border ss:Position="Top" />

<ss:Border ss:Position="Right" />

<ss:Border ss:Position="Bottom" />

</ss:Borders>

<Interior ss:Color="#FFFFCD"
ss:Pattern="Solid" />

 . . .

</Style>

The Header and RowHeader styles are using the unsupported green color for the background color of the cells. This
can be corrected by using the MSOBanker style that you created earlier. The Border tags of each style have only a
Position attribute and lack attributes to indicate the thickness or other properties of the border lines. You could
modify the MSOBanker style to change the border width, but that would affect the already good-looking border lines
in the HTML files. The best solution is to create a new style for use with the ExcelXP tagset by using the following
code:

libname myLib 'directory-for-style'; * location to store the style;

ods path myLib.tmplmst(update) sashelp.tmplmst(read);

proc template;

 define style styles.XLBanker;

 parent = styles.MSOBanker;

 style Header from Header /

 borderwidth=2;

 style RowHeader from RowHeader /

 borderwidth=2;

 style Data from Data /

 borderwidth=2;

 end;

run; quit;

This new style, named XLBanker, will be stored in myLib.tmplmst. XLBanker has all the attributes of the parent

MSOBanker style that was created earlier. The only difference is that border line widths were adjusted for use with
Excel XML.

You can use the XLBanker style to create a new XML file by specifying the style name in an ODS statement and
opening the resulting XML file with Excel. To continue using the original sample code (page 3) with the style
overrides discussed in a previous section, change the ODS statement as shown next:

ods listing close;

ods tagsets.ExcelXP style=XLBanker file='aedata.xml';

 * PROC PRINT code w/ style overrides and PROC TABULATE code here;

ods tagsets.ExcelXP close;

Figure 9 shows the results of opening the XML file by using Excel. All the formatting problems have been corrected
by using a combination of style overrides and the new XLBanker style. Complete code for correcting the XML output
can be found in the Appendix in the section "Corrected Code to Export SAS Output to Excel as XML".

13

Figure 9. Corrected ODS XML Output Viewed Using Microsoft Excel after Resizing Columns Manually

MOVING EXCEL DATA TO SAS

Figure 10 shows the Excel workbook that we want to import into SAS. The workbook contains four worksheets. We
want to import the data from each worksheet into a different SAS table, and use the name of the worksheet for the
table name. The sections that follow explain how to save the workbook as an XML file, and then how to load the
workbook into SAS using a provided SAS macro and SAS XMLMap, both designed specifically for Excel XML data.

All the necessary SAS code is supplied for you.

To download the sample data, SAS macro, and SAS XMLMap, go to the SAS Presents Web site at
http://support.sas.com/saspresents. Find the entry "From SAS to Excel via XML". There you’ll find a download
package that has all the files you need.

14

Figure 10. Excel Workbook with Data to Import into SAS

SAVING AN EXCEL WORKBOOK AS XML

You must save an Excel workbook as an XML file before you can import it into SAS. To do this, in Excel, select

File è Save As, and choose "XML Spreadsheet (*.xml)". Specify a name and a directory for the file. For the
purpose of this paper, we saved the XML in a file named mydata.xml.

To ensure that SAS can access the mydata.xml file, you can save the file on a network-accessible drive. Then you

can access the file as if it were native to the operating environment where SAS is installed. Another solution is to
save the file to a location that is under the control of a Web server. SAS will then be able to read the file using the
URL access method, which is part of Base SAS. These techniques are useful if SAS and Excel are installed on
different machines. If neither of these options is available to you, using FTP or some other method, move the file
from the Windows machine to the machine that SAS is installed on.

If you place the files where others can access them, be sure to set file permissions to prevent accidental alteration.

AUTOMATIC DATA CONVERSION BETWEEN EXCEL AND SAS

You need to be aware of some of the behaviors to expect when converting Excel data to SAS data. As mentioned
earlier, when the worksheets in Figure 10 are imported into SAS tables, the name of the worksheet (for example,
"Chemicals") is used as the SAS table name. However, the technique of using the worksheet name for the table
name doesn’t always work. For example, a worksheet named "40-107 Senate Voting" can’t be used for the SAS
table name because it begins with a number and contains invalid characters (the spaces and a dash). Therefore,
the provided SAS code that loads the worksheet into SAS must convert the "4" and other invalid characters to an
underscore (_). In this case, the resulting SAS table name would be "_0_107_senate_voting". In the same way,
importing a worksheet named "Health & Wellness Resources" would result in a table named
"Health___wellness_resources".

Attempting to use Excel column labels for SAS table column names can result in a similar problem. Notice that none
of the column labels in Figure 10 can be used as SAS column names because they all contain invalid characters
such as blanks, parentheses, and the forward slash (/). Additionally, the first column does not have a label. The
SAS code that loads the worksheet into SAS must create valid column names by converting invalid characters to an
underscore (_). SAS column labels are set to the original value of the Excel label. Table 1 shows examples of how
some of the Excel column labels in Figure 10 will be converted to SAS column names.

15

SAS Table Name SAS Label

Chemicals Chemicals

Graphics_cards Graphics Cards

Health___wellness_resources Health & Wellness Resources

_0_107_senate_voting 40-107 Senate Voting

Table 2. SAS Tables Created from the Excel Workbook

Excel Column Label SAS Column Name SAS Column Label

(blank)
A unique 32-character name starting with an
underscore (_)

.

Pixel pipelines Pixel_pipelines Pixel pipelines

Peak fill rate (Mpixels/s) Peak_fill_rate__Mpixels_s_ Peak fill rate (Mpixels/s)

 Table 1. Conversion of Excel Column Labels to SAS Column Names

THE SAS XML LIBNAME ENGINE (SXLE) AND XMLMAPS

The SAS XML LIBNAME Engine can import an XML file into a SAS table or export a SAS table as an XML file. Thus,
you can use the SXLE to exchange data between SAS and third-party, XML-aware applications such as Excel.

Although the SXLE has been available since SAS release 8.1, recent improvements have made it possible to
precisely control how data is imported. The new SAS XMLMap enables you to map any XML element or attribute to
a column or a row in a SAS table. The SXLE then uses the XMLMap to control how the XML data is imported into a
SAS table. You can create the XMLMap by using the new XML Mapper (formerly know as XML Atlas), which
provides a point-and-click interface.

READING EXCEL XML INTO SAS

You can use the SAS LIBNAME Engine and a SAS XMLMap that you created to import an Excel XML file into SAS.
However, because the Excel XML format and the data conversion issues are quite complex, SAS provides an
XMLMap and corresponding SAS code specific to Excel that loads the Excel XML into SAS tables. As mentioned
earlier, both of these components and a SAS macro to import the XML data are available for download from the SAS
Presents Web site at http://support.sas.com/saspresents.

Download the XMLMap and the SAS macro and make the two files available on the platform where SAS is installed.
This paper assumes that you saved the SAS XMLMap in a file named excelxp.map and the SAS macro for loading

the XML data was stored in a file named loadxl.sas. The file loadxl.sas contains a SAS macro named

XLXP2SAS, which is used to import the Excel XML file into SAS tables.

The easiest way to explain how to use the macro is with a few examples. First, let’s look at importing the XML
workbook shown in Figure 10 when either SAS is installed on the same machine that has the XML file or SAS is
installed on a different machine or platform, but the XML file is accessible via a network drive. To import the
workbook into SAS, submit the following code, making sure to include the appropriate directory paths:

� %include 'loadxl.sas';

� %xlxp2sas(excelfile=mydata.xml,

 mapfile=excelxp.map);

The first statement (�) makes the XLXP2SAS macro available to SAS. The second statement (�) imports the data
from all the worksheets into separate SAS tables. By default, the SAS tables are created in the WORK library. You
can control which library is used to store the SAS tables by specifying the LIBRARY argument in the XLXP2SAS
macro. For example, to store the tables in the SASUSER library, submit this code:

%xlxp2sas(excelfile=mydata.xml,

 mapfile=excelxp.map,

 library=sasuser);

Table 2 lists the SAS tables that were
created as a result of importing the
Excel workbook shown in Figure 10.
Although the SAS table names might
look a bit odd, the actual worksheet
names are used in the SAS labels.

16

Figure 11 shows a portion of the Graphics Cards table. By comparing Figures 10 and 11, you can see that the
XLXP2SAS macro successfully imported the "Graphics Cards" worksheet as a SAS table. For instance, the columns
"Pixel pipelines" and "Memory bus width (bits)" were both correctly typed as character, because those columns
contain data such as "2*2" and "128*2", respectively.

Figure 11. SAS Graphics Cards Table Created by Importing the Excel Workbook

Up to this point, the assumption is that the XML file resides on the same machine as SAS or was available via a
network drive. However, if the XML file resides on the Web server of a remote machine, you can use the URL
access method to retrieve the file by submitting the following code:

filename myxml URL 'http://Web-server/mydata.xml';

%xlxp2sas(excelfile=FILEREF:myxml,

 mapfile=excelxp.map);

The submitted code causes XLXP2SAS to contact the Web server to retrieve the XML file, rather than looking for it
on a local disk. The FILEREF modifier can also be used with the MAPFILE argument to retrieve the SAS XMLMap
from a Web server. Documentation for the XLXP2SAS macro can be found in the Appendix in the section
“XLXP2SAS Macro”.

XLXP2SAS DRAWBACKS AND LIMITATIONS

Here are a few issues surrounding XLXP2SAS that you should be aware of.

• XLXP2SAS creates temporary tables in the WORK library. These tables can get very large. However, this
is generally not a problem, unless your system is very low in disk space, because the temporary files are
automatically cleaned up after XLXP2SAS runs (unless the argument CLEANUP=N was specified).

• The data in every worksheet that you want to import must be fairly rectangular. Although the XLXP2SAS
macro attempts to handle non-rectangular data by adding missing values, the results can be unpredictable
if the data is too sparse.

• By default, XLXP2SAS runs with the argument HASLABELS=Y. This implies that all worksheets in a
workbook have column labels in the first row. If none of your worksheets contain column labels in the first
row, specify HASLABELS=N when you invoke XLXP2SAS. The HASLABELS argument applies to all
worksheets in a workbook.

• If you specify HASLABELS=N, the column names in the SAS table(s) will be in the form "COLUMN1",
"COLUMN2", "COLUMN3", and so on, and the respective column labels will be "Column 1", "Column 2" and
"Column 3".

17

SAS SERVER TECHNOLOGY

If you have licensed SAS/IntrNet software, you can dynamically incorporate SAS output into Excel by using the
Application Dispatcher. You can perform similar tasks with the Stored Process Server, which is new for SAS 9.1.

The Application Dispatcher and the Stored Process Server enable you to execute SAS programs from a Web
browser or any other client that can open an HTTP connection to either of these SAS servers (which can run on any
platform where SAS is licensed). The SAS programs that you execute from the browser can contain any
combination of DATA step, PROC, MACRO, or SCL code. Thus, all the code that’s been shown up to this point can
be executed by using either Application Dispatcher or the Stored Process Server.

Detailed information about using these products to facilitate data interchange between SAS and Microsoft Office is
presented in the previously mentioned SUGI Conference Papers (DelGobbo, 2002, 2003, 2004).

CONCLUSION

Using ODS to generate HTML and XML output is an effective method of incorporating SAS output in Excel and Word
documents. Although, initially, you might encounter formatting problems when using this technique, by using ODS
style overrides and PROC TEMPLATE, you can correct these problems.

The SAS 9.1 ExcelXP tagset complies with the Microsoft XML Spreadsheet Specification and provides an easy way
to export your data to Excel workbooks that contain multiple worksheets. While it might be a bit cumbersome to use
the SXLE and XMLMaps to import Excel data to SAS, the use of the XLXP2SAS macro greatly simplifies the task.

APPENDIX

CODE FOR CREATING THE MSOBANKER STYLE

libname myLib 'directory-for-style'; * location to store the style;

ods path myLib.tmplmst(update) sashelp.tmplmst(read);

proc template;

 define style styles.MSOBanker;

 parent = styles.Banker;

 replace colors /

 'headerfgemph' = cx033366

 'headerbgemph' = cxFFFFCD

 'headerfgstrong' = cx033366

 'headerbgstrong' = cxFFFFCD

 'headerfg' = cx033366

 'headerbg' = cxCCFFCC

 'datafgemph' = cx000000

 'databgemph' = cxFFFFCD

 'datafgstrong' = cx000000

 'databgstrong' = cxFFFFCD

 'datafg' = cx000000

 'databg' = cxFFFFCD

 'batchfg' = cx000000

 'batchbg' = cxFFFFCD

 'tableborder' = cx000000

 'tablebg' = cx000000

 'notefg' = cx033366

 'notebg' = cxFFFFCD

 'bylinefg' = cx033366

 'bylinebg' = cxFFFFCD

 'captionfg' = cx033366

 'captionbg' = cxFFFFCD

 'proctitlefg' = cx033366

 'proctitlebg' = cxFFFFCD

18

 'titlefg' = cx033366

 'titlebg' = cxFFFFCD

 'systitlefg' = cx033366

 'systitlebg' = cxFFFFCD

 'Conentryfg' = cx033366

 'Confolderfg' = cx033366

 'Contitlefg' = cx033366

 'link2' = cx800080

 'link1' = cx0000FF

 'contentfg' = cx000000

 'contentbg' = cxFFFFCD

 'docfg' = cx033366

 'docbg' = cxFFFFCD;

 end;

run; quit;

Notice that cx000000 is black, cx800080 is purple and cx0000FF is blue. According to Figure 6, these colors are

supported by Excel by default, so no remapping is needed for these colors.

CORRECTED CODE TO EXPORT SAS OUTPUT TO EXCEL OR WORD AS HTML

ods listing close;

ods tagsets.MSOffice2K style=MSOBanker file='aedata.htm';

 title; footnote;

 proc print data=pharma.phcae noobs label;

 by protocol;

 var patient visit;

 var aedate / style={htmlstyle="mso-number-format:ddmmmyyyy"};

 var aecode / style={htmlstyle="mso-number-format:00000000"};

 var aetext aesev aesevc frequency;

 run; quit;

 proc tabulate data=pharma.phcae;

 by protocol;

 var aesev;

 class aetext aesevc;

 table aetext*aesevc,aesev*pctn;

 keyword all pctn;

 keylabel pctn='Percent';

 run; quit;

ods tagsets.MSOffice2K close;

CORRECTED CODE TO EXPORT SAS OUTPUT TO EXCEL AS XML

ods listing close;

ods tagsets.ExcelXP style=XLBanker file='aedata.xml';

 title; footnote;

 proc print data=pharma.phcae noobs label;

 by protocol;

 var patient visit aedate;

 var aecode / style={tagattr="\00000000"};

 var aetext aesev aesevc frequency;

 run; quit;

 proc tabulate data=pharma.phcae;

 by protocol;

 var aesev;

 class aetext aesevc;

 table aetext*aesevc,aesev*pctn;

 keyword all pctn;

 keylabel pctn='Percent';

 run; quit;

ods tagsets.ExcelXP close;

19

XLXP2SAS MACRO

The following table contains a list of the arguments that are supported by the XLXP2SAS macro. All arguments
require a value, except where a default value is indicated.

Argument

Description

Default

Value

EXCELFILE
Specifies the name and path for the Excel XML file that you want to import to
SAS. Do not use quotation marks in this value. To specify a SAS FILEREF
instead of a file, use FILEREF:fref, where fref is the FILEREF.

MAPFILE

Specifies the name and path of the SAS XMLMap for reading Excel XML files.
Do not use quotation marks in this value. To specify a SAS FILEREF instead of a
file, use FILEREF:fref, where fref is the FILEREF. You can download a copy of
the XMLMap that’s provided by SAS under the entry "From SAS to Excel via
XML" on the SAS Presents Web site at http://support.sas.com/saspresents.

LIBRARY Specifies the name of the SAS library where imported tables are stored. WORK

HASLABELS

Specifies whether the worksheets have column labels in the first row of the Excel
table. This setting applies to all worksheets in a workbook. If set to Y, the labels
are used for the SAS column names and labels. If your workbook does not have
column labels in the first row of the Excel table, specify N.

Y

CLEANUP

Controls whether temporary SAS files are deleted and whether to de-assign
FILEREFs that were used when importing the Excel data to SAS. FILEREFs that
you explicitly assign with a FILEREF statement will not be de-assigned. To
disable this feature, specify N.

Y

VERBOSE
Controls the level of debugging information written to the SAS Log. Specify Y to
activate this feature.

N

REFERENCES

DelGobbo, V. (2002), "Techniques for SAS® Enabling Microsoft® Office in a Cross-Platform Environment,"
Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference, 27, CD-ROM. Paper 174.
Available http://www2.sas.com/proceedings/sugi27/p174-27.pdf

DelGobbo, V. (2003), "A Beginner’s Guide to Incorporating SAS® Output in Microsoft® Office Applications",
Proceedings of the Twenty-Eighth Annual SAS Users Group International Conference, 28, CD-ROM. Paper 52.
Available http://www2.sas.com/proceedings/sugi28/052-28.pdf

SAS Institute Inc. (1999), "Chapter 5: The TEMPLATE Procedure", The Complete Guide to the SAS Output Delivery
System, Version 8, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (2004), "Chapter 9: TEMPLATE Procedure: Creating a Style Definition", SAS 9.1 Output Delivery
System, User's Guide, Cary, NC: SAS Institute Inc.

"XML Spreadsheet Reference", Microsoft Corporation. Available
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexcl2k2/html/odc_xmlss.asp

FURTHER READING

DelGobbo, V. (2004), "From SAS to Excel via XML". Available http://support.sas.com/saspresents

"Processing XML Documents with the Version 9 SAS XML LIBNAME Engine (SXLE)", SAS Institute Inc. Available
http://support.sas.com/rnd/base/topics/sxle90/#doc

“XML Atlas”, SAS Institute Inc. Available http://support.sas.com/rnd/base/topics/sxle90/#atlas

“XMLMap Syntax Version 1.1”, SAS Institute Inc. Available http://support.sas.com/rnd/base/topics/sxle90/#xmlmap

20

ACKNOWLEDGMENTS

The author would like to thank Chris Barrett of SAS Institute Inc. for his valuable contributions to this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Vincent DelGobbo

SAS Institute Inc.

SAS Campus Drive

Cary, NC 27513

Phone: (919) 677-8000

sasvcd@unx.SAS.com

If your registered in-house or local SAS users group would like to request this presentation as your annual SAS
presentation (as a seminar, talk, or workshop) at an upcoming meeting, please submit an online User Group
Request Form (http://support.sas.com/usergroups/namerica/lug-form.html) at least eight weeks in advance.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

