Outbreak Maps: Visual Discovery in Your Data

Jeff Phillips, Data Visualization R&D
SAS: The Power to Know

You can’t do that with GMAP…

If you torture data sufficiently, it will confess to almost anything.

- F. Menger
Problems Needing Spatial Data Discovery

- Has an illness appeared in clusters around particular geographic areas?
- Do you have product failures that occur in the same part of the country?
- Are you getting more customer complaints at one store location than others?
- Do you have asset protection issues in a remote area of your store?
Tips and Tricks for Spatial Data Discovery

- In many cases, problems are clustered together geographically for reasons you may not have considered.
- Without seeing this information on a map, you may not be aware of a hot spot that needs investigating.
- This presentation will demonstrate how to create several types of outbreak maps for better visualization of problems and how to monitor these situations adequately.
Four ways to enhance your data spatially:

1. Choropleth maps specializing in changes and differences using web data.
2. Dot-density maps showing clusters and outbreaks.
3. Maps showing “crumb trails” to discover supply chain or delivery issues.
4. Maps to help solve travel routing to multiple sites.
The power of Data Step!

- Add spatial capabilities to your data so it can be utilized geographically.

- Some important utility procedures:
 - PROC GEOCODE
 - PROC GINSIDE
 - PROC GPROJECT
 - PROC IMPORT (local and directly from internet address)

- Annotate is your friend. Adding markups to your maps is not that hard.
Choropleth map with custom levels

Number of people moving into Clark County, NV between years 2007 and 2008 (data source: IRS)

For privacy, only inter-county moves of >10 people are included.
Choropleth map with custom levels

Number of people moving out of Clark County, NV between years 2007 and 2006 (data source: IRS)

For privacy, only inter-county moves of >10 people are included.
Choropleth map with custom levels

Net Effect of People moving out of & into
Clark County, NV
between years 2007 and 2008 (data source: IRS)

For privacy, only inter-county moves of >10 people are included.
Using web data

- Potentially “live” web data using PROC IMPORT
- No need to have local files and get immediate updates.
- Code:

```sas
filename rawurl url
    "http://www.irs.gov/pub/irs-soi/countyinflow&year1&year2..csv"
    proxy='<put your proxy info here, if necessary>' debug;
proc import out=raw_data datafile=rawurl dbms=csv replace;
    getnames=yes;
    datarow=2;
run;
```
Using web data

- Auto-loaded annotation macros.

- Code:

```sas
/* Use a helper macro to create an annotate data set for the centroid of the county of interest */

%annomac;
%maplabel( anno_star, anno_star, anno_star, county, %str(state county), size=5, font=marker, color=cyan );

/* "Fix" the data set to use the correct marker text and outline it */

data anno_star;
length style $8;
set anno_star;
text='V';
output;
style='markere'; color='black'; output;
run;
```
Dot-density maps

- Add a spatial component to your data:
 - Match with existing data like zipcode data set
 - PROC GEOCODE
- “Fuzz” the locations using random number generator.
- How much fuzz? Based on the scale of your map.
- Provide ShiftXY macro.
Start with a small fuzz distance…

"Fuzzing" the points: 1 miles
...try a little bigger...

"Fuzzing" the points: 5 miles
"Fuzzing" the points: 10 miles
...and bigger.

"Fuzzing" the points: 25 miles
Don’t go too far…

"Fuzzing" the points: 50 miles
How close are our customers to SAS Training Centers?

1. Add the training centers to the map with the “fuzzed” customer sites.
2. Draw a 100-mile radius circle around the sites to see which points are within the radius.
3. Re-color the points that lie within that radius.
4. Remove the points that lie within that radius.
5. Count the remaining points.
6. Do we need more Training Centers?
Add the training center points
Draw 100-mile radius circles

Customers within 100 mile radius of training centers
Re-color customers within the radius

Customers inside/outside 100-mile radius
Only show customers outside the radius

Customers outside 100-mile radius
Where to locate the next training center

States with > 100 customers farther than 100 miles from a training center

Number of customers

- 119
- 122
- 140
- 150
- 155
- 178
- 183

195
197
226
240
250
267
267

SAS.GLOBALFORUM
Add some labels instead of a legend
Non-geographic maps

- Take what we’ve learned with “fuzzing” and apply it to a store floorplan.
- Multiple ways to view data:
 - Choropleth
 - Dot-density
- Scenario: Map location of empty packages in a retail establishment.
- Empty packages are typically where thieves remove packaging containing “hard tags” or electronic security sensors.
Number of empty packages by bay

Location of empty packages
Store #1406

Number of opened packages
- 0-0
- 1-1
- 2-2
- 3-3
- 4-4
- 5-5
- 7-8
- 10-12
- 15-18
- 20-20
Using “fuzzed” dot locations

Location of empty packages
Store #1406
Only output dots for Electronics Department
Tips and tricks for non-geographic maps

- How to get location information for non-geographic maps
- Code:
  ```
  %annomac;
  %centroid( store, storec, id );
  ```
- Reads polygons defined by “id” and returns the centroid of the polygon in the “storec” output data set.
- Use the centroid value to “fuzz” the dots.
Routing information for suspect PO

Tracking for Purchase Order:
P0322588

<table>
<thead>
<tr>
<th>city</th>
<th>StateCode</th>
<th>arrival</th>
<th>departure</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONG BEACH</td>
<td>CA</td>
<td>07NOV09 17:23:00</td>
<td>07NOV09 20:12:00</td>
</tr>
<tr>
<td>AURORA</td>
<td>CO</td>
<td>10NOV09 03:06:00</td>
<td>10NOV09 11:53:00</td>
</tr>
<tr>
<td>JOIET</td>
<td>IL</td>
<td>12NOV09 17:12:00</td>
<td>15NOV09 16:00:00</td>
</tr>
<tr>
<td>LEBANON</td>
<td>PA</td>
<td>17NOV09 06:54:00</td>
<td>15NOV09 16:00:00</td>
</tr>
</tbody>
</table>
Routing information for all cross-country POs

Tracking for October/November Purchase Orders

<table>
<thead>
<tr>
<th>po</th>
<th>location</th>
<th>duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0321094</td>
<td>LONG BEACH, CA to LEBANON, PA</td>
<td>7 days, 16 hours, 27 minutes</td>
</tr>
<tr>
<td>P0322588</td>
<td>LONG BEACH, CA to LEBANON, PA</td>
<td>9 days, 13 hours, 31 minutes</td>
</tr>
<tr>
<td>P0322609</td>
<td>LONG BEACH, CA to COLUMBIA, SC</td>
<td>6 days, 16 hours, 45 minutes</td>
</tr>
<tr>
<td>P0323019</td>
<td>LONG BEACH, CA to TAMPA, FL</td>
<td>7 days, 20 hours, 31 minutes</td>
</tr>
</tbody>
</table>
Suspect PO with size as an indicator

Tracking for October/November Purchase Orders
Size indicates duration of wait/travel time
Size as a component

- Scale the size of the object from min to max
- Create macro variables with min/max values
- Code:

```sas
proc summary data=size_data;
var total_hours;
output out=temp min=min_hours max=max_hours;
run;

data _null_
set t;
call symput( 'maxwhse', trim(left(put(max_hours, f6.2))) );
call symput( 'minwhse', trim(left(put(min_hours, f6.2))) );
run;
```
Travel routing

- Given a somewhat random list of locations, what is the best way to visit all of them to maximize my travel time?
- Prim’s Algorithm (Robert C. Prim) can be used.
- In this example, simple distance is used as the “cost” between points.
- Use the `geodist()` data step function to calculate.
- Downloaded GPS coordinates used for points.
Set of locations to visit

Motor Racing Track Sites
Prim’s Algorithm

- See http://en.wikipedia.com/wiki/Prim’s_Algorithm for a full description.

- Start at any point. In our case, the first entry will do. Label this point as A.

- Find the next closest point. Label this point as B.

- Now process the rest of the list finding the next closest point to either A or B. This new point becomes the next A/B, appropriately.

- Keep track of the sequence. Each time an A is changed, decrement the A counter and increment the B counter whenever B changes.

- Sort the data by sequence to get the list.

- %prim macro available.
Set of locations to visit

Travel Network for Motor Racing Tracks

Prim's Algorithm
Thank You!

Jeff.Phillips@sas.com

2011 Las Vegas, Nevada

#SASGF11