
SAS® Web Infrastructure Kit 1.0
Developer’s Guide, Fifth Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2007. SAS® Web Infrastructure Kit
1.0: Developer’s Guide, Fifth Edition. Cary, NC: SAS Institute Inc.

SAS Web Infrastructure Kit 1.0: Developer’s Guide, Fifth Edition

Copyright © 2007, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the
vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, March 2006
2nd printing, July 2006
3rd printing, November 2006
4th printing, January 2007
5th printing, February 2007

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/pubs

Table of Contents
SAS® Web Infrastructure Kit: Developer's Guide..1

Developing Custom Portlets..2

Development Steps...4

Creating a Deployment Descriptor...5

Example Deployment Descriptor for a Local Portlet...6

Example Deployment Descriptor for a Remote Portlet..7

Detailed Element Descriptions for Portlet Deployment Descriptor DTD...8

Creating Display Resources Files...9

Developing the Presentation JSP Page...10

Creating Action Classes...11

Creating an Initializer Action Class...12

Creating a Portlet Action Class..13

Creating a Postprocessing Action Class...14

Creating an Error Handling Action...15

Implementing Portlet Help..17

Creating a PAR File for Deployment in the Portal...19

Use Cases...20

Creating a Simple Display Portlet..21

Creating a Localized Portlet...24

Creating a Portlet Template (Editable Portlet)...27

Creating a Remote Portlet...30

Tips and Best Practices..32

Using the Portlet API...35

SAS® Web Infrastructure Kit: Developer's Guide

i

Table of Contents
Sample Portlets...37

Sample: Localized Display Portlet (Welcome Portlet)...38

Step 1: Create the Directory Structure..39

Step 2: Create the Portlet Deployment Descriptor...41

Step 3: Create the Display Page..43

Step 4: Create the Action Class..44

Step 5: Create the Resource Bundles...46

Step 6: Create Translated Titles and Descriptions...47

Step 7: Create the PAR File, and Deploy and Test the Portlet..48

Sample: Interactive Form Portlet (FormExample)..49

Step 1: Create the Directory Structure..50

Step 2: Create the Portlet Deployment Descriptor...52

Step 3: Create the Display Page..54

Step 4: Create the Action Class..55

Step 5: Create the JavaBean...57

Step 6: Create the PAR File, and Deploy and Test the Portlet..58

Sample: Portlet Template, or Editable Portlet (DisplayURL)...59

Step 1: Create the Directory Structure..60

Step 2: Create the Portlet Deployment Descriptor...62

Step 3: Create the Display Pages for the Portlet and the Editor...64

Viewer.jsp...65

Editor.jsp ..66

Error.jsp..68

SAS® Web Infrastructure Kit: Developer's Guide

ii

Table of Contents
Step 4: Create the Action Classes...69

Initializer Action..70

Base Action...72

Display Action..74

Editor Action..75

OK and Cancel Actions...77

Error Handler Action..79

Step 5: Create the Resource Bundle...81

Step 6: Create the Display Resources File...82

Step 7: Create the PAR File, and Deploy and Test the Portlet..83

Sample: Web Application (HelloUserWikExample)..84

Step 1: Create the Directory Structure..85

Step 2: Make Deployment Configurations Available for Local and Remote Services..86

Step 3: Create a Privileged User...90

Step 4: Create the Web Application Deployment Descriptor..91

Step 5: Create the Display Page (JSP)...93

Step 6: Create the WAR File, and Deploy and Test the Application..95

Sample: Remote Portlet (HelloUserRemotePortlet)...96

Step 1: Create the Directory Structure..97

Step 2: Create the Portlet Deployment Descriptor...98

Step 3: Create the Display Resources File...99

Step 4: Create the Web Application...100

Step 5: Create the PAR File, and Deploy and Test the Portlet..101

SAS® Web Infrastructure Kit: Developer's Guide

iii

Table of Contents
Developing Custom Themes..102

Steps for Defining a New Theme..104

Style Sheet and Graphics Reference for the SAS Winter Theme..110

Theme Templates Reference...118

SASthemes.xml File...120

Element Descriptions for Themes DTD...125

Changing the Application Name...126

Migrating Custom Themes After Installing a Service Pack..127

List of Theme Changes for SAS 9.1.3 Service Pack 3...129

List of Theme Changes for SAS 9.1.3 Service Pack 4...132

Integrating Other Web Applications With the Portal..140

Using SAS Foundation Services With the Portal..142

SAS® Web Infrastructure Kit: Developer's Guide

iv

SAS® Web Infrastructure Kit: Developer's Guide
The SAS Web Infrastructure Kit: Developer's Guide provides information to help you use the SAS Web Infrastructure
Kit to develop your own custom applications. It also explains how to use the SAS Web Infrastructure Kit to customize
and extend the SAS Information Delivery Portal 2.0 to meet the unique requirements of your organization.

Note: In this guide, "portal Web application" is a generic term that refers to either of the following:

the SAS Portal Web Application Shell, which is a portal−like Web application shell that is included in the
SAS Web Infrastructure Kit and is used by other SAS Web applications

•

the SAS Information Delivery Portal, which (when installed with the SAS Web Infrastructure Kit) fully
implements the capabilities of the SAS Portal Web Application Shell

•

The guide includes the following sections:

Developing Custom Portlets provides various types of information that you need to know in order to develop
custom portlets for your portal Web application. The section includes the following topics:

Development Steps provides step−by−step instructions for portlet development tasks such as creating
deployment descriptor files, creating resource files for portlet metadata, developing JavaServer Page
(JSP) pages, creating custom action classes, implementing portlet help, and creating portlet archive
(PAR) files to use in deploying portlets in the portal Web application.

♦

Use Cases provides development steps and best practices for common use cases. The use cases
include the creation of simple display portlets, localized portlets, portlet templates (also called
editable portlets), and remote portlets (Web applications that are deployed and executed outside of the
portal Web application).

♦

Tips and Best Practices provides tips for incorporating commonly used features into your portlets, as
well as best practices for making your portlets perform appropriately within the portal Web
application's framework.

♦

Using the Portlet API describes the application programming interfaces (APIs) that are provided with
the SAS Web Infrastructure Kit to enable you to quickly develop portlets.

♦

Sample Portlets provides fully developed samples of custom portlets, including all of the portlet
deployment descriptors, JSPs, resource files, and action classes that are required to implement each
portlet. The samples include a localized display portlet, an interactive form portlet, a Web application,
a remote portlet, and a portlet template (editable portlet).

♦

•

Developing Custom Themes describes how to customize the appearance of the portal Web application by
developing new themes, including text attributes, backgrounds, logos, and other graphical elements. This
section also describes how to change the application name that appears in the banner.

•

Integrating Other Web Applications with the Portal describes how to use SAS Foundation Services to develop
Web applications that are integrated with the portal Web application and which can be invoked from the
portal without an additional logon.

•

For details about administrative tasks that are required to support development activities, including the deployment of
new portlets, themes, and content items, refer to the SAS Intelligence Platform: Web Application Administration
Guide.

SAS® Web Infrastructure Kit: Developer's Guide 1

Developing Custom Portlets
A portlet is a Web component that is managed by a Web application and aggregated with other portlets to form a page
within the application. A portlet processes requests from the user and generates dynamic content such as report lists,
alerts, workflow notifications, or performance metrics. The components that are needed to implement a portlet may
include JSP pages, custom classes, and associated resources.

Portlets that are created with the SAS Web Infrastructure Kit have a standard appearance, which includes a title bar
that contains links or icons to portlet actions, as shown in this example:

The framework of the SAS Web Infrastructure Kit makes it easy for you to quickly develop and deploy custom
portlets that meet your organization's needs. This framework, which is based on the Struts architecture and conforms
to industry−standard Model−Viewer−Controller (Model 2) design patterns, provides the following:

an execution environment that allows portlets to execute in the portlet container, in the same way that
servlets execute in the servlet container. The portal Web application processes all HTTP requests for portlets,
while the portal Web application's session and state information are maintained and shared among portlet
actions and across requests.

•

support for portlets running remotely in other Web technology frameworks, with the option to pass the
portal Web application's session and state information to these portlets.

•

simplified portlet deployment through the use of the following:

a portlet deployment descriptor, which is an XML file that specifies the portlet's actions as well as
initialization, path, and access control information.

♦

a portlet archive (PAR) file, which includes all of the elements needed to deploy a portlet or series
of portlets, including the portlet deployment descriptor, JSP pages, custom Java classes, and
associated resources (such as images, resource bundles, HTML files, and style sheets).

♦

•

a set of action and initializer classes, which reduce the need for developing custom programs. These classes
perform the most commonly used functions, such as displaying the JSP page that is specified in the portlet
deployment descriptor.

•

access to SAS custom tags and to tags in the Struts development framework to simplify development of
JSP pages for your portlets.

•

a dynamic (or "hot") deployment mechanism that enables new portlets to be deployed without the need to
restart the Web server.

•

Options for Implementing Portlets

The action and initializer classes included in the SAS Web Infrastructure Kit are designed to handle a portlet's basic
function of displaying a single JSP page. However, to meet specialized needs you can do the following:

Developing Custom Portlets 2

write one or more Java classes that implement the
com.sas.portal.portlet.PortletActionInterface. Alternatively, you can extend
com.sas.portal.portlet.HTMLPortletAction to obtain a basic implementation of the interface.

•

write Java classes that implement the PortletInitializerInterface,
ErrorHandlerInterface, or PostProcessorInterface in the com.sas.portal.portlet
package in order to meet more specialized requirements.

•

For more information, see the Portlet API and the sample portlets.

Best Practices

The following is a summary of best practices for developing portlets for deployment in the portal Web application:

To avoid namespace problems, use a standard naming convention for portlet paths. The portlet namespace is
comprised of the path (with leading underscores in place of slashes) and the portlet's name. For example, a
portlet with the name simpleJSP and a path of /sas/portlets would be deployed as
_sas_portlets_simpleJSP.

•

Deploy new portlets into a staging area (that is, a test installation of the portal Web application) for
verification and testing before deploying them into the production environment.

•

For remote portlets, use the portlet's direct URL to test and debug the portlet before you deploy it into the
portal Web application.

•

Developing Custom Portlets

SAS® Web Infrastructure Kit: Developer's Guide

Developing Custom Portlets 3

Development Steps
This section provides step−by−step instructions for tasks that developers can or must perform when creating custom
portlets. The tasks include the following:

Creating a portlet deployment descriptor (portlet.xml). Each portlet that you deploy must be defined in a
portlet deployment descriptor. A portlet deployment descriptor is an XML file that provides all of the
information that the portal Web application requires in order to deploy one or more portlets. The file includes
information about the portlet's initialization, actions, security settings, and resource paths.

•

Creating display resources files (portletDisplayResources_xx.properties). The display
resources file contains text strings for the portlet's title and description for use in the portlet's metadata. If you
create multiple display resources files for different locales, the portal Web application uses these files to
localize the portlet title and description at the time of deployment, according to the portal Web application's
default locale.

•

Developing the presentation JavaServer Page (JSP) pages. Each portlet must have a JSP page to serve as the
presentation component.

•

Creating action classes. You can use the resources of the Portlet Development Kit to develop the following
types of action classes for your portlets: initializer classes, portlet actions, postprocessing classes, and error
handling classes.

•

Implementing portlet help. If you want to provide customized use instructions for a portlet, you can create an
action class with an associated JSP page that contains the help text. When the user clicks a help button in the
portlet's title bar, the help appears in a pop−up window.

•

Creating a portlet archive (PAR) file for deployment in the portal. To enable automatic deployment of a
portlet into the portal Web application, you must provide a PAR file which contains all of the needed files. A
PAR file can contain files for one portlet or for multiple related portlets.

•

For practical applications of these tasks, see Use Cases. For examples of fully developed portlet code, see the Sample
Portlets.

Development Steps

Development Steps 4

Creating a Deployment Descriptor
For each portal archive (PAR) file that you create for deployment in the portal Web application, you must create a
portlet deployment descriptor. The portlet deployment descriptor is an XML file that provides all of the information
that the portal Web application needs to deploy the portlets that are contained in the PAR file.

A PAR file, and its associated portlet deployment descriptor, can contain one portlet or it can contain multiple related
portlets; there is no limit to the number of portlets that a PAR file and its associated descriptor can contain.

In addition, a PAR file (and its associated portlet deployment descriptor) can contain local portlets, remote portlets, or
a combination of local and remote portlets.

To create a portlet deployment descriptor, use element tags as defined in the portlet deployment descriptor document
type definition (DTD). The following information is provided for your reference:

An example portlet deployment descriptor for a local portlet. You can use this example as a template for
creating deployment descriptors for your own local portlets. Simply replace the element values in the example
with the appropriate values.

•

An example portlet deployment descriptor for a remote portlet. You can use this example as a template for
creating deployment descriptors for your own remote portlets. Simply replace the element values in the
example with the appropriate values.

•

A detailed description of elements in the portlet deployment descriptor DTD.•

After creating the deployment descriptor file, assign it the name portlet.xml. Then include it in the portal archive
(PAR) file that you create for your portlet or group of portlets. For more information, see Creating a PAR File for
Deployment in the Portal.

Development Steps: Creating a Deployment Descriptor

Creating a Deployment Descriptor 5

Example Deployment Descriptor for a Local Portlet
A local portlet is a portlet that meets the following criteria:

The portlet is deployed within the portal Web application.•
The portlet executes inside the portlet container.•
The portlet consumes the computing resources (for example, CPU, memory, and disk storage) of the server
machine on which the portal container runs.

•

The portlet can include resources such as Web pages, style sheets, images, resource bundles, and Java classes
which are deployed inside the portal Web application.

•

An example of a portlet deployment descriptor for a local portlet follows. You can use this example as a template for
creating portlet deployment descriptors for your own local portlets. Simply replace the element values with your own
values as appropriate.

<?xml version="1.0" encoding="UTF−8"?>

<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">
<portlets>
 <local−portlet name="simplejsp" title="SimpleJspPortlet"
 icon="images/ndd.jpg">
 <localized−resources locales="en" />
 <deployment scope="user" autoDeploy="true"
 userCanCreateMore="false">
 </deployment>
 <initializer−type>
 com.sas.portal.portlets.JspPortlet.JspPortletInitializer
 </initializer−type>
 <init−param>
 <param−name>display−page</param−name>
 <param−value>simpleJspTest.jsp</param−value>
 </init−param>
 <portlet−path>/sas/portlets</portlet−path>
 <portlet−actions>
 <portlet−action name="display" default="true">
 <type>com.sas.portal.portlets.JspPortlet.JspPortlet</type>
 </portlet−action>
 </portlet−actions>
 </local−portlet>
</portlets>

Development Steps: Creating a Deployment Descriptor

Example Deployment Descriptor for a Local Portlet 6

Example Deployment Descriptor for a Remote Portlet
Remote portlets are portlets that execute outside of the portal container. You can use remote portlets to incorporate
data from external applications into the portal Web application. When a user interacts with a remote portlet, the
remote portlet appears to be the same as a local portlet.

Many of the elements in the portlet deployment descriptor DTD relate only to local portlets. Therefore, a portlet
deployment descriptor for a remote portlet requires fewer elements than a descriptor for a local portlet.

An example of a portlet deployment descriptor for a remote portlet follows. You can use this example as a template
for creating portlet deployment descriptors for your own remote portlets. Simply replace the element values with your
own values as appropriate.

<?xml version="1.0" encoding="UTF−8"?>

<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>
 <remote−portlet name="MyRemotePortlet" title="MyRemotePortlet" >
 <localized−resources locales="en" />
 <deployment scope="group" autoDeploy="true"
 userCanCreateMore="false">
 <group>Public</group>
 </deployment>
 <portlet−path>/sas/portlets/remote</portlet−path>
 <portlet−actions>
 <portlet−action name="display" default="true">
 <url>http://d9999.mycompany.com:8080/test.html</url>
 </portlet−action>
 </portlet−actions>
 </remote−portlet>
</portlets>

Development Steps: Creating a Deployment Descriptor

Example Deployment Descriptor for a Remote Portlet 7

Detailed Element Descriptions for Portlet Deployment
Descriptor DTD
For detailed descriptions of the elements in portlet.dtd, see the following:

Top Elements contains a list of the top−most elements of the DTD, with links to pages describing each
top−most element. From these pages, you can access descriptions of individual child elements.

•

All Elements contains a list of all elements defined in the DTD and provides quick access to the description of
any individual element.

•

Top Element Trees displays the content hierarchy trees of the top−most elements in the DTD, with links to
detailed descriptions of the top−most elements and all child elements.

•

Document generated by dtd2html 1.5.1.

portlet DTDDevelopment Steps

Detailed Element Descriptions for Portlet Deployment Descriptor DTD 8

Creating Display Resources Files
A display resources file is a file that contains <key>=<value> statements to define text strings for a portlet's title
and description. You can create display resources files for the following purposes:

To specify a description for your portlet. If you do not provide a display resources file, the portal Web
application will use the portlet's name to create a default description.

Note: The local−portlet and remote−portlet elements of the portlet deployment descriptor contain
a description attribute. However, this description is only for internal documentation purposes. It is not
displayed to users.

•

To enable the portal Web application to localize the portlet title and description at the time of deployment,
according to the portal Web application's default locale. When the portlet is first deployed, the deployment
process checks to see which default locale was specified when the SAS Web Infrastructure Kit was installed.
Based on this locale, the deployment process uses the title and description from the appropriate display
resources file to create metadata and register the portlet in the SAS Metadata Repository.

If your portlet will be deployed in only one locale, then the display resources files can be omitted.

Note: The SAS Metadata Repository cannot store multiple, localized values for metadata. Therefore, the
portlet title and description are translated only into the portal Web application's default locale. They cannot be
translated based on the user's locale preference.

•

If your portlet does not include any display resources files, the portlet deployment mechanism will send a warning
message to the server log. The message will indicate that no localized title or description can be found.

To create display resources files:

Create a separate file for each language (or each country and language combination) that you need to support.
In each file, use <key>=<value> statements to define text strings for portlet.title and
portlet.description, as in the following examples:

portlet.title=Welcome Portlet
portlet.description=Welcome Portlet

portlet.title=Portlet de bienvenida
portlet.description=Portlet de bienvenida

1.

Name the files as follows:

Use the base name portletDisplayResources.properties.♦
If you are creating files for multiple locales, append each file's name with the appropriate locale
identifier (for example, portletDisplayResources_en_US.properties for U.S. English,
portletDisplayResources_fr_CA.properties for Canadian French, etc.). The file for
the default locale does not need to have a locale identifier.

♦

2.

Place the files in the /portletname/classes directory of the PAR file.3.

Development Steps

Creating Display Resources Files 9

Developing the Presentation JSP Page
JavaServer Page (JSP) pages are the presentation components of local portlets. Because you can define a local portlet's
initialization, actions, security settings, and resource paths in the portlet deployment descriptor, the JSP page does not
need to contain this information.

In developing the JSP page, you can use the following tags:

tags from the JSP Standard Tag Libraries (JSTL).•
tags from the Struts tag libraries.•
SAS custom tags, which are available with SAS AppDev Studio (WebAF). For information about these tags,
see the webAF Reference page on the AppDev Studio Developer's Site.

•

When you create a JSP page for a portlet, the only requirements are the following:

The JSP page must be an HTML fragment:

The page must not contain starting and ending <HTML>, <HEAD>, or <BODY> tags.♦
The page must be able to be displayed inside a table cell in an HTML document.♦

•

If the JSP page includes custom tags from a tag library, you must include a taglib directive before the first use
of a tag from that library. For the JSTL format tab library, use this taglib directive:

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

•

You must include a UTF−8 directive if you want the JSP page to provide full support for internationalization.
This directive causes all user input to be encoded in the 8−bit Unicode Transformation Format, which
supports all of the world's languages, including those that use non−Latin1 characters.

Note: The portal Web application supplies this directive when it displays portlets on a portal page. However,
you must supply the directive to ensure correct internationalization when your portlet is displayed from the
Search Results panel. You should consider making your portlet actions extend HTMLPortletAction,
because this class supplies the directive.

The syntax for the UTF−8 directive is:

<%@ page contentType= "text/html; charset=UTF−8"%>

•

The JSP cannot import Java classes from the portlet's PAR file.•

The SAS Web Infrastructure Kit includes a number of sample JSP pages that you can use as templates for creating
your own custom JSP pages. The samples can be found as follows:

Go to the DeployedPortlets directory of the portal setup directory. For example, if you used the default
installation location on a Windows system, then you would go to c:\Program
Files\SAS\Web\Portal2.0.1\DeployedPortlets.

1.

Use a utility such as WinZip to open the portlet archive (PAR) file for the portlet whose JSP page you want to
access. You can then extract the JSP file from the archive.

2.

Development Steps

Developing the Presentation JSP Page 10

Creating Action Classes
You can use the resources of the SAS Web Infrastructure Kit to develop the following types of action classes for your
local portlets:

Initializer classes•
Portlet action classes•
Postprocessing classes•
Error handling classes•

The Portlet API includes classes that you can use to create your own action classes for custom portlets. For a summary
of these classes, see Using the Portlet API. For detailed information about the Portlet API, see the class

documentation.

Any action classes that you develop must be defined in the portlet's deployment descriptor file and included in the
portlet's PAR file. These classes cannot be accessed by the portlet's JavaServer Page (JSP) pages.

Note: You can also develop classes other than action classes for your portlet and include them in the portlet's PAR
file. These classes do not need to be defined in the portlet deployment descriptor file.

Thread Safety

Portlet actions, like Struts actions, are multithreaded. There will be only a single instance of your PortletAction
subclass, and you must make your actions thread−safe, as follows:

You cannot use class properties to share values between member methods.•
If you use member methods, be sure to pass all values through the method's signature. The signature passes all
values through the thread−safe stack.

•

Development Steps: Creating Action Classes

Creating Action Classes 11

Creating an Initializer Action Class
When you develop a local portlet, you can implement an initializer class that runs before the portlet is displayed for
the first time on a portal Web application page. The initializer does not execute again if the user interacts with your
portlet or with other portlets on the same page. It also does not execute again if the user navigates to another page and
then back again. However, the initializer does run again if the user logs off, logs on again, and displays the page that
contains the portlet.

Uses for an initializer might include reading initial parameters that are specified in your portlet's deployment
descriptor file (portlet.xml), or connecting to an external resource such as a database.

The portal Web application is delivered with a default initializer class called JspPortletInitializer, which
requires a parameter called display−page. The initializer places the value of this parameter in the
PortletContext object so that it can be used by the portlet's action class. To pass additional parameters, you
would need to create your own initializer class.

When you create an initializer class, ensure that the following steps have been taken:

The class must be specified in the initializer−type element of the portlet's deployment descriptor file
(portlet.xml)

•

The class must implement com.sas.portlet.portlet.PortletInitializerInterface.•

The com.sas.portlet.portlet.PortletInitializerInterface class includes one method called
initialize(). The following objects are passed to this method:

java.util.Properties, which contains all of the initial parameters that are specified in your portlet's
deployment descriptor. If your portlet's action class or JSP page requires access to these parameters, you
should place them in the portlet context object using its setAttribute() method.

•

com.sas.portal.portlet.PortletContext, which provides a getter method for the
HttpSession object so that you can access or set session attributes.

•

Here is an example of an initialize() method that places initial parameters into the portlet context.

/**Puts initial properties into the PortletContext object.
* These come from the portlet.xml.
* @param initProperties a Properties object
* @param context the PortletContext for this portlet
*/
public void initialize(Properties initProperties,
 PortletContext context) {
 context.setAttribute("display−page",
 initProperties.getProperty("display−page"));
 context.setAttribute("image−location",
 initProperties.getProperty("image−location"));
}

Development Steps: Developing Action Classes

Creating an Initializer Action Class 12

Creating a Portlet Action Class
When developing a local portlet, you can implement one or more action classes for the portlet. If you use an action
class, then the following requirements must be met:

You must specify the class in your portlet deployment descriptor file (portlet.xml).•
The class must implement com.sas.portal.portlet.PortletActionInterface.•
The class can extend DefaultPortletAction or HTMLPortletAction in
com.sas.portal.portlet.

•

The DefaultPortletAction and HTMLPortletAction contain two simple methods for setting and getting
an instance of com.sas.portal.portlet.PortletActionInfoInterface, as shown in this example:

public void setInfo(PortletActionInfoInterface pai) {
 _actionInfo = pai;
 }
 public PortletActionInfoInterface getInfo() {
 return _actionInfo;
 }

The primary method, called service(), runs before the portlet is displayed and every time the portlet is
redisplayed. For example, it runs after a user interacts with the portlet or with a different portlet on the same page.

The service() method is provided with the HttpServletRequest, HttpServletResponse, and
PortletContext objects. From the PortletContext object, you can obtain the HttpSession object, which
provides access to the most important servlet objects.

Your service() method must return a string representing a valid URL for the portlet. Typically, the URL is the
name of the portlet's JSP page. If your initializer places the display−page property of the portlet.xml into the
PortletContext, then you can obtain the URL as in this example:

String url = (String) context.getAttribute("display−page");

If user interaction with your portlet requires a different URL string, then you can return that URL instead.

The service() method can handle any kind of exception subclass that is thrown by code within your action. If your
portlet action needs to throw an exception, then you can use the portlet error handler. For more information, see Error
Handling.

Development Steps: Developing Action Classes

Creating a Portlet Action Class 13

Creating a Postprocessing Action Class
The com.sas.portal.portlet.PostProcessorInterface is available for implementing activity that
should occur when a local portlet is no longer on display. Like other parts of the portlet architecture, it must be
defined in your XML file. You can use the post−processor phase to free resources that you attached to in the portlet
initializer. You could also remove HttpSession attributes that were set in the initializer or action. This is
especially important to consider because multiple copies of your portlet could exist on other portal Web application
pages or even on the same page.

Development Steps: Creating Action Classes

Creating a Postprocessing Action Class 14

Creating an Error Handling Action
The com.sas.portal.portlet.ErrorHandlerInterface is available for gracefully handling any errors
that your local portlets encounter. This interface has one method, which is called service(). This method has the
same arguments as the service() method of the PortletActionInterface, plus an additional object called
Exception.

If you specify an error handler in your portlet deployment descriptor file (portlet.xml), the error handler will be
called if the portlet action throws an exception. You can direct your error handler to send messages to the server log
and to return a URL string representing an error page for the user to view.

If your portlet initializer encounters an exception, the error handler will not be called. If you want to ensure that the
error handler will execute, you can store the exception object in the portlet context. Then, in your action class's
service() method, you can get the exception object out of the context and re−throw it. In the following example,
this code is put into a method that should be called at the start of the action's service() method:

/**Check the PortletContext for an exception object. If
 * present, throw it so that the error handler will kick in.
 * @param context the PortletContext
 */
 private static void errorCheck(PortletContext context)
 throws Exception {
Exception e = (Exception) context.getAttribute("PORTLET_EXCEPTION");
 if (e != null)
 {
 throw e;
 }
 }

Here is a simple error handler that logs the exception and calls a static error page. The error page supplies a general
error message from the portlet's localized resource bundles.

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.sas.portal.portlet.PortletContext;
import com.sas.services.logging.LoggingServiceInterface;
import com.sas.portal.portlet.ErrorHandlerInterface;
import com.sas.portal.portlet.NavigationUtil;

/**Error handler for some portlets.
 * It logs the exception and returns ErrorPage.jsp
 * for the portlet to display.
 */
public class MyErrorHandler implements ErrorHandlerInterface {

 private final String _loggingContext = this.getClass().getName();

 /**Returns the URL for the portlet controller to call. This is the
 * name of the error page JSP.
 * @param request the HttpServletRequest
 * @param response the HttpServeltResponse
 * @param context the PortletContext
 * @param exception the exception thrown by a portlet action
 * @return the URL to call
 */
public String service(HttpServletRequest request, HttpServletResponse

Creating an Error Handling Action 15

 response, PortletContext context, Exception thrownException)
 {
 [code omitted for obtaining a LoggerInterface]
 //prepare the localized resources for use by the jsp.
 try {
 NavigationUtil.prepareLocalizedResources(
 "com.mycompany.portlets.Resources", request, context);
 }
 catch (java.io.IOException ioe) {
 logger.error(ioe.getMessage(), _loggingContext, ioe);
 }

 logger.error(thrownException.getMessage(), _loggingContext,
 thrownException);
 return "ErrorPage.jsp";
 }
}

Development Steps

SAS® Web Infrastructure Kit: Developer's Guide

Creating an Error Handling Action 16

Implementing Portlet Help
You can easily implement help for a custom portlet. If you implement help for a portlet, then a help icon appears in
the portlet's title bar. When a user clicks the icon, the portlet help appears in a resizable, scrollable window that is by
default 400 pixels wide and 200 pixels high, as shown in this example:

To implement portlet help, use these steps:

Create an action class to display the JSP page for the help (or, if you want, you can use an instance of
com.sas.portal.portlet.JspPortlet). Here is an example of a custom action class to display
portlet help:

package com.sas.portal.portlets.welcome;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.sas.portal.portlet.HTMLPortletAction;
import com.sas.portal.portlet.PortletContext;

public class HelpAction extends HTMLPortletAction {
 public String service(HttpServletRequest request,
 HttpServletResponse response, PortletContext context)
 throws Exception {
 return "help.jsp";
 }
}

1.

Create a JSP page that contains the help text. The JSP page must have the following characteristics:

The JSP page must be an HTML fragment; that is, it must not contain starting and ending <HTML>,
<HEAD>, or <BODY> tags.

♦

The JSP page must have the file name help.jsp.♦
The example JSP page for the help window that was shown previously consists of just one line:

This is an example of Portlet provided help.

2.

In the portlet's deployment descriptor (XML) file, add a <portlet−action> element for the action class.
Set the element's help attribute to "true,".

Here is an example of the <portlet−action> element for a portlet that uses a custom action to display its
help:

<portlet−action name="help" help="true">
 <type>com.sas.portal.portlets.welcome.HelpAction</type>

3.

Implementing Portlet Help 17

</portlet−action>

Here is an example of a <portlet−action> element for a portlet that uses an instance of
com.sas.portal.portlet.JspPortlet to display its help:

<portlet−action name="help" help="true">
 <type>com.sas.portal.portlet.JspPortlet</type>
</portlet−action>

Development Steps

SAS® Web Infrastructure Kit: Developer's Guide

Implementing Portlet Help 18

Creating a PAR File for Deployment in the Portal
A portlet archive (PAR) file is an archive file that contains all of the files needed in order to deploy a portlet or a
group of portlets into the portal Web application.

A PAR file can contain files for one portlet, or it can contain files for multiple related portlets. There is no limit to the
number of portlets that a PAR file can contain. In addition, a PAR file can contain local portlets, remote portlets, or a
combination of local and remote portlets.

To create a PAR file, use these steps:

Create the directory structure for the portlet(s) on your local machine, and place the required files in the
appropriate directory location.

1.

Use the JAR utility to compress the directories and files into an archive.2.
Rename the archive with a unique name and the extension .par.3.

For information about how to deploy a PAR file into the portal Web application, refer to Adding Custom−Developed
Portlets in the "Adding Content to the Portal" chapter in the SAS Intelligence Platform: Web Application
Administration Guide.

PAR File Directory Structure

For correct deployment, you must organize the files in a PAR file using the following directory structure:

Directory Contents Notes

(root) Portlet deployment descriptor
file

The name of the deployment descriptor file must be
portlet.xml.

/portletname None Include one portletname directory (and associated subdirectories)
for each portlet that is defined in portlet.xml. The directory
name must match the name of the portlet as specified in the name
attribute of the <local−portlet> or <remote−portlet>
element in portlet.xml.

/portletname/classesPortlet action classes, other
custom classes that are used by
the portlet, and display
resources files that are used by
the portlet.

Replicate any package structure as subdirectories of
/portletname/classes.

Portlet action classes (but not other classes) must be defined in the
portlet deployment descriptor file (portlet.xml).

The display resources files must be in /portletname/classes.

/portletname/contentWeb resources used by the
portlet, including JSPs, HTML
files, CSS files, and images

The directory name must be content. Each portlet can have only
one content location directory; however, the content location
directory can have an unlimited number of subdirectories.

/portletname/libJAR files used by the portlet Place any custom JAR files that are used by the portlet in this
directory.

Developing Custom Portlets

Creating a PAR File for Deployment in the Portal 19

Use Cases
This section describes the steps that a portlet developer would need to perform in the following common uses cases:

Creating a simple display portlet. A simple display portlet is one that displays text, data, and/or images, with
no localization and no interactive capabilities.

•

Creating a localized portlet. A localized portlet, also referred to as an internationalized portlet, displays its
text, numbers, and dates in the correct language and format for the locale (country and language) that the user
has selected.

•

Creating a portlet template (editable portlet). A portlet template is a portlet from which users can create their
own portlet instances. By clicking the portlet's Edit icon, the user can change the portlet's behavior as enabled
by the editor action that is associated with the portlet.

•

Creating a remote portlet. A remote portlet calls a Web application which is deployed and executed outside of
the portal Web application.

•

For detailed information about a specific portlet development task, refer to the Development Steps section. For
examples of fully developed portlet code, see the Sample Portlets section.

Use Cases

Use Cases 20

Creating a Simple Display Portlet
The simplest kind of portlet is a JSP page that displays text, data, and images, with no interactive capabilities.

You might have existing display JSP pages that you would like to deploy in the portal Web application. For example,
you might have custom JSP pages (called widgets) that you created for a previous version of the SAS Information
Delivery Portal Web application. Or you might have created JSP pages using another SAS product such as SAS
Enterprise Guide. It is easy to implement these JSP pages as portlets.

To implement a simple JSP portlet, use these steps:

Create the JSP page, if it is not already created.1.
Create a portlet deployment descriptor file.2.
Create a display resources file containing the portlet title and description.3.
Pack the files into a PAR file.4.

Step 1: Create the JSP Page

A JSP page that you deploy as a local portlet can be as simple as the following example:

This is a simple JSP portlet.

The only requirements are as follows:

The JSP page must be an HTML fragment. This means it must meet the following requirements:

The JSP page must not contain starting and ending <HTML>, <HEAD>, or <BODY> tags.♦
The JSP page must be able to be displayed inside a table cell in an HTML document.♦

•

The file name must have the extension .jsp.•

For more information, see Developing the Presentation JSP Page.

Step 2: Create a Portlet Deployment Descriptor File

To create a portlet deployment descriptor file for a simple display JSP portlet, use these steps:

Specify the portlet name and title using the attributes of the <local−portlet> element. The name cannot
contain spaces. The portlet identifier, which consists of the portlet path (defined in the portlet−path
element) together with the portlet name, must be unique within the portal Web application.

a.

Optionally, specify key words for use in searching in the <keyword> element.b.
Specify the portal Web application's default initializer, which is called JspPortletInitializer, in the
initializer−type element. For this initializer, you must specify the following in the <init−param>
element:

display−page in the param−name sub−elementi.
the name of your JSP page in the param−value sub−elementii.

Note: The default initializer passes only the display−page parameter. To pass additional parameters, you
would need to create your own initializer class (see Creating an Initializer Action Class).

c.

Creating a Simple Display Portlet 21

In most cases, you can use the default settings for the remainder of the elements. For more information, see Creating a
Portlet Deployment Descriptor.

Here is an example of a portal.xml file for a simple display JSP page that will run as a local portlet (that is, inside
the portlet container):

<?xml version="1.0" ?>
<!DOCTYPE portlets SYSTEM "http://localhost:9090/portlet.dtd">
<portlets>
 <local−portlet name="SimpleJsp" title="SIMPLE_JSP_PORTLET">
 <keywords>
 <keyword>example</keywords>
 </keywords>
 <initializer−type>com.sas.portal.portlet.JspPortletInitializer
 </initializer−type>
 <init−param>
 <param−name>display−page</param−name>
 <param−value>simpleJspTest.jsp</param−value>
 </init−param>
 <content−location>content</content−location>
 <portlet−path>/sas/portlets</portlet−path>
 <portlet−actions>
 <portlet−action name="display">
 <type>com.sas.portal.portlet.JspPortlet</type>
 </portlet−action>
 </portlet−actions>
 </local−portlet>
</portlets>

Step 3: Create a Display Resources File Containing the Portlet Title
and Description

Create the display resources file as follows:

Use <key>=<value> statements to define text strings for portlet.title and
portlet.description, as in the following example:

portlet.title=Welcome Portlet
portlet.description=Welcome Portlet

a.

Name the file portletDisplayResources.properties.b.
Place the file in the /portletname/classes directory of the PAR file.c.

If you want the portlet title and description to be localized at the time of deployment according to the portal Web
application's default locale, you can create multiple display resources files for various locales. For details, see Creating
Display Resources Files.

Note: If you omit this step, the portal Web application will use the portlet's name to create a default description. In
addition, the portlet deployment mechanism will send a warning message to the server log that no localized title or
description can be found.

SAS® Web Infrastructure Kit: Developer's Guide

Creating a Simple Display Portlet 22

Step 4: Pack the Files into a PAR File

Use the JAR utility to compress the portlet deployment descriptor, the JSP page, and any needed support files into an
archive. For information about the required directory structure, see Creating a PAR File for Deployment in the Portal.

Use Cases

SAS® Web Infrastructure Kit: Developer's Guide

Creating a Simple Display Portlet 23

Creating a Localized Portlet
A localized portlet, also referred to as an internationalized portlet, is one that displays its text, numbers, and dates in
the correct language and format for the locale (country and language) setting that the user has selected. Users can
specify their locale preference in the Web browser software or in the User Preferences option of the portal Web
application.

To create a localized portlet, use these steps:

Create files containing translated messages.1.
Create display resources files containing translated titles and descriptions (optional).2.
Create an action class for the portlet.3.
Use internationalization tags from the JSP Standard Tag Library (JSTL).4.

Step 1: Create Files Containing Translated Messages

Place translations of your portlet's messages in resource bundles, which are files suitable for use by the Java
ResourceBundle class. These files must be named with the extension .properties.

Create these files as follows:

Create a separate file for each language (or each country and language combination) that you need to support.a.
In each file, use <key>=<value> statements to define the text strings. Use the same key names in each file.

If a message does not require translation, you can omit it. For example, if the default locale is U.S. English,
some messages might not require translation to British English. These messages can be omitted from the
British English resource bundle, and the default U.S. English translation will be used.

b.

Name the files as follows:

Use the same base name for each file (for example, Resources).♦
Append each file's base name with the appropriate locale identifier (for example, _en_US for U.S.
English, _fr_CA for Canadian French, and so on). The file for the default locale does not need to
have a locale identifier.

♦

Give each file name the extension .properties.♦
For example, if the default language and country is U.S. English, you could create the following:

a file called Resources.properties that contains U.S. English messages♦
a file called Resources_fr_CA.properties that contains Canadian French messages♦
a file called Resources_uk_EN.properties that contains British English messages♦

c.

You can place all of the files in the package of your choice. Since the files must be included in the PAR file, it
might be convenient to place them in the package where the portlet's action class will be located.

d.

For more information on resource bundles, refer to the internationalization information on the Sun Web site at

http://java.sun.com.

Creating a Localized Portlet 24

Step 2: Create Display Resources Files Containing Translated Titles
and Descriptions (Optional)

The resource files created in Step 1 affect only the text that is displayed inside of the portlet. They do not affect the
metadata (including the title and description) that describes the portlet. The SAS Metadata Repository cannot store
multiple, localized values for metadata. Therefore, the portlet title and description cannot be translated based on the
user's locale preference.

However, the portlet title and description can be translated into the portal Web application's default locale at the time
that the portlet is deployed. To make this happen, you must place translated titles and descriptions for your portlet in
portletDisplayResources.properties files.

When the portlet is first deployed, the deployment process will check to see which default locale was specified when
the portal Web application was installed. Based on this locale, the deployment process uses the title and description
from the appropriate display resource file to create metadata and register the portlet in the SAS Metadata Repository.

Note: If your portlet will be deployed in only one locale (language), this step can be omitted. If you do omit this step,
the portlet deployment mechanism will send a warning message to the server log that no localized title or description
can be found. In addition, you will not be able to specify a description for your portlet. Instead, the portal Web
application will use the portlet's name to create a default description.

Create the display resources files as follows:

Create a separate file for each language (or each country and language combination) that you need to support.
In each file, use <key>=<value> statements to define text strings for portlet.title and
portlet.description, as in the following examples:

portlet.title=Welcome Portlet
portlet.description=Welcome Portlet

portlet.title=Portlet de bienvenida
portlet.description=Portlet de bienvenida

a.

To name each file, use the base name portletDisplayResources. Append each file's base name with
the appropriate locale identifier(as described in Step 1−c previously) and then with the extension
.properties.

b.

Place the files in the /portletname/classes directory of the PAR file.c.

Step 3: Create an Action Class for the Portlet

Create an action class for your portlet, as follows:

Import the com.sas.portal.portlet.NavigationUtil class.a.
Add the following code to the service() method of your action class, with the correct package and name
for your resources, as in the following example:

NavigationUtil.prepareLocalizedResources(
"com.mycompany.portlets.Resources", request, context);

This method uses the portlet classloader to obtain the resource bundle from the portlet's PAR file. It then uses
the bundle and the locale of the current user to make a new JSTL localization context. The localization

b.

SAS® Web Infrastructure Kit: Developer's Guide

Creating a Localized Portlet 25

context will be available to your portlet's JSP page.

Step 4: Use the Internationalization Tags from the JSP Standard Tag
Library (JSTL)

When you create the portlet's JSP page, use tags from the JSP Standard Tag Library to display text, as follows:

First, include the taglib directive for the JSTL formatting tags:

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>.

The directive must appear before the first use of these tags.

a.

To display a text message from the resource bundles, use the message tag with the key attribute, as in the
following example:

<fmt:message key="welcome.msg1.txt"/>

This example will obtain text associated with the key welcome.msg1.txt from the resource bundle for
the locale that most closely matches the user's locale preference.

b.

You can also use the other JSTL tags for formatting such locale−sensitive items as dates and currency. The portal
Web application makes the user's locale available to those tags.

For more information about creating JSP pages for portlets, see Developing the Presentation JSP Page. For
information about JSTL, refer to the Sun Web site at http://java.sun.com/products/jsp/jstl. The JSTL jar files are

provided with the SAS Web Infrastructure Kit.

Use Cases

SAS® Web Infrastructure Kit: Developer's Guide

Creating a Localized Portlet 26

Creating a Portlet Template (Editable Portlet)
A portlet template is a portlet from which users can create their own portlet instances. When created, the new portlet
instance belongs to the user. By clicking the portlet's Edit icon, the user can change the portlet's behavior as enabled
by the editor action that is associated with the portlet.

The portal Web application is delivered with three portlet templates: the Collection Portlet template, the WebDAV
Navigator Portlet template, and the URL Display Portlet template. The Add a Portlet function of the portal Web
application enables users who have the appropriate permissions to create new instances of these portlets. Users can
then edit the portlets that they have created.

The SAS Web Infrastructure Kit enables you to develop and deploy additional portlet templates. After you deploy a
new portlet template, the template name appears in the drop−down box on the Create a New Portlet dialog box along
with the Collection Portlet and the WebDAV Navigator Portlet.

To create a new portlet template, use the following steps:

Code the portlet deployment descriptor file to support replication and editing capabilities.1.
Code the editor action class.2.
Code the editor JSP page.3.
Create resource bundles to support localized text.4.

Step 1: Code the Portlet Deployment Descriptor File

To support replication and editing capabilities, code the portlet deployment descriptor file (portlet.xml) as
follows:

In the local−portlet element, specify the attribute value editorType="portlet". This value
indicates that portlets created from the template are to be editable.

Note: If you specify this attribute value, you must also specify a portlet action with the attribute
editor="true", as described in Step 1−c, which follows. Otherwise, the portlet deployer will send a
warning to the server log and will not deploy the portlet.

a.

In the deployment element, specify the attribute value userCanCreateMore="true". This value
indicates that the portlet is a template and can be replicated by portal users.

b.

Code the action elements as follows:

Code a default action to specify processing that is to occur before the portlet's JSP page renders, as in
this example:

<portlet−action name="display" default="true">
 <type>com.mycompany.portlets.NavigatorAction</type>
</portlet−action>

♦

You must code an <action> element to specify the editor action which is to be invoked when a user
clicks the portlet's Edit icon. Use the attribute value editor="true" to indicate that the action is
for this purpose, as in the following example:

<portlet−action name="editor" editor="true" >
 <type>com.mycompany.portlets.EditorAction</type>
</portlet−action>

♦

c.

Creating a Portlet Template (Editable Portlet) 27

Code <action> elements to specify the actions that are to be invoked when the user clicks buttons
on the editor JSP page, as in the following example:

<portlet−action name="ok" default="false" >
 <type>com.mycompany.portlets.ReturnAction</type>
</portlet−action>
<portlet−action name="cancel" default="false" >
 <type>com.mycompany.portlets.CancelAction</type>
</portlet−action>

♦

Step 2: Code the Editor Action Class

Code the editor action class, which is the class that is to be invoked when a user clicks the portlet's Edit icon. In the
portlet deployment descriptor file, the name of this action class must be specified in the <action> element with the
attribute value editor="true", as described previously in Step 1−c. The editor action class should do the
following:

The action class should place the portlet's navigation path into the PortletContext object so that it can be
used by the portlet's JSP page.

a.

The action class should use the com.sas.portal.portlet.NavigationUtil class to create URLs
for buttons on the JSP page (for example, OK and Cancel). You can place the URLs into either the
HttpServletRequest object or in the PortletContext object.

b.

When editing is complete, the action class should display the portlet again using the default display action.
(This is necessary because the portlet takes over the entire page as its display mode when it is in edit mode.)
To reset the display, use these steps:

Check to see that edit mode is active. This is necessary because the editor might have delegated
control to other portlet actions that use the default display.

i.

If edit mode is active, call the PortletContext's resetMode() method to reset the display mode
from full page to the default display action.

ii.

c.

A complete example of an editor action class follows:

public String service(HttpServletRequest request,
 HttpServletResponse response, PortletContext context) throws Exception
{
InformationServicesSelector infoSelector = (InformationServicesSelector)
 context.getAttribute("myISSKey");
String path = infoSelector.getPath();
//put the path into the portlet's context object
 context.setAttribute("myISS_InitialPath", path);

//create the URLs for the OK and Cancel buttons.
request.setAttribute("Return_URL",
 NavigationUtil.buildBaseURL(context, request, "ok"));

request.setAttribute("Cancel_URL",
 NavigationUtil.buildBaseURL(context, request, "cancel"));

//prepare the localized resources for use by the jsp.
try {
 NavigationUtil.prepareLocalizedResources(
 "com.mycompany.portlets.NavigatorResources",
 request, context);
}

SAS® Web Infrastructure Kit: Developer's Guide

Creating a Portlet Template (Editable Portlet) 28

 catch (java.io.IOException ioe) {
 Logger.error(ioe.getMessage(), _loggingContext, ioe);
}
// be sure we are in edit mode, then call reset.
if (context.getMode().equals(PortletContext.EDIT_MODE)) {
context.resetMode();
}
}

Step 3: Code the Editor JSP Page

When a portlet goes into edit mode, it takes over the entire page as its display area. Code the JSP page for this area as
follows:

Obtain the portlet's navigation path from the portlet context so that the page can be displayed to the user, as in
the following scriptlet code example:

PortletContext context = (PortletContext) request.getAttribute (
com.sas.portal.portlets.PortletConstants.CURRENT_PORTLET_CONTEXT);
String path = (String) request.getAttribute ("myISS_InitialPath");

1.

Create buttons (for example, OK and Cancel) with the appropriate form actions. Obtain URLs for these
buttons from the HttpServletRequest or the PortletContext object (as described previously in
Step 2−b), and assign them to the action attribute. To localize the button text, you can use the message
tag from the JSTL tag library, as in the following scriptlet code example:

<form method="post"
 action = "<%= (String)
 request.getAttribute("myISS_InitialPath") %>">
 <input class="button" type="submit" value= "<fmt:message
 key="action.ok.txt"/>" name="submit" >
</form>

2.

Code the visual elements of the page as desired.3.

For a complete example of an editor JSP page, see Sample: Portlet Template, or Editable Portlet (DisplayURL).

Step 4: Create Resource Bundles to Support Localized Text

To ensure that the portlet can display localized text, create a NavigatorResources.properties file, and then
create localized versions of the same file. These files should contain the appropriate key−value pairs that are needed to
obtain localized text. For more information, see Creating a Localized Portlet.

Use Cases

SAS® Web Infrastructure Kit: Developer's Guide

Creating a Portlet Template (Editable Portlet) 29

Creating a Remote Portlet
A remote portlet is a portlet that calls a remote Web application. A remote Web application is an application that runs
outside of the portal Web application.

To create a remote portlet, use the following steps:

Create the Web application.1.
Create a portlet deployment descriptor file.2.
Create display resources files containing the portlet title and description.3.
Create WAR and PAR files.4.

Step 1: Create the Web Application

The Web application for a remote portlet can be developed using any Web technology, and can be as simple as a
single JSP page. Follow these guidelines when you create a remote Web application:

The remote application must be located outside of the portal Web application.•
The remote application must have access to the portal Web application's context information, including
session and user identity information, through the use of SAS Foundation Services (this is the only point at
which remote portlets are coupled with the portal Web application).

•

The remote application must display an HTML fragment when a request is received from the portal Web
application.

•

The remote application must rewrite URLs so that requests are routed through the portal Web application
before they are passed to the remote portlet.

•

For an example of a JSP page for a remote portlet's Web application, see Sample: Web Application
(HelloUserWikExample).

Step 2: Create a Portlet Deployment Descriptor File

To create a portlet deployment descriptor file for a remote portlet, use the following steps:

In the <remote−portlet> element, do the following:

Specify the portlet's name and title. The name cannot contain spaces. The portlet identifier, which
consists of the portlet path (defined in the portlet−path element) together with the portlet name,
must be unique within the portal Web application.

i.

Specify the value "true" for the passContextId attribute. This value makes the portal Web
application's session information, including user identity, available to the remote portlet.

ii.

a.

Optionally, use the <keyword> element to specify key words for use in searching.b.
Specify the URL for the remote portlet's Web application in the url subelement of the portlet−action
element. This subelement must contain a fully qualified URL, and the URL must contain a fully qualified host
domain name.

c.

For more information, see Creating a Portlet Deployment Descriptor. For an example of a deployment descriptor for a
remote portlet, see Sample: Remote Portlet (HelloUserRemotePortlet).

Creating a Remote Portlet 30

Step 3: Create Display Resources Files Containing the Portlet Title
and Description

To specify the title and description for the portlet's metadata, create a
portletDisplayResources.properties file. If you want the portlet title and description to be localized at
the time of deployment according to the portal Web application's default locale, then create a separate
portletDisplayResources.properties for each locale. For details, see Creating Display Resources Files.

Note: If you omit this step, the portal Web application will use the portlet's name to create a default description. In
addition, the portlet deployment mechanism will send a warning message to the server log that no localized title or
description can be found.

Step 4: Create the PAR File and WAR File

Use the JAR utility to place the portlet deployment descriptor into an archive. For information about the required
directory structure, see Creating a PAR File for Deployment in the Portal.

You must also create a WAR file to use in deploying the remote portlet's Web application.

Developing Custom Portlets

SAS® Web Infrastructure Kit: Developer's Guide

Creating a Remote Portlet 31

Tips and Best Practices
This page provides tips and best practices for developing portlets, including the following:

Avoiding namespace problems•
Bundling multiple portlets into a single PAR file•
Testing portlets•
Obtaining a session context in an action class•
Obtaining the user's locale in an action class•
Obtaining the user's name in an action class•

Note: In order for the code samples on this page to work, you must include the appropriate import statements at the
top of your program. For example:

import com.sas.preferences.SASProfileInterface;
import com.sas.services.information.metadata.PersonInterface;
import com.sas.services.session.SessionContextInterface;
import com.sas.services.user.UserContextInterface;
import com.sas.services.user.UserServiceInterface;

Avoiding Namespace Problems

To avoid namespace problems, do the following:

Use a standard naming convention for portlet paths.•
Avoid using the _SAS namespace.•

The portlet namespace is comprised of the path (with leading underscores in place of slashes) and the portlet's name.
For example, a portlet with the name simpleJSP and a path of /mycompany/portlets would be deployed as
_mycompany_portlets_simpleJSP.

Bundling Multiple Portlets into a Single PAR File

When you need to deploy multiple portlets, define the portlets in a single portlet deployment descriptor (XML) file
and bundle the portlets into a single portlet archive (PAR) file if it is feasible to do so. This practice improves
performance, since only one PAR file needs to be opened and only one XML file needs to be read.

Testing Portlets

To test and debug a local portlet that you have developed, deploy it into a staging area (that is, a test installation of the
portal Web application). After the portlet has been verified and tested, deploy it into the production environment.

For remote portlets, test and debug the Web application that is called by the portlet by using the application's direct
URL. After the application has been verified and tested, deploy the remote portlet into the portal Web application's
production environment.

Tips and Best Practices 32

Obtaining a Session Context

The Session Context provides a means of passing information from one portlet to another. You can use methods that
are specified in the PortletContext interface to obtain either the local Session Context or the remote Session
Context, as follows:

Local Session Context. From a local portlet, use the getHTTPSession() method to obtain the
HttpSession object. From the HttpSession object, you can access the local Session Context.

The following code obtains the local Session Context and then obtains the User Context from the local
Session Context:

HttpSession session = portletContext.getHttpSession();
SessionContextInterface sessionContext =
 (SessionContextInterface)
 session.getAttribute(com.sas.web.keys.CommonKeys.SESSION_CONTEXT);
UserContextInterface userContext =
 sessionContext.getUserContext();

If you obtain the User Context from the local Session Context, then you will have access to all of the
repositories that are defined in the local services deployment. Therefore, it is recommended that you use the
local Session Context instead of the remote Session Context whenever possible .

•

Remote Session Context. Both local and remote portlets can call the getSessionContext() method.
This method returns a remote Session Context object from the remote services.

The following code obtains the remote Session Context and obtains the User Context from the remote Session
Context:

UserContextInterface ucf =
 portletContext.getSessionContext().getUserContext();

If you obtain the User Context from the remote Session Context, then you can connect only to the repositories
that are defined in the remote services deployment. Since additional repositories might be defined in the local
services deployment, it is recommended that you use the local Session Context whenever possible.

•

Obtaining the User's Locale

If you want to obtain the user's locale from within a portlet initializer or action class, you can obtain this information
from the PortletContext as shown in the following sample code:

HttpSession session = portletContext.getHttpSession();
SessionContextInterface sessionContext =
 (SessionContextInterface)
 session.getAttribute(com.sas.web.keys.CommonKeys.SESSION_CONTEXT);
UserContextInterface userContext = sessionContext.getUserContext();
ProfileInterface profile = userContext.getProfile();
 com.sas.preferences.SASProfileInterface sasProfile =
 (com.sas.preferences.SASProfileInterface)
profile.getProfile("SAS");
 Locale locale = sasProfile.getLocale();

This code first obtains the User Context from the local Session Context. Then it obtains the desired profile from the
User Context. Finally, it gets the locale from the instance of the SASProfileInterface.

SAS® Web Infrastructure Kit: Developer's Guide

Tips and Best Practices 33

Note:

The locale may be null if no value was available from the SAS profile. In this case, use the
HttpServletRequest.getLocale() method.

•

Remote portlets can obtain the user's locale by using the remote Session Context.•

In order for this sample code to run, the following JAR files must be present in the classpath of the portlet's build
environment:

sas.common.framework.jar•
sas.core.jar•
sas.entities.jar•
sas.portal.metadata.jar•
sas.svc.core.jar.•

These files should not be distributed with the portlet's PAR file.

Obtaining the User's Name

You can use the PortletContext interface to obtain the name of the person who is logged on to the portal Web
application, as shown in the following sample code:

HttpSession session = portletContext.getHttpSession();
SessionContextInterface sessionContext =
 (SessionContextInterface)
 session.getAttribute(com.sas.web.keys.CommonKeys.SESSION_CONTEXT);
UserContextInterface userContext = sessionContext.getUserContext();
UserServiceInterface userService = UserContext.getUserService();
SASProfileInterface sasProfile = (SASProfileInterface)
 userService.loadProfile(userContext, "SAS");
PersonInterface aPerson = sasProfile.getUser();
String name = aPerson.getName();

This code first obtains the User Context from the local Session Context. Then it uses the UserService to load the
desired profile for the User Context. Finally, it gets the name from the instance of the SASProfileInterface.

Note: Remote portlets can obtain the user's name by using the remote Session Context.

SAS® Web Infrastructure Kit: Developer's Guide

Tips and Best Practices 34

Using the Portlet API
The Portlet API provides access to classes that provide the portal Web application's navigation and request processing
functions. For detailed information about the API, see the class documentation.

The following classes are of particular usefulness in creating custom portlets:

com.sas.portal.portlet.DefaultPortletAction
You can extend this class in order to create your own portlet actions. For more information, see Creating a
Portlet Action Class.

com.sas.portal.portlet.ErrorHandlerInterface
You can use this interface to handle errors that your portlet encounters. For more information, see Error
Handling Actions.

com.sas.portal.portlet.HTMLPortletAction
You can extend this class in order to create your own portlet actions. For more information, see Creating a
Portlet Action Class. Possible uses include the following:

correctly displaying non−Latin1 character sets when a portlet is displayed in preview mode. For an
example of this use, see Step 4: Create the Action Class in the Sample Localized Display Portlet
(Welcome Portlet).

◊

preparing URLs for actions within an interactive form JSP, and to populate a JavaBean with
parameters from a JSP form. For an example of this use, see Step 4: Create the Action Class in the
Sample Interactive Form Portlet (FormExample).

◊

com.sas.portal.portlet.PortletContext
You can use this interface to obtain the name of the person who is logged on to the portal Web application.
Use the getSessionContext() method to retrieve the session context, use the getUserContext()
method to retrieve the user context from the session context, and then use the getPerson() method to
obtain the user's name.

com.sas.portal.portlet.NavigationUtil
You can use this class to do the following:

create URLs for buttons on your JSP pages (for example, OK and Cancel buttons). For an example of
this use, see Creating a Portlet Template.

◊

obtain a portlet's resource bundles in order to create a localization context for your portlet's JSP page.
For an example of this use, see Creating a Localized Portlet.

◊

com.sas.portal.portlet.PortletActionInterface
You can use this interface to develop an action class for your portlet. For more information, see Creating a
Portlet Action, and Step 4: Create the Action Class in the Sample Localized Display Portlet (Welcome Portlet)
.

com.sas.portal.portlet.PortletInitializerInterface
You can use this interface to develop an initializer class, which runs before your portlet is displayed for the
first time on a portal page. Possible uses include

reading initial parameters that are specified in your portlet's deployment descriptor file
(portlet.xml)

◊

connecting to an external resource such as a database◊
For more information, see Creating an Initializer Action.

com.sas.portal.portlet.PostProcessorInterface
You can use this interface to develop a postprocessor class that runs when your portlet is no longer on display.
Possible uses include the following:

Using the Portlet API 35

freeing resources that were used in the portlet initializer.◊
removing HttpSession attributes that were set in the portlet initializer or portlet action. This is
especially important to consider since multiple copies of your portlet could exist on other portal pages
or even on the same page.

◊

For more information, see Creating a Postprocessor Action.

For detailed information, see the class documentation.

Developing Custom Portlets

SAS® Web Infrastructure Kit: Developer's Guide

Using the Portlet API 36

Sample Portlets
This section provides fully developed samples of custom portlets. The chapter includes complete code for portlet
deployment descriptors, JSP pages, resource files, and action classes as applicable for each portlet. The following
sample portlets are provided:

Welcome is a simple display portlet which has no interactive capabilities. Because it is internationalized, it
displays text in the user's locale (language and country) preference.

•

FormExample is an interactive form portlet that accepts free−form input and displays it back to the user.•

DisplayURL is a portlet template (also referred to as an editable portlet), which is a portlet from which users
can create their own portlet instances. The DisplayURL portlet template, which is delivered with the portal
Web application, enables users to create portlets that return HTML content from any URL.

•

HelloUserWikExample is a Web application that is enabled by SAS Foundation Services. The application
displays the string Hello user, where user is the name of the user who is logged on to the portal Web
application.

•

HelloUserRemotePortlet is a remote portlet that executes the sample Web application HelloUserWikExample
and displays the name of the user who is logged on to the portal Web application.

•

For detailed information about a specific portlet development task, see Development Steps. For general information
about creating various types of portlets, see Use Cases.

Sample Portlets

Sample Portlets 37

Sample: Localized Display Portlet (Welcome Portlet)

The sample portlet called Welcome is a local portlet that runs inside the portlet container. The Welcome portlet
displays localized text using the user's locale (language and country) preference, and is not interactive.

The following steps were used to create the Welcome portlet. Click on each step to display details.

Create a directory structure for the portlet.1.
Create the portlet deployment descriptor (portlet.xml).2.
Create the display page (Welcome.jsp).3.
Create the action class (WelcomeAction.class).4.
Create resource bundles to support eleven different locales.5.
Create translated titles and descriptions in the portletDisplayResources.properties files to
support eleven different locales.

6.

Create the PAR file, and deploy and test the portlet.7.

Sample: Localized Display Portlet (Welcome Portlet)

Sample: Localized Display Portlet (Welcome Portlet) 38

Step 1: Create the Directory Structure
The following directory structure was used to create the Welcome portlet:

This structure includes the following directories and subdirectories:

Directory Contents

Work (root)

This directory serves as a
development area for the portlet.

Portlet deployment descriptor file portlet.xml

The name of the portlet deployment descriptor file must
be portlet.xml.

/Welcome This is the main portlet directory. It does not contain any
files. The directory name must not have any spaces, and it
must match the name of the portlet as specified in the
name attribute of the <local−portlet> element in
portlet.xml.

/Welcome/classes Display resource files:
portletDisplayResources_de.properties,
portletDisplayResources_en.properties,
portletDisplayResources_es.properties,
and so on.

/Welcome/classes/com/sas/portal/
portlets/welcome

The action class called WelcomeAction.class.

/Welcome/classes/com/sas/portal/
portlets/welcome/res

Resource bundles:
Resources.properties,
Resources_de.properties,
Resources_es.properties,
Resources_fr.properties, and so on.

Note: Alternatively, the resource bundles could be placed
in the same directory as the action class.

/Welcome/content This directory contains the display page called
Welcome.jsp.

Each portlet can have only one content location directory,
and the directory name must be content. However, the
content location directory can have an unlimited number

Step 1: Create the Directory Structure 39

of subdirectories.

The following rules apply when you set up the directory structure:

Neither portlet names nor their paths can contain spaces.•
The portlet identifier (which consists of the name and the path) must be unique. Developers should devise a
convention to ensure unique name−spaces, similar to the conventions used for naming Java packages.

For example, the Sales division of a company named ABCD could create portlets in the path ABCD/Sales,
and the Purchasing division could create portlets in the path ABCD/Purchasing. Then, both Sales and
Purchasing could have different portlets named Welcome.

•

Sample: Localized Display Portlet (Welcome Portlet)

SAS® Web Infrastructure Kit: Developer's Guide

Step 1: Create the Directory Structure 40

Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information that the portal Web application
needs to deploy one or more portlets. Here is the portlet deployment descriptor for the Welcome portlet. The boxes
contain explanatory comments. For more information, see Creating a Portlet Deployment Descriptor.

<?xml version="1.0" encoding="UTF−8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal setup directory in the
path Portal\WEB−INF. For example, if you used the default installation location on a Windows
system, then the DTD is located under the following path: c:\Program
Files\SAS\Web\Portal2.0.1\Portal\WEB−INF.
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>

The local−portlet element assigns the name Welcome to the portlet. The name cannot
contain spaces. The portlet identifier, which consists of the portlet path (defined in the
portlet−path element) together with the portlet name, must be unique within the portal Web
application.

The icon attribute is optional. It specifies the icon that is to appear with the portlet's name in the
portal Web application's search results. In the portlet's directory structure, the icon's image file must
be placed in or under the content directory. If it is in a subdirectory of content, you must
specify the subdirectory with the image name. For example, if the image greeting.gif is in the
path content\icons, then you would specify icon="icons\greeting.gif".

If an icon is not specified, then the default icon for portlets will be used.
 <local−portlet name="Welcome Sample" title="Welcome Sample" icon="Portlet.gif">

The localized resources element lists the locales that the portlet supports. Display resource
files must be provided for each of these locales.
 <localized−resources locales="de,en,es,fr,it,ja,pl,ru,sv,zh_CN" />

The deployment element specifies that the portlet is to be available to the Public group. This
means that all users will be able to search for this portlet and add it to their pages. Use all CAPS for
PUBLIC.
 <deployment scope="group" autoDeploy="true" userCanCreateMore="false">
 <group>PUBLIC</group>
 </deployment>

Since the Welcome portlet does not need its own initializer class, the portal Web application's
default portlet initializer (JspPortletInitializer) is specified. This class requires a
parameter called display−page. The initializer places the value of this parameter in the
PortletContext object so that it can be used by the portlet's action class. The value of the
parameter is the name of the Welcome portlet's JSP page, called Welcome.jsp.

Step 2: Create the Portlet Deployment Descriptor 41

Note: The default initializer passes only the display−page parameter. To pass additional
parameters, you would need to create your own initializer class (see Creating an Initializer Action
Class).

 <initializer−type>
 com.sas.portal.portlets.JspPortlet.JspPortletInitializer
 </initializer−type>
 <init−param>
 <param−name>display−page</param−name>
 <param−value>Welcome.jsp</param−value>
 </init−param>

The portlet−path element specifies the directory location in which the portlet is to be
deployed. The portlet identifier, which consists of the portlet path together with the portlet name
(defined in the local−portlet element), must be unique within the portal Web application. For
example, Orion Star Sports & Outdoors could have two Welcome portlets if different paths are
specified for each (as in OrionStar/Sales/Welcome and
OrionStar/Purchasing/Welcome).
 <portlet−path>/sas/portlets</portlet−path>
 <portlet−actions>

To provide for internationalization of the text that appears inside the portlet border, the Welcome
portlet has its own action class, called WelcomeAction. The name of the class is specified in the
type subelement of the portlet−action element.
 <portlet−action name="display" default="true">
 <type>com.sas.portal.portlets.welcome.WelcomeAction</type>
 </portlet−action>
 </portlet−actions>
 </local−portlet>
</portlets>

Sample: Localized Display Portlet (Welcome Portlet)

SAS® Web Infrastructure Kit: Developer's Guide

Step 2: Create the Portlet Deployment Descriptor 42

Step 3: Create the Display Page
JSP pages are the presentation components of portlets. This is the source code for the Welcome portlet's JSP page,
called Welcome.jsp. The boxes contain explanatory comments. For more information, see Creating the
Presentation JSP Page.

<%−− Copyright (c) 2001 by SAS Institute Inc., Cary, NC 27513 −−%>

The following line contains the UTF−8 directive, which is required for internationalization. This
directive causes all user input to be encoded in the 8−bit Unicode Transformation Format, which
supports all of the world's languages including those that use non−Latin1 characters.
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>

The following line contains the taglib directive for the JSP Standard Tag Library (JSTL) formatting
tags. The directive must appear before the first use of these tags.
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>
<%−−This portlet provides the welcome greeting on the Public Kiosk. −−%>

The following lines use JSTL formatting tags to display text. The key attribute is used to obtain
the appropriate text from the resource bundle that most closely matches the user's locale preference.
The SAS Web Infrastructure Kit makes the user's locale available to these tags.
<fmt:message key="welcome.msg1.txt"/>

<fmt:message key="welcome.msg2.txt"/>

Sample: Localized Display Portlet (Welcome Portlet)

Step 3: Create the Display Page 43

Step 4: Create the Action Class
The Welcome portlet has its own action class, WelcomeAction, which provides support for localizing messages.
This class extends com.sas.portal.portlet.HTMLPortletAction, which contains code to correctly
display non−Latin1 character sets when the portal Web application displays the portlet in preview mode.

The source code for WelcomeAction follows. The box contains explanatory comments. For more information, see
Creating Action Classes.

/** Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.welcome;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.sas.portal.portlet.HTMLPortletAction;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;

/**Action for the Welcome Portlet. This prepares the localized resource
 * bundles for use by the JSTL tags within the portlet's JSP.
 * @version 1
 */
public final class WelcomeAction extends HTMLPortletAction {

 /**
 * Configure the JSTL localization context for use in the Welcome
 * portlet. Returns the value of "display−page" from the portlet's
 * XML descriptor.
 *
 * @param request The HttpServletRequest associated with the
 * method invocation
 * @param response HttpServletResponse associated with the
 * method invocation
 * @param context PortletContext mapped to the request path
 *
 * @return java.lang.String − representing a valid URL.
 */
 public String service(HttpServletRequest request,
 HttpServletResponse response, PortletContext context)
 throws Exception{

In the following code, the NavigationUtil method uses the portlet's classloader to obtain the
portlet's resource bundle. Using this bundle and the locale of the current user, it creates a new JSTL
localization context. The localization context is made available to the portlet's JSP page with
request scope.

 super.service(request, response, context);

NavigationUtil.prepareLocalizedResources(
 "com.sas.portal.portlets.welcome.res.Resources", request, context);

 //This comes from the portlet.xml.
 String url = (String) context.getAttribute("display−page");

Step 4: Create the Action Class 44

 return url;
 }

}

Sample: Localized Display Portlet (Welcome Portlet)

SAS® Web Infrastructure Kit: Developer's Guide

Step 4: Create the Action Class 45

Step 5: Create the Resource Bundles
The resource bundles provide translated text to be displayed inside the Welcome portlet. The portlet's
WelcomeAction.class calls the NavigationUtil.prepareLocalizedResources() method to create a
JSTL localization context based on the user's locale preference. This context enables the JSTL tags in Welcome.jsp to
use the appropriate resource bundle to display the text. For more information about creating resource bundles, see
Creating a Localized Portlet.

Note: For information about localizing the portlet's title and description, see Step 6: Create Translated Titles and
Descriptions.

A number of resource bundles are provided with the Welcome portlet. The contents of three of the files
(Resources.properties for U.S. English, Resources_de.properties for German, and
Resources_es.properties for Spanish) follow.

#This is where you put key/value pairs for message strings that need to
#be localized.
##These are the messages for the Welcome portlet
#This is for the Public Kiosk Welcome portlet
welcome.msg1.txt=Welcome to Version 2 of the Information Delivery Portal.
welcome.msg2.txt=Please look around!

#This is where you put key/value pairs for message strings that need to
#be localized.
##These are the messages for the Welcome portlet
#This is for the Public Kiosk Welcome portlet
welcome.msg1.txt=Willkommen bei Information Delivery Portal Version 2.
welcome.msg2.txt=Schauen Sie sich um!

#This is where you put key/value pairs for message strings that need to
#be localized.
##These are the messages for the Welcome portlet
#This is for the Public Kiosk Welcome portlet
welcome.msg1.txt=Bienvenido a la versión 2 de Information Delivery
 Portal.
welcome.msg2.txt=Puede continuar

Sample: Localized Display Portlet (Welcome Portlet)

Step 5: Create the Resource Bundles 46

Step 6: Create Translated Titles and Descriptions
Display resource files called portletDisplayResources.properties contain translated titles and
descriptions for the Welcome portlet. These files contain text to be used in creating the metadata that describes the
portlet.

When the portlet is first deployed, the deployment process checks to see which default locale was specified when the
portal Web application was installed. Based on this locale, it uses the title and description from the appropriate display
resource file to create metadata and register the portlet in the SAS Metadata Repository.

Note: The SAS Metadata Repository cannot store multiple, localized values for metadata. Therefore, the title and
description are translated only into the portal Web application's default locale. They cannot be translated based on the
user's locale preference.

A number of display resource files are provided for the Welcome portlet. The contents of two of the files
(portletDisplayResources_de.properties and portletDisplayResources_en.properties)
follow. (Note: Add the word "Sample" to the name and description in order to distinguish this portlet from the
Welcome portlet that is delivered with the portal.)

portlet.title=Begrüßungs−Portlet Muster
portlet.description=Begrüßungs−Portlet Muster

portlet.title=Welcome Portlet Sample
portlet.description=Welcome Portlet Sample

Sample: Localized Display Portlet (Welcome Portlet)

Step 6: Create Translated Titles and Descriptions 47

Step 7: Create the PAR File, and Deploy and Test the
Portlet
The last step in developing the Welcome portlet was to archive its files into a PAR file. The PAR file includes the
following:

Appropriately named and organized directories and subdirectories, as described in Step 1: Create the
Directory Structure.

•

All of the portlet's supporting files, including the files created in Steps 2 through 6. The files must be placed in
the appropriate directories as described in Step 1: Create the Directory Structure and Creating a PAR File for
Deployment in the Portal.

•

The JAR utility was used to compress the directories and files into an archive, and the archive was given the name
Welcome.par.

It is a good practice to deploy new portlets into a staging area (that is, a test installation of the portal Web application)
for verification and testing before deploying them into the production environment. For information about how to
deploy a PAR file into the portal Web application, refer to Adding Custom−Developed Portlets in the "Adding
Content to the Portal" chapter in the SAS Intelligence Platform: Web Application Administration Guide.

Sample Portlets

Step 7: Create the PAR File, and Deploy and Test the Portlet 48

Sample: Interactive Form Portlet (FormExample)
The sample portlet called FormExample is an interactive portlet. It accepts free−form input from the user, as shown
here:

When the user clicks Submit Form, the portlet displays the entered text back to the user, as shown here:

FormExample is a local portlet that runs inside the portlet container. It was developed using a JavaBean, which places
values in the PortletContext object so that the values are available to the JSP page. The
HttpServletRequest or HttpSession object could be used for this purpose. However, the
PortletContext object is unique to the portlet and is not shared with other processes. Therefore, using it avoids
collisions that could cause attribute values to be overwritten.

The following steps were used to create the FormExample portlet. Click on each step to display details.

Create a directory structure for the portlet.1.
Create the portlet deployment descriptor (portlet.xml).2.
Create the display page (FormExample.jsp).3.
Create the action class (DisplayAction.class).4.
Create the bean.5.
Create the PAR file, and deploy and test the portlet.6.

Sample: Interactive Form Portlet (FormExample)

Sample: Interactive Form Portlet (FormExample) 49

Step 1: Create the Directory Structure
The following directory structure was used to create the FormExample portlet:

This structure includes the following directories and subdirectories:

Directory Contents

work (root)

This directory serves as a development area for the portlet.

Portlet deployment
descriptor file
portlet.xml

The name of the
deployment descriptor file
must be portlet.xml.

/FormExample This is the main portlet
directory. It does not
contain any files. The
directory name must not
have any spaces, and it must
match the name of the
portlet as specified in the
name attribute of the
<local−portlet>
element in portlet.xml.

/FormExample/classes/com/sas/portal/portlets/formexampleThe action class called
DisplayAction.class
and the JavaBean called
ExampleBean.class.

/FormExample/content This directory contains the
display page called
FormExample.jsp.

Each portlet can have only
one content location
directory, and the directory
name must be content.
However, the content
location directory can have
an unlimited number of

Step 1: Create the Directory Structure 50

subdirectories.

The following rules apply when you set up the directory structure:

Neither portlet names nor their paths can contain spaces.•
The portlet identifier (which consists of the name and the path) must be unique. Developers should devise a
convention to ensure unique name−spaces, similar to the conventions used for naming Java packages.

For example, the Sales division of a company named ABCD could create portlets in the path ABCD/Sales,
and the Purchasing division could create portlets in the path ABCD/Purchasing. Then both Sales and
Purchasing could have different portlets named FormExample.

•

Sample: Interactive Form Portlet (FormExample)

SAS® Web Infrastructure Kit: Developer's Guide

Step 1: Create the Directory Structure 51

Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information that the portal Web application
needs to deploy one or more portlets. Here is the portlet deployment descriptor for the FormExample portlet. The
boxes contain explanatory comments. For more information, see Creating a Portlet Deployment Descriptor.

<?xml version="1.0" encoding="UTF−8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal setup directory in the
path Portal\WEB−INF. For example, if you used the default installation location on a Windows
system, then the DTD is located under the following path: c:\Program
Files\SAS\Web\Portal2.0.1\Portal\WEB−INF.
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>

The local−portlet element assigns the name FormExample to the portlet. The name cannot
contain spaces. The portlet identifier, which consists of the portlet path (defined in the
portlet−path element) together with the portlet name, must be unique within the portal Web
application.
 <local−portlet name="FormExample" title="Form Example" >
 <localized−resources locales="en" />
 <keywords>
 <keyword></keyword>
 </keywords>

The deployment element specifies that the portlet is to be available to the Public group. This
means that all users will be able to search for this portlet and add it to their pages. Use all CAPS for
PUBLIC.
 <deployment scope="group" autoDeploy="true"
 userCanCreateMore="false">
 <group>PUBLIC</group>
 </deployment>

Since no initializer class is specified, the FormExample portlet will use the default initializer
JspPortletInitializer. This initializer requires a page name as a parameter. The
FormExample has its own JSP page, called FormExample.jsp.
 <init−param>
 <param−name>display−page</param−name>
 <param−value>FormExample.jsp</param−value>
 </init−param>

The portlet−path element specifies the directory location in which the portlet is to be
deployed. The portlet identifier, which consists of the portlet path together with the portlet name
(defined in the local−portlet element), must be unique within the portal Web application.
 <portlet−path>/sas/portlets</portlet−path>

Step 2: Create the Portlet Deployment Descriptor 52

To provide its interactive functionality, the FormExample portlet has its own action class, called
DisplayAction. The name of the class is specified in the type subelement of the
portlet−action element.
 <portlet−actions>
 <portlet−action name="display" default="true">
 <type>com.sas.portal.portlets.formexample.DisplayAction</type>
 </portlet−action>
 </portlet−actions>
 </local−portlet>
</portlets>

Sample: Interactive Form Portlet (FormExample)

SAS® Web Infrastructure Kit: Developer's Guide

Step 2: Create the Portlet Deployment Descriptor 53

Step 3: Create the Display Page
JSP pages are the presentation components of portlets. This is the source code for the FormExample portlet's JSP
page, called FormExample.jsp.

This JSP page uses SAS custom tags, which are available with SAS AppDev Studio. For more information, see
Creating the Presentation JSP Page.

<%−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−%>
<%@ page language="java"
import="com.sas.portal.portlet.PortletContext,
 com.sas.portal.portlet.PortletConstants"
contentType= "text/html; charset=UTF−8" %>

<%@taglib uri="http://www.sas.com/taglib/sas" prefix="sas"%>

<%−−This portlet provides for echoing the user input back to the
 portlet display. −−%>

<% PortletContext context = (PortletContext)
 request.getAttribute(PortletConstants.CURRENT_PORTLET_CONTEXT);

%>

<sas:Form id="form" name="form" method="POST"
 action="<%= (String) context.getAttribute(\"formExample_baseURL\")%>">

<table border="0">
<tr>
 <td align="right">Please type something:</td>
 <td><sas:TextEntry id="userInput" /></td>
</tr>
<tr>
 <td> </td>
</tr>

<tr>
 <td align="right">You typed:</td>
 <td><%=(String) context.getAttribute("formExample_userInput") %></td>
</tr>

</table>

<sas:PushButton id="submit"
 text="Submit Form" type="submit" />

</sas:Form>

Sample: Interactive Form Portlet (FormExample)

Step 3: Create the Display Page 54

Step 4: Create the Action Class
The FormExample portlet has its own action class, DisplayAction. The source code for DisplayAction
follows. For more information, see Creating Action Classes.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.formexample;

import java.util.Enumeration;
import java.util.HashMap;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.commons.beanutils.BeanUtils;

import com.sas.portal.portlet.HTMLPortletAction;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;

/**Action for the Form Example Portlet. This prepares the URL
 * that will be assigned to the form's action within the portlet's
 * JSP. It also populates a bean with the parameters from the JSP
 * form.
 *
 * @author Todd.Folsom@sas.com
 * @version 1
 */
public final class DisplayAction extends HTMLPortletAction {

 /**
 * Prepare the URL for the form used in the portlet.
 * Returns the value of "FormExample.jsp".
 *
 * @param request The HtppServletRequest associated with the
 * method invocation
 * @param response HttpServletResponse associated with the
 * method invocation
 * @param context PortletContext mapped to the request path
 *
 * @return java.lang.String − representing a valid
 * URL.
 */
 public String service(HttpServletRequest request,
 HttpServletResponse response, PortletContext context)
 throws Exception{

 super.service(request, response, context);

 //prepare the base URL for setting on the form in the JSP.
 // The "display" is the value used in portlet.xml for this
 // action.
 String baseURL = NavigationUtil.buildBaseURL(context, request,
 "display");
 context.setAttribute("formExample_baseURL", baseURL);

Step 4: Create the Action Class 55

 //Make a new ExampleBean. Alternatively, this could be made
 // once in the portlet initializer class, then you manage
 // its properties in the action.
 ExampleBean bean = new ExampleBean();

 //The BeanUtils class will populate any bean with all the
 // parameters from the form.
 HashMap map = new HashMap();
 Enumeration names = request.getParameterNames();
 while (names.hasMoreElements()) {
 String name = (String) names.nextElement();
 map.put(name, request.getParameterValues(name));
 }
 BeanUtils.populate(bean, map);

 //put the userInput into the portlet context so we can get it out
 // in the JSP.
 context.setAttribute("formExample_userInput", bean.getUserInput());

 return "FormExample.jsp";
 }
}

Sample: Interactive Form Portlet (FormExample)

SAS® Web Infrastructure Kit: Developer's Guide

Step 4: Create the Action Class 56

Step 5: Create the JavaBean
The FormExample portlet was developed using a JavaBean called ExampleBean.java. This JavaBean places
values in the PortletContext object so that the values are available to the JSP page.

The HttpServletRequest or HttpSession object could be used for this purpose. However, the
PortletContext object is unique to the portlet and is not shared with other processes. Therefore, using it avoids
collisions that could cause attribute values to be overwritten.

The source code for ExampleBean.java follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.formexample;

public final class ExampleBean {

/**Sets the user's input to this property. If input
 * is null, it will be changed to "" so that getUserInput()
 * never returns null.
 *
 * @param input
 */
public void setUserInput(String input) {
 if (input == null) {
 input = "";
 }
 this.input = input;
}

/**Returns the user's input or "".
 *
 * @return String
 */
public String getUserInput() {
 return input;
}

private String input = "";
}

Sample: Interactive Form Portlet (FormExample)

Step 5: Create the JavaBean 57

Step 6: Create the PAR File, and Deploy and Test the
Portlet
The last step in developing the FormExample portlet was to archive its files into a PAR file. The PAR file includes the
following:

appropriately named and organized directories and subdirectories, as described in Step 1: Create the Directory
Structure.

•

all of the portlet's supporting files, including the files created in Steps 2 through 5. The files must be placed in
the appropriate directories as described in Step 1: Create the Directory Structure and Creating a PAR File for
Deployment in the Portal.

•

The JAR utility was used to compress the directories and files into an archive, and the archive was given the name
FormExample.par.

It is a good practice to deploy new portlets into a staging area (that is, a test installation of the portal Web application)
for verification and testing before deploying them into the production environment. For information about how to
deploy a PAR file into the portal Web application, see Adding Custom−Developed Portlets in the "Adding Content to
the Portal" chapter in the SAS Intelligence Platform: Web Application Administration Guide.

Sample Portlets

Step 6: Create the PAR File, and Deploy and Test the Portlet 58

Sample: Portlet Template, or Editable Portlet
(DisplayURL)
A portlet template, also referred to as an editable portlet, is a portlet from which users can create their own portlet
instances. The portlet called DisplayURL (shown below), which is delivered with the portal Web application, is one
example of a portlet template.

Users can create new instances of this portlet by choosing Add a portlet on the Options menu and then choosing
URL Display Portlet as the portlet type in the Create a New Portlet dialog box. The DisplayUrl portlet includes
classes that enable the user to edit the new portlet instance to point to any URL which returns an HTML fragment. For
example, the user could edit the portlet instance to point to a URL which returns an HTML fragment, as shown here:

If you create a portlet template, the title of the portlet template will appear as a portlet type that users can create their
own instances of. Action classes that you provide with the portlet template will then enable users to edit the portlet
instances that they have created.

The following steps were used to create the DisplayURL portlet and the URL Display Portlet portlet type. Click on
each step to display details.

Create a directory structure for the portlet.1.
Create the portlet deployment descriptor (portlet.xml).2.
Create display pages for the portlet and the editor (FormExample.jsp).3.
Create the action classes.4.
Create the resource bundle.5.
Create the display resources file.6.
Create the PAR file, and deploy and test the portlet.7.

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Sample: Portlet Template, or Editable Portlet (DisplayURL) 59

Step 1: Create the Directory Structure
The following directory structure was used to create the DisplayURL portlet:

This structure includes this following directories and subdirectories:

Directory Contents

work (root)

This directory serves as a
development area for the portlet.

Portlet deployment descriptor file portlet.xml

The name of the deployment descriptor file must
be portlet.xml.

/DisplayURL This is the main portlet directory. It does not
contain any files. The directory name must not
have any spaces, and it must match the name of
the portlet as specified in the name attribute of the
<local−portlet> element in
portlet.xml.

/DisplayURL/classes This directory contains the display resources file
file.

/DisplayURL/classes/com/SAS
 /portal/portlets/displayurl

This directory contains the
resources.properties file and the
following action classes:

BaseAction.class
CancelAction.class
DisplayAction.class
EditorAction.class
ErrorHandler.class
Initializer.class
OKAction.class

/DisplayURL/content This directory contains the display pages called
Editor.jsp, Error.jsp, and Viewer.jsp.

Each portlet can have only one content location
directory, and the directory name must be
content. However, the content location
directory can have an unlimited number of
subdirectories.

Step 1: Create the Directory Structure 60

The following rules apply when you set up the directory structure:

Neither portlet names nor their paths can contain spaces.•
The portlet identifier (which consists of the name and the path) must be unique. Developers should devise a
convention to ensure unique name−spaces, similar to the conventions used for naming Java packages.

•

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit: Developer's Guide

Step 1: Create the Directory Structure 61

Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information that the portal Web application
needs to deploy one or more portlets. Here is the portlet deployment descriptor for the DisplayURL portlet. The boxes
contain explanatory comments. For more information, see Creating a Portlet Deployment Descriptor.

<?xml version="1.0" encoding="UTF−8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal setup directory in the
path Portal\WEB−INF. For example, if you used the default installation location on a Windows
system, then the DTD is located under the following path: c:\Program
Files\SAS\Web\Portal2.0.1\Portal\WEB−INF.
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>

In the local−portlet element, the value of the title attribute specifies the new portlet type
that will be displayed to users in the Create a New Portlet dialog box.

The attribute editorType="portlet" indicates that portlets created from the template are to
be editable. When this attribute value is specified, then a portlet action with the attribute
editor="true" must also be specified. Otherwise, the portlet deployer will send a warning to
the server log and will not deploy the portlet.

Note: Add the word "Sample" to the name and title in order to distinguish this portlet from the
URL Display portlet that is delivered with the portal.
<local−portlet name="DisplayURL Sample" title="URL Display Portlet Sample"
 editorType="portlet">
 <localized−resources locales="en,de,es,fr,it,ja,pl,ru,sv,zh_CN" />

The deployment element includes the attribute value userCanCreateMore="true". This
value indicates that the portlet is a template and can be replicated by portal users.

 <deployment scope="user" autoDeploy="false"
 userCanCreateMore="true" />
 <initializer−type>
 com.sas.portal.portlets.displayurl.Initializer
 </initializer−type>
 <init−param>
 <param−name>error−page</param−name>
 <param−value>Error.jsp</param−value>
 </init−param>
 <init−param>
 <param−name>display−page</param−name>
 <param−value>Viewer.jsp</param−value>
 </init−param>
 <init−param>
 <param−name>edit−page</param−name>
 <param−value>Editor.jsp</param−value>

Step 2: Create the Portlet Deployment Descriptor 62

 </init−param>
 <error−handler>
 <type>com.sas.portal.portlets.displayurl.ErrorHandler</type>
 </error−handler>
 <portlet−path>/sas/portlets</portlet−path>
 <portlet−actions>

This action element specifies the action class DisplayAction. The attribute
default="true" indicates that this is the default action class, which means that the class is to
be invoked before the portlet's JSP renders.
 <portlet−action name="display" default="true" >
 <type>
 com.sas.portal.portlets.displayurl.DisplayAction
 </type>
 </portlet−action>

This action element specifies the action class EditorAction. The attribute
editor="true" indicates that this action is to be invoked when a user clicks the portlet's Edit
icon.
 <portlet−action name="editor" editor="true" >
 <type>
 com.sas.portal.portlets.displayurl.EditorAction
 </type>
 </portlet−action>

The following action elements specify the action classes that will be invoked when the user
clicks the OK button and the Cancel button on the editor display page.
 <portlet−action name="ok" default="false" >
 <type>com.sas.portal.portlets.displayurl.OKAction</type>
 </portlet−action>
 <portlet−action name="cancel" default="false" >
 <type>com.sas.portal.portlets.displayurl.CancelAction</type>
 </portlet−action>
 </portlet−actions>
</local−portlet>
</portlets>

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit: Developer's Guide

Step 2: Create the Portlet Deployment Descriptor 63

Step 3: Create the Display Pages for the Portlet and the
Editor
The DisplayURL portlet has three JSP pages:

Viewer.jsp, which is the presentation component of the portlet•
Editor.jsp, which is the presentation component of the editor action•
Error.jsp, which displays messages for errors that occur during the editing process•

To see the code for these JSP pages, click on the links shown previously.

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 3: Create the Display Pages for the Portlet and the Editor 64

Viewer.jsp
The code for Viewer.jsp, which is the presentation component of the DisplayURL portlet, follows.

<!−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−>
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.portlet.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c_rt" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt_rt" prefix="fmt_rt" %>

<%
 PortletContext context = (PortletContext) request.getAttribute(
 PortletConstants.CURRENT_PORTLET_CONTEXT);
 String url = (String) context.getAttribute("sas_DisplayURL_DisplayURL");

 if ((url == null) || (url.length() == 0))
 {
%>
<p style="text−align: center;"><fmt:message key="viewer.nourl.txt"/></p>
<%
 } else {
 try {
%>
<c_rt:import charEncoding="UTF−8" url="<%= url %>" />
<%
 } catch (Exception ex) {
%>
<p style="text−align: center;">
 <fmt_rt:message key="viewer.badurl.fmt">
 <fmt_rt:param value="<%= url %>"/>
 <fmt_rt:param value="<%= ex.getMessage() %>"/>
 </fmt_rt:message>
</p>
<%
 }
 }
%>

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Viewer.jsp 65

Editor.jsp
The code for Editor.jsp, which is the presentation component of the editor for the DisplayURL portlet, follows.

<!−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−>
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.portlet.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

<% PortletContext context = (PortletContext) request.getAttribute(
 PortletConstants.CURRENT_PORTLET_CONTEXT); %>

<table border="0" cellpadding="2" cellspacing="0" align="center"
 width="100%">
 <tr>
 <td colspan="3"> </td>
 </tr>
 <tr>
 <td> </td>
 <td nowrap align="center"><fmt:message key="editor.task.txt"/></td>
 <td> </td>
 </tr>
 <tr>
 <td colspan="3"> </td>
 </tr>
 <tr>
 <form method="post" action="<%= context.getAttribute(
 "sas_DisplayURL_EditOkURL") %>">
 <td> </td>
 <td> <table border="0" cellpadding="0" cellspacing="0" align="center">
 <td class="celljustifyright" nowrap>
 <fmt:message key="editor.url.txt"/>
 </td>
 <td> </td>
 <td class="celljustifyleft" nowrap>
 <input type="text" name="sas_DisplayURL_DisplayURL"
 value="<%= context.getAttribute("sas_DisplayURL_DisplayURL") %>"
 size="60">
 </td>
 </tr>
 <tr>
 <td colspan="3"> </td>
 </tr>
 <tr>
 <td class="celljustifyright">
 <input class="button" type="submit" value="<fmt:message
 key="editor.action.ok.txt"/>" name="submit" >
 </form>
 </td>
 <td> </td>
 <td class="celljustifyleft">
 <form method="post" action="<%= context.getAttribute(
 "sas_DisplayURL_EditCancelURL") %>">
 <input class="button" type="submit" value="<fmt:message
 key="editor.action.cancel.txt"/>" name="cancel" >
 </form>
 </td>
 </tr>

Editor.jsp 66

</table>

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit: Developer's Guide

Editor.jsp 67

Error.jsp
The code for Error.jsp, which displays messages for any errors that occur during the editing process, follows.

<%−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−%>
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.portlet.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

<% PortletContext context = (PortletContext)request.getAttribute(
 PortletConstants.CURRENT_PORTLET_CONTEXT); %>

<fmt:message key="error.msg1.txt"/>

<%= context.getAttribute("Exception_message") %>

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Error.jsp 68

Step 4: Create the Action Classes
The DisplayURL portlet has the following action classes:

Initializer•
BaseAction•
DisplayAction•
EditorAction•
OKAction and CancelAction•
ErrorHandler•

Click a link to see the source code for an action class.

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 4: Create the Action Classes 69

Initializer Action
The DisplayURL portlet's Initializer action class initializes properties that are used by the other action classes
and puts the properties into a PortletContext object. The source code follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import java.rmi.RemoteException;
import java.util.Properties;

import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlet.PortletInitializerInterface;
import com.sas.portal.portlet.configuration.Attribute;
import com.sas.portal.portlet.configuration.Configuration;
import com.sas.portal.portlet.configuration.ConfigurationFactory;

/**
 * This initializes common properties by putting them into a
 * PortletContext object.
 */
public class Initializer implements PortletInitializerInterface
{
 private final String _loggingContext = this.getClass().getName();

 /* Key for the URL String in the PortletContext.*/
 public static final String DISPLAY_URL_KEY =
 "sas_DisplayURL_DisplayURL";

 /* PortletContext key for the edit screen Ok button URL */
 public static final String EDIT_OK_URL_KEY =
 "sas_DisplayURL_EditOkURL";

 /* PortletContext key for the edit screen Cancel button URL */
 public static final String EDIT_CANCEL_URL_KEY =
 "sas_DisplayURL_EditCancelURL";

 /** Key for the PortletException object in the PortletContext.*/
 public static final String PORTLET_EXCEPTION_KEY =
 "sasPortletException";

 /**
 * Puts initial properties into the PortletContext object. These
 * come from the portlet.xml.
 * @param initProperties a Properties object
 * @param context the PortletContext for this portlet
 */
 public void initialize(Properties initProperties,
 PortletContext context)
 {
 try {
 // get the initial url from the portlet configuration object
 Configuration config = ConfigurationFactory.getConfiguration(
 context);
 Attribute attr = config.getAttribute(

Initializer Action 70

 Initializer.DISPLAY_URL_KEY);
 String url = (attr == null) ? "" : attr.getValue();

 context.setAttribute("error−page",
 initProperties.getProperty("error−page"));
 context.setAttribute("display−page",
 initProperties.getProperty("display−page"));
 context.setAttribute("edit−page",
 initProperties.getProperty("edit−page"));
 context.setAttribute(Initializer.DISPLAY_URL_KEY, url);

 if (Logger.isDebugEnabled(_loggingContext)){
 Logger.debug("Display portlet URL: " +
 url, _loggingContext);
 }
 } catch (RemoteException e) {
 context.setAttribute(Initializer.PORTLET_EXCEPTION_KEY, e);
 }
 }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit: Developer's Guide

Initializer Action 71

Base Action
The DisplayURL portlet's BaseAction class is a superclass which is extended by the DisplayAction, EditorAction,
OkAction, and CancelAction classes. The source code is shown below.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.sas.portal.Logger;
import com.sas.portal.container.deployment.PortletActionInfoInterface;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletActionInterface;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlets.displayurl.Initializer;

public abstract class BaseAction implements PortletActionInterface
{
 private final String _loggingContext = this.getClass().getName();

 private PortletActionInfoInterface _actionInfo = null;

 /**
 * This method must be overridden in subclasses.
 * They must call super and supply a return value.
 * In this class, the method returns null.
 *
 * @see com.sas.portal.portlet.PortletActionInterface#service(
 * HttpServletRequest, HttpServletResponse, PortletContext)
 */
 public String service(HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context) throws Exception
 {
 Logger.debug("started..", _loggingContext);
 response.setContentType("text/html;charset=UTF−8");

 // prepare the localized resources for use by the jsp.
 try {
 NavigationUtil.prepareLocalizedResources(
 "com.sas.portal.portlets.displayurl.Resources",
 request, context);
 }
 catch (java.io.IOException ioe) {
 Logger.error(ioe.getMessage(), _loggingContext, ioe);
 }

 return null;
 }

 /**
 * @see com.sas.portal.portlet.PortletActionInterface#setInfo(
 * PortletActionInfoInterface)
 */
 public final void setInfo(PortletActionInfoInterface info)

Base Action 72

 {
 _actionInfo = info;
 }

 /**
 * @see com.sas.portal.portlet.PortletActionInterface#getInfo()
 */
 public final PortletActionInfoInterface getInfo()
 {
 return _actionInfo;
 }

 /**
 * Check the PortletContext for an exception object. If present,
 * throw it so that the error handler will kick in.
 * @param context the PortletContext
 */
 protected static final void errorCheck(PortletContext context)
 throws Exception
 {
 Exception e = (Exception)context.getAttribute(
 Initializer.PORTLET_EXCEPTION_KEY);
 if (e != null)
 throw e;
 }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit: Developer's Guide

Base Action 73

Display Action
The DisplayAction class is the default action class for the DisplayURL portlet. This means that the class is to be
invoked before the portlet's JSP page renders. The source code follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
//import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;

/**
 * Action class that presents the display page. It sets up the display
 * model then instructs the portlet container to present the display
 * page.
 */
public final class DisplayAction extends BaseAction
{
// private final String _loggingContext = this.getClass().getName();

 /**
 * Service the portlet request.
 *
 * @param request the HttpServletRequest
 * @param response the HttpServeltResponse
 * @param context the PortletContext
 * @return the URL to call
 */
 public String service(HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context) throws Exception
 {
 super.service(request, response, context);

 // see if there is an initialization error
 errorCheck(context);
 return (String)context.getAttribute("display−page");
 }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Display Action 74

Editor Action
The DisplayURL portlet's EditorAction class is invoked when a user clicks the portlet's Edit icon. The source
code follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

//import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlet.NavigationUtil;

/**
 * Action class that presents the edit page. It sets up the edit model
 * then instructs the portlet container to present the edit page.
 */
public final class EditorAction extends BaseAction
{
// private final String _loggingContext = this.getClass().getName();

 /**
 * Service the portlet request.
 *
 * @param request the HttpServletRequest
 * @param response the HttpServeltResponse
 * @param context the PortletContext
 * @return the URL to call
 */
 public String service(HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context) throws Exception
 {
 super.service(request, response, context);

 //create the URLs for the OK and Cancel buttons.
 String url;

 url = NavigationUtil.buildBaseURL(context, request,
 "ok");
 context.setAttribute(Initializer.EDIT_OK_URL_KEY, url);

 url = NavigationUtil.buildBaseURL(context, request,
 "cancel");
 context.setAttribute(Initializer.EDIT_CANCEL_URL_KEY, url);

 // the following call resets the mode back to display for the
 // next call
 context.resetMode();

 return (String) context.getAttribute("edit−page");
 }
}

Editor Action 75

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit: Developer's Guide

Editor Action 76

OK and Cancel Actions
The DisplayURL portlet's OkAction class is invoked when a user clicks the OK button on the editor display page.
The CancelAction class is invoked when a user clicks the Cancel button on the editor display page. The source
code for both classes follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import com.sas.portal.portlet.configuration.ConfigurationFactory;
import com.sas.portal.portlet.configuration.Configuration;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;

/**
 * Action class that processes the Ok action from the editor. It
 * persists the user−specified URL, sets up the display model, then
 * instructs the portlet container to present the display page.
 */
public final class OKAction extends BaseAction
{
 private final String _loggingContext = this.getClass().getName();

 /**
 * Service the portlet request.
 *
 * @param request the HttpServletRequest
 * @param response the HttpServeltResponse
 * @param context the PortletContext
 * @return the URL to call
 */
 public String service (HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context) throws Exception
 {
 super.service(request, response, context);

 String url = request.getParameter(Initializer.DISPLAY_URL_KEY);
 context.setAttribute(Initializer.DISPLAY_URL_KEY, url);

 // save the URL parameter
 Configuration config = ConfigurationFactory.getConfiguration(
 context);
 config.setAttribute(Initializer.DISPLAY_URL_KEY, url);
 ConfigurationFactory.storeConfiguration(context, config);

 if (Logger.isDebugEnabled(_loggingContext)){
 Logger.debug("Display portlet URL: " + url, _loggingContext);
 }

 // back to the default, display, mode
 // context.resetMode();

 return (String)context.getAttribute("display−page");

OK and Cancel Actions 77

 }
}

/** Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
//import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;

/**
 * Action class that processes the Cancel action from the editor. It
 * sets up the display model then instructs the portlet container to
 * present the display page.
 */
public final class CancelAction extends BaseAction
{
// private final String _loggingContext = this.getClass().getName();

 /**
 * Service the portlet request.
 *
 * @param request the HttpServletRequest
 * @param response the HttpServeltResponse
 * @param context the PortletContext
 * @return the URL to call
 */
 public String service(HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context) throws Exception
 {
 super.service(request, response, context);

 // back to the default, display, mode
 // context.resetMode();
 return (String)context.getAttribute("display−page");
 }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit: Developer's Guide

OK and Cancel Actions 78

Error Handler Action
The source code for the DisplayURL portlet's ErrorHandler action class follows.

/** Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.sas.apps.portal.PortalException;
import com.sas.portal.Logger;
import com.sas.portal.portlet.ErrorHandlerInterface;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;

/**
 * Error handler for this portlet. It logs the exception and
 * returns ErrorPage.jsp for the portlet to display.
 */
public class ErrorHandler implements ErrorHandlerInterface
{
 private final String _loggingContext =
 this.getClass().getName();

 /**
 * Returns the URL for the portlet controller to call.
 * This is the name of
 * the error page JSP.
 * @param request the HttpServletRequest
 * @param response the HttpServeltResponse
 * @param context the PortletContext
 * @param exception the exception thrown by a portlet action
 * @return the URL to call
 */
 public String service(HttpServletRequest request,
 HttpServletResponse response,
 PortletContext context,
 Exception thrownException)
 {
 //prepare the localized resources for use by the jsp.
 try {
 NavigationUtil.prepareLocalizedResources(
 "com.sas.portal.portlets.displayurl.Resources",
 request, context);
 }
 catch (java.io.IOException ioe) {
 Logger.error(ioe.getMessage(), _loggingContext, ioe);
 }

 //send error to server log in default locale.
 Logger.error(thrownException.getMessage(), _loggingContext,
 thrownException);

 //get msg in user's locale.
 String msg = null;
 try {

Error Handler Action 79

 PortalException ourException = (PortalException)
 thrownException;
 msg =
 ourException.getMessage(request.getLocale());
 }
 catch (ClassCastException cce){
 msg= "";
 }

 if (msg == null) {
 //prevent showing the word null in a JSP
 msg = "";
 }

 //make msg available for display on error jsp.
 context.setAttribute("Exception_message", msg);

 return (String)context.getAttribute("error−page");
 }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit: Developer's Guide

Error Handler Action 80

Step 5: Create the Resource Bundle
The resource bundles provide translated text to be displayed inside the DisplayURL portlet. The portlet's
BaseAction, EditorAction, and ErrorHandler classes call the
NavigationUtil.prepareLocalizedResources() method to create a JSTL localization context based on
the user's locale preference. This context enables the JSTL tags in the portlet's JSP pages to use the appropriate
resource bundle to display text.

For more information about creating resource bundles, see Creating a Localized Portlet.

Note: For information about localizing a portlet's title and description, see Creating Display Resources Files.

One resource bundle is provided with the DisplayURL portlet, as follows.

Note: If you copy and paste this code, then you must remove the line breaks in the message strings for
error.msg1.txt and viewer.nourl.txt.

Messages for the DisplayURL portlet

NOTE: this is the same message text as found in
com.sas.portal.res.Resources.properties. The localized versions
from there can be used here.
error.msg1.txt=A serious error occurred. Contact the Portal
 administrator.

{0} will be a URL. {1} will be an exception message.
viewer.badurl.fmt=Unable to display ''{0}'' because ''{1}''.
viewer.nourl.txt=No URL has been specified. Please edit the portlet to
 set a URL.

editor.task.txt=Enter the URL of the HTML fragment to display.
editor.url.txt=URL:

NOTE: these are the same messages as found in
com.sas.portal.res.Resources.properties. The localized versions
from there can be used here.
editor.action.cancel.txt=Cancel
editor.action.ok.txt=OK

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 5: Create the Resource Bundle 81

Step 6: Create the Display Resources File
The sample remote portlet DisplayURL uses a display resources file to provide a description to be placed in the
portlet's metadata for display to users.

You can supply multiple display resources files if you want the portal Web application to localize the portlet title and
description at the time of deployment, according to the portal Web application's default locale. For more information,
see Creating Display Resources Files.

The DisplayURL portlet has one display resources file, which is named
portletDisplayResources.properties. The contents of this file follow.

portlet.title=URL Display Portlet Sample
portlet.description=Sample portlet that displays the contents of a URL

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 6: Create the Display Resources File 82

Step 7: Create the PAR File, and Deploy and Test the
Portlet
The last step in developing the DisplayURL portlet was to archive its files into a PAR file. The PAR file includes the
following:

appropriately named and organized directories and subdirectories, as described in Step 1: Create the Directory
Structure.

•

all of the portlet's supporting files, including the files created in Steps 2 through 6. The files must be placed in
the appropriate directories as described in Step 1: Create the Directory Structure and Creating a PAR File for
Deployment in the Portal.

•

The JAR utility was used to compress the directories and files into an archive, and the archive was given the name
SAS_DisplayURL.par.

It is a good practice to deploy new portlets into a staging area (that is, a test installation of the portal Web application)
for verification and testing before deploying them into the production environment. For information about how to
deploy a PAR file into the portal Web application, see Adding Custom−Developed Portlets in the "Adding Content to
the Portal" chapter in the SAS Intelligence Platform: Web Application Administration Guide.

Sample Portlets

Step 7: Create the PAR File, and Deploy and Test the Portlet 83

Sample: Web Application (HelloUserWikExample)
The HelloUserWikExample application is a Web application that displays the string Hello 'user', where user is the
name of the user who is logged on to the portal Web application, as shown in this example:

 Hello 'Portal Demo'

The HelloUserWikExample application uses SAS Foundation Services to access session information created by the
portal Web application, extracts the user's name from the session information, inserts the name in a message, and
displays the message to the user.

You can deploy the HelloUserWikExample application as either a remote portlet or a stand−alone application. The
HelloUserRemotePortlet sample shows how this application can be deployed in a remote portlet.

If an application is called from a remote portlet, then it must generate an HTML fragment to be displayed within the
portlet borders. If an application is to be invoked as a stand−alone application, then its JSP page must generate a
complete HTML file (with starting and ending <HTML> tags). The JSP page for the HelloUserWikExample contains
conditional code that determines whether the application request was generated by a portlet. The JSP page then
generates the appropriate type of HTML.

Note: The purpose of the HelloUserWikExample application is to show how you can use the APIs to access the
shared session context. It is not intended to illustrate best programming practices.

The following steps were used to create the application:

Create a directory structure for the application.1.
Make deployment configurations available for local and remote services.2.
Create a privileged user for the application to use in accessing the portal's remote session information.3.
Create the Web application deployment descriptor (web.xml).4.
Create the display page (app.jsp).5.
Create the WAR file, and deploy and test the application.6.

Sample: Web Application (HelloUserWikExample)

Sample: Web Application (HelloUserWikExample) 84

Step 1: Create the Directory Structure
The following directory structure was used to create the HelloUserWikExample application:

This directory structure will be used in Step 6 to create a WAR file for the application. The structure includes the
following directories and subdirectories:

Directory Contents

app_work (root) This directory serves as a development area for the Web
application.

/jsp This directory contains the display page called app.jsp.

/WEB−INF This directory contains the Web application deployment descriptor
file. The name of this file must be web.xml.

/WEB−INF/conf This directory contains the services properties files, which point to
the locations of definitions for locally and remotely deployed SAS
Foundation Services.

/WEB−INF/lib This directory contains the JAR files that are used by the JSP page.

This directory should contain all the JAR files that are located in the
portal's Portal/WEB−INF/lib directory.

Sample: Web Application (HelloUserWikExample)

Step 1: Create the Directory Structure 85

Step 2: Make Deployment Configurations Available for
Local and Remote Services
The HelloUserWikExample application requires access to both local and remote services. The way that you provide
this access depends on which service deployment configuration option was selected when your portal Web application
was installed. There are two methods for providing access:

Use a SAS Metadata Server to store local and remote service deployment configurations.•
Use XML files to store local and remote service deployment configurations.•

Use the appropriate procedure for your installation.

Note: In SAS 9.1.2 Integration Technologies and subsequent releases, the Web Infrastructure Kit supports the use of
either XML files or a SAS Metadata Server to store service deployment configurations. In SAS 9.1 Integration
Technologies, the Web Infrastructure Kit supports only the use of XML files to store service deployment
configurations. For more information, see Service Deployment Configurations in the "Foundation Services and
WebDAV Server Deployment" chapter in the SAS Intelligence Platform: Web Application Administration Guide.

Using the SAS Metadata Server to Store Local and Remote Service
Deployment Configurations

If you are using the SAS Metadata Server to store local and remote service deployment configurations, then you must
create a local services deployment on the SAS Metadata Server for the HelloUserWikExample application.

In addition, you must create a local services properties file (sas_metadata_source_client.properties)
and a remote services properties file (sas_metadata_source_server.properties) for the
HelloUserWikExample application. These files tell the application where to find the configuration information. The
files must be placed in the path /WEB−INF/conf in the Web application's directory structure.

To create the local services deployment and the properties files, you can do the following:

Use SAS Management Console to create a local services deployment for the HelloUserWikExample
application. For instructions, see Defining Service Deployments in the SAS Integration Technologies:
Administrator's Guide.

1.

Copy the portal Web application's local services properties file
(sas_metadata_source_client.properties) to a separate file with the same name.

2.

Copy the portal Web application's remote services properties file
(sas_metadata_source_server.properties) to a separate file with the same name.

3.

Place the new files in the path /WEB−INF/conf in the HelloUserWikExample application's directory
structure.

4.

Here is a sample of a local services properties file for an installation that uses a SAS Metadata Server:

software_component=ID Portal Local Services
deployment_group_1=BIP Local Services OMR

omr_host=hostname.na.abc.com
omr_port=8561
omr_user=hostname\\saswbadm
omr_password=Admin123

Step 2: Make Deployment Configurations Available for Local and Remote Services 86

omr_repository=Foundation

Note: If you copy this sample file, be sure to update it with the correct values for your installation.

Using XML Files to Store Local and Remote Service Deployment
Configurations

If you are using XML files to store local and remote service deployment configurations, then the following files are
required to enable access to the services: a local services deployment definition, a local services properties file, a
remote services deployment definition, and a remote services properties files. Use these steps to create the files:

Create a definition file for local services deployment for the HelloUserWikExample application. The
definition file must be installed in the SAS Foundation Services directory on the machine on which the
HelloUserWikExample application will be installed. The contents of the HelloUserWikExample application's
local services deployment definition can be exactly the same as the definition that is used by the portal Web
application. The portal Web application's local deployment definition is called
sas_services_idp_local_omr.xml and it can generally can be found in the following path:

C:\SAS\BIEntServerMin\Lev1\web\Deployments\

Use these steps to create the local services deployment definition:

On the machine on which the portal Web application is installed, copy the portal Web application's
local deployment definition file (sas_services_idp_local_omr.xml) to a separate file. Give
the new file a different name (for example, sas_services_hellouser_local_omr.xml).

a.

If you are installing the HelloUserWikExample application on a different machine than the portal
Web application, and if SAS Foundation Services is not installed on this machine, then create the
following directory structure on the machine on which the HelloUserWikExample application will be
installed: C:\SAS\BIEntServerMin\Lev1\web\Deployments\. (Note: It is not necessary
to install SAS Foundation Services on this machine.)

b.

On the machine on which the HelloUserWikExample application will be installed, create a new
directory under C:\SAS\BIEntServerMin\Lev1\web\Deployments\. For example:

C:\SAS\BIEntServerMin\Lev1\web\Deployments\HelloUserWikExample\

Then place the new deployment definition file in the new directory.

Note: As a best practice, Web applications should not share the same local services deployment
definition. Therefore, you should follow these steps even if the HelloUserWikExample application
will be installed on the same machine as the portal Web application.

c.

1.

Create a local services properties file (sas_metadata_source_client.properties), which tells the
HelloUserWikExample application where to find the configuration information for local service deployment.
This file must be placed in the path /WEB−INF/conf in the Web application's directory structure.

To create this file, you can do the following:

Copy the portal Web application's local services properties file
(sas_metadata_source_client.properties) to a separate file with the same name.

a.

Edit the new file to specify a URL with the actual location and file name of the local services
deployment definition that you created for the HelloUserWikExample application.

b.

2.

SAS® Web Infrastructure Kit: Developer's Guide

Step 2: Make Deployment Configurations Available forLocal and Remote Services 87

Place the new file in the path /WEB−INF/conf in the HelloUserWikExample application's directory
structure.

Here is a sample of a local services properties file for an installation that uses XML files for the
deployment configuration:

software_component=ID Portal Local Services
deployment_group_1=BIP Local Services OMR

type=URL
url=file:///C:/SAS/BIEntServerMin/Lev1/web/Deployments/
 HelloUserWikExample/sas_services_hellouser_local_omr.xml

Note: The line breaks in the url property statement are for display purposes only. If you copy this
example into your properties file, then you must put the entire statement on one line. In addition, be
sure to update the URL with the actual location and file name of the local services deployment
definition that you created for the HelloUserWikExample application.

c.

The HelloUserWikExample application requires a definition file for remote services deployment.

If the HelloUserWikExample application will be installed on the same machine as the portal Web application,
then it can use the same remote services deployment definition
(sas_services_idp_remote_omr.xml) that the portal Web application uses. It is not necessary, nor
is it recommended, to make another copy of this file for the HelloUserWikExample application.

If the HelloUserWikExample application will be installed on a different machine from the portal Web
application, then follow these steps to create the remote services deployment definition:

On the machine on which the portal Web application is installed, copy the portal Web application's
remote deployment definition file (sas_services_idp_remote_omr.xml) to a separate file
with the same name.

a.

On the machine on which the HelloUserWikExample application will be installed, place the new
deployment definition file in the directory in which the new local deployment definition file is
located. For example:

C:\SAS\BIEntServerMin\Lev1\web\Deployments\HelloUserWikExample\

b.

3.

Create a remote services properties file (sas_metadata_source_server.properties), which tells
the HelloUserWikExample application where to find the definition file for the remote services. The file must
be placed in the path /WEB−INF/conf in the HelloUserWikExample application's directory structure.

To create this file, you can do the following:

Copy the portal Web application's remote services properties file
(sas_metadata_source_server.properties) to a separate file with the same name.

a.

If necessary, edit the new file to specify a URL with the actual location and file name of the remote
services deployment definition that you created for the HelloUserWikExample application. If these
are the same as that used by the portal Web application, then you can skip this step.

b.

Place the new file in the path /WEB−INF/conf in the HelloUserWikExample application's directory
structure.

Here is a sample of a remote services properties file for an installation that uses XML files for the
deployment configurations:

c.

4.

SAS® Web Infrastructure Kit: Developer's Guide

Step 2: Make Deployment Configurations Available forLocal and Remote Services 88

software_component=Remote Services
deployment_group_1=BIP Remote Services OMR

type=URL
url=file:///C:/SAS/BIEntServerMin/Lev1/web/Deployments/
 RemoteServices/sas_services_idp_remote_omr.xml

Note: The line breaks in the url property statement are for display purposes only. If you copy this
example into your properties file, you must put the entire statement on one line. In addition, be sure
that the URL contains the actual location of your remote services deployment file.

Sample: Web Application (HelloUserWikExample)

SAS® Web Infrastructure Kit: Developer's Guide

Step 2: Make Deployment Configurations Available forLocal and Remote Services 89

Step 3: Create a Privileged User
To obtain the user's name, the HelloUserWikExample application uses SAS Foundation Services to access remote
session information that was created by the portal Web application. Specific credentials are required to access the
remote session information.

You should set up a privileged user account specifically for this purpose. Use these steps to create the privileged user
and give it access to the remote session context:

Log on to SAS Management Console as the SAS Administrator, and use the User Manager plug−in to create a
user definition and initial login definition for the privileged user.

1.

Add the privileged user to the SAS System Services group. Membership in this group provides
ReadMetadata access to all objects in the metadata repository.

2.

Specify the privileged user in the user service of the HelloUserWikExample application's local service
deployment, as follows:

If you are using the SAS Metadata Server to store local and remote service deployment
configurations, then you can use SAS Management Console to update the user service deployment
that you created in Step 2 for the HelloUserWikExample application. For instructions, see Modifying
the Session and User Service Configurations in the SAS Integration Technologies: Administrator's
Guide.

♦

If you are using XML files to store local and remote service deployment configurations, then update
the UserService element of the HelloUserWikExample application's local deployment definition
file (for example, sas_services_hellouser_local_omr.xml) that you created in Step 2 .

To determine the encoded form of the password, start a SAS session and submit the following code in
the Program Editor:

proc pwencode in=’xxxxxx’;
run;

where xxxxx is the unencoded password. Copy the resulting text from the SAS log to the deployment
definition file.

♦

3.

Specify the privileged user in the context−param element of the HelloUserWikExample's web.xml file,
as described in Step 4.

4.

Sample: Web Application (HelloUserWikExample)

Step 3: Create a Privileged User 90

Step 4: Create the Web Application Deployment
Descriptor
The Web application deployment descriptor is an XML file that describes the Web application's initialization
parameters, servlets, and other components. Here is the Web application deployment descriptor for the
HelloUserWikExample application. The boxes contain explanatory comments.

Note: The line breaks in the loggingURL and SystemPropsFile values are for display purposes only. If you
copy this example into your XML file, then you must put these statements on one line.

For more information about creating Web application deployment descriptors, see the documentation for your servlet
container.

<?xml version="1.0" encoding="ISO−8859−1"?>
<!DOCTYPE web−app PUBLIC "−//Sun Microsystems, Inc.//DTD Web
 Application 2.3//EN" "http://java.sun.com/dtd/web−app_2_3.dtd">
<web−app>

The metadata−privilegeduserid parameter within the context−param element
specifies a privileged user account, in the format domain\userid. This account provides
credentials that enable the application to access the remote session context that was created by the
portal Web application.

You should set up a unique privileged user for this purpose. See Step 3 for details.
<context−param>
 <param−name>metadata−privilegeduserid</param−name>
 <param−value>mycompany\portalservice</param−value>
 </context−param>

The servlet entry specifies the SAS Foundation Services Bootstrap servlet. This servlet provides
a convenient way to deploy local services for the Web application to use. For more information, see
com.sas.services.webapp in the Portlet API class documentation.

The localPropsfile parameter specifies the name of the properties file that is to be used for
local services deployment, and the remotePropsFile parameter specifies the name of the
properties file that is to be used to access remote services. The referenced files must be present in
the path /WEB−INF/conf in the Web application's directory structure. For more information, see
Step 2: Create Deployment Definitions and Properties Files for Local and Remote Services.
<!−− BEGIN BootstrapServlet −−>
 <servlet>
 <servlet−name>BootstrapServlet</servlet−name>
 <servlet−class>
 com.sas.services.webapp.BootstrapServlet
 </servlet−class>
 <init−param>
 <!−− metadata source for local deployable services −−>
 <param−name>localPropsFile</param−name>
 <param−value>
 sas_metadata_source_client.properties
 </param−value>
 </init−param>

Step 4: Create the Web Application Deployment Descriptor 91

 <init−param>
 <!−− metadata source to retrieve remotely deployable services −−>
 <param−name>remotePropsFile</param−name>
 <param−value>
 sas_metadata_source_server.properties
 </param−value>
 </init−param>
 <init−param>
 <param−name>loggingURL</param−name>
 <param−value>
 file:///C:\SAS\EntBIServer\Lev1\web\Deployments\Portal\
 logging_config_idp.xml</param−value>
 </init−param>
 <init−param>
 <param−name>SystemPropsFile</param−name>
 <param−value>
 C:\SAS\EntBIServer\Lev1\web\Deployments\
 Portal\system_properties.config
 </param−value>
 </init−param>
 <load−on−startup>1</load−on−startup>
 </servlet>
 <!−− END BootstrapServlet −−>
 <servlet−mapping>
 <servlet−name>BootstrapServlet</servlet−name>
 <url−pattern>/Bootstrap</url−pattern>
 </servlet−mapping>
</web−app>

Sample: Web Application (HelloUserWikExample)

SAS® Web Infrastructure Kit: Developer's Guide

Step 4: Create the Web Application Deployment Descriptor 92

Step 5: Create the Display Page (JSP)
The JSP page for the HelloUserWikExample application is called app.jsp. The scriptlet code in this JSP page uses
methods from SAS Foundation Services to obtain the user's name from the portal Web application session. The user's
name is then inserted into the text on the display page.

The code for app.jsp follows. The boxes contain explanatory comments.

<%−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−%>
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>
<%@ page import="com.sas.webapp.contextsharing.WebappContextParams" %>
<%@ page import="com.sas.services.webapp.ServicesFacade" %>
<%@ page import="com.sas.services.user.UserContextInterface" %>
<%@ page import="com.sas.services.session.SessionContextInterface" %>
<%@ page import="com.sas.services.user.UserServiceInterface" %>
<%@ page import="java.util.Enumeration" %>
<%@ page import="java.util.HashMap" %>

<%
try {

In the following code, a new WebappContextParams object is created to obtain the session key
from the portal Web application request and to obtain a reference to the portal Web application's
remotely deployed services. The UserContext of a privileged user is required in order to create this
object. The identity of the privileged user is obtained from the
metadata−privilegeduserid parameter in the application's web.xml file.

 // Use WebappContextParams to obtain information passed from the
 // calling BIA application
 UserServiceInterface userService = ServicesFacade.getUserService();
 String privuser =
 request.getSession(true).getServletContext().getInitParameter(
 "metadata−privilegeduserid");
 UserContextInterface uc = userService.getUser(privuser);
 WebappContextParams params =
 new WebappContextParams(uc, request, true);

 // See if we are being requested to display as a portlet

The following code determines whether a portlet ID is available. The application uses this
information to determine whether to return a complete HTML page (for display alone in a browser
window) or an HTML fragment (for display within a portlet).
 boolean displayAsPortlet = (params.getPortletid() == null) ? false :
 true;

 SessionContextInterface sharedSession = null;
 Object sessionLock = null;
 String user = null;

 // Get the name of the user from the BIA shared session context
 try {

The following code obtains access to the portal Web application's remotely deployed services. The
session is protected with a lock.
 sharedSession = params.getSessionContext();

Step 5: Create the Display Page (JSP) 93

 if (sharedSession != null) {
 sessionLock = sharedSession.lock("com.sas.HelloUserWikExample");

The following code obtains the user's name from the user context object in the remote services
session.
 UserContextInterface userContext = sharedSession.getUserContext();
 user = userContext.getName();
 } else {
 user = "unknown";
 }
 } catch (Throwable thr2) {
 thr2.printStackTrace();
 } finally {

The following code removes the lock.
 // Unlock the shared BIA session

 try {
 if ((sharedSession != null) &(sessionLock != null))
 sharedSession.unlock(sessionLock);
 } catch (Throwable thr3) {
 // Non−fatal
 }
 }

The following code determines how to display the application output. If the application was called
by a portlet, then it generates an HTML fragment for display within the portlet. If the application
was called as a stand−alone application, then it generates a complete HTML page to be displayed
alone in a browser window.
 if (displayAsPortlet == false) {
 // Called as a web application
%>

<html>
<head>
 <title>Hello User Remote Application</title>
</head>
<body>
<p>Hello '<%= user %>'.</p>
</body>
</html>

<%
 } else {
 // Called as either a web application or portlet
%>
<p>Hello '<%= user %>'.</p>
<%
 }
} catch (Throwable thr1) {
 thr1.printStackTrace();
}
%>

Sample: Web Application (HelloUserWikExample)

SAS® Web Infrastructure Kit: Developer's Guide

Step 5: Create the Display Page (JSP) 94

Step 6: Create the WAR File, and Deploy and Test the
Application
The last step in developing the HelloUserWikExample application was to archive its files into a WAR file. The WAR
file includes the following:

appropriately named and organized directories and subdirectories, as described in Step 1: Create the Directory
Structure.

•

all of the application's supporting files, including the files created in Steps 2 through 5 and the JAR files
required for SAS Foundation Services. The files must be placed in the appropriate directories as described in
Step 1: Create the Directory Structure.

•

The JAR utility was used to compress the directories and files into an archive, and the archive was given the name
HelloUserWikExample.war.

Before deploying the HelloUserWikExample application in the portal Web application, you should test it using its
direct URL. You can then deploy it in either of the following ways:

as an application that is called by a remote portlet. The sample HelloUserRemotePortlet describes the steps for
implementing this application as a remote portlet.

•

as a stand−alone application, which appears in the portal Web application to be the same as a link. For
information about how to add the metadata for a stand−alone application that is enabled by SAS Foundation
Services, see Adding Web Applications in the "Adding Content to the Portal" chapter in the SAS Intelligence
Platform: Web Application Administration Guide.

•

Sample Portlets

Step 6: Create the WAR File, and Deploy and Test the Application 95

Sample: Remote Portlet (HelloUserRemotePortlet)
The following sample portlet, called HelloUserRemotePortlet is a remote portlet:

This portlet calls the Web application HelloUserWikExample. The HelloUserRemotePortlet application displays the
string Hello user, where user is the name of the user who is logged on to the portal Web application. For details
about the HelloUserRemotePortlet application, see Sample Web Application (HelloUserWikExample).

The following steps were used to create the HelloUserRemotePortlet. Click on each step to display details.

Create a directory structure for the portlet.1.
Create the portlet deployment descriptor (portlet.xml).2.
Create the display resources file.3.
Create the Web application.4.
Create the PAR file, and deploy and test the portlet.5.

Sample: Remote Portlet (HelloUserRemotePortlet)

Sample: Remote Portlet (HelloUserRemotePortlet) 96

Step 1: Create the Directory Structure
The following directory structure was used to create the portlet called HelloUserRemotePortlet.

This structure includes the following directories and subdirectories:

Directory Contents

portlet_work (root)

This directory serves as a
development area for the
portlet.

Portlet deployment descriptor file portlet.xml

The name of the deployment descriptor file must be
portlet.xml.

/HelloUserRemotePortlet This is the main portlet directory. It does not contain any
files. The directory name must not have any spaces, and
it must match the name of the portlet as specified in the
name attribute of the <remote−portlet> element in
portlet.xml.

/HelloUserRemotePortlet
 /classes

The display resources file called
portletDisplayResources.properties.

The following rules apply when you set up the directory structure:

Neither portlet names nor their paths can contain spaces.•
The portlet identifier (which consists of the name and the path) must be unique.

Note: Developers should devise a convention to ensure unique name−spaces, similar to the conventions used
for naming Java packages. For example, the Sales division of a company named ABCD could create portlets
in the path ABCD/Sales, and the Purchasing division could create portlets in the path
ABCD/Purchasing. Then both Sales and Purchasing could have different portlets named
HelloUserRemotePortlet.

•

Note: You must create a separate directory structure for the Web application that is called by the remote portlet, as
described in the Sample Web Application (HelloUserWikExample).Sample: Remote Portlet
(HelloUserRemotePortlet)

Step 1: Create the Directory Structure 97

Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information that the portal Web application
needs to deploy one or more portlets. Here is the portlet deployment descriptor for the HelloUserRemotePortlet. The
boxes contain explanatory comments. For more information, see Creating a Portlet Deployment Descriptor.

<?xml version="1.0" encoding="UTF−8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal setup directory in the
path Portal\WEB−INF. For example, if you used the default installation location on a Windows
system, then the DTD is located under the following path: c:\Program
Files\SAS\Web\Portal2.0.1\Portal\WEB−INF.
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>

The remote−portlet element assigns the name HelloUserRemotePortlet to the portlet.
The name cannot contain spaces. The portlet identifier, which consists of the portlet path (defined
in the portlet−path element) together with the portlet name, must be unique within the portal
Web application.

The "true" setting for the passContextId attribute makes the portal Web application session
information, including user identity, available to the remote portlet.
 <remote−portlet name="HelloUserRemotePortlet"
 title="HelloUserRemotePortlet" passContextId="true">
 <localized−resources locales="en" />
 <deployment scope="user" autoDeploy="true"
 userCanCreateMore="false" />
 <portlet−path>/sas/portlets/remote</portlet−path>
 <portlet−actions>

The URL for the remote portlet's Web application, called HelloUserWikExample, is specified in
the url subelement of the portlet−action element. This subelement must contain a fully
qualified URL, including a fully qualified host domain name.

For details about the Web application, see Sample Web Application (HelloUserWikExample).
 <portlet−action name="display" default="true">
 <url>
 http://d9999.mycompany.com:8080/HelloUserWikExample/jsp/app.jsp
 </url>
 </portlet−action>
 </portlet−actions>
 </remote−portlet>
</portlets>

Sample: Remote Portlet (HelloUserRemotePortlet)

Step 2: Create the Portlet Deployment Descriptor 98

Step 3: Create the Display Resources File
The sample remote portlet HelloUserRemotePortlet uses a display resources file to provide a description to be placed
in the portlet's metadata for display to users. (If this file is not provided, the portal creates a description based on the
portlet's name.)

The contents of the file, which is named portletDisplayResources.properties, follow.

portlet.title=Hello User Remote Portlet
portlet.description=Example remote portlet

For more information, see Creating Display Resources Files.

Sample: Remote Portlet (HelloUserRemotePortlet)

Step 3: Create the Display Resources File 99

Step 4: Create the Web Application
The sample remote portlet (HelloUserRemotePortlet) calls the Web application HelloUserWikExample. This
application is enabled by SAS Foundation Services and runs outside of the portal Web application, either on the same
machine or on another machine.

If an application is called from a remote portlet, then it must generate an HTML fragment to be displayed within the
portlet borders. The JSP page for the HelloUserWikExample contains conditional code that determines whether the
application request was generated by a portlet. The JSP page then generates the appropriate type of HTML.

The steps required to create the application are described in Sample Web Application (HelloUserWikExample).

Sample: Remote Portlet (HelloUserRemotePortlet)

Step 4: Create the Web Application 100

Step 5: Create the PAR File, and Deploy and Test the
Portlet
The last step in developing the HelloUserRemotePortlet was to create the files that were used to deploy the portlet.
The portlet files were compressed into a portlet archive (PAR) file that contains the following:

appropriately named and organized directories and subdirectories, as described in Step 1: Create the Directory
Structure.

•

all of the supporting files, including the files created in Steps 2 through 4. The files must be placed in the
appropriate directories as described in Step 1: Create the Directory Structure and Creating a PAR File for
Deployment in the Portal.

•

The JAR utility was used to compress the directories and files into archives, and the archives were named
HelloUserRemotePortlet.par and HelloUserWikExample.war.

Before deploying a remote portlet into the production environment, you should do the following:

Deploy the associated Web application and test it using its direct URL. The steps required to create the
application are described in Sample Web Application (HelloUserWikExample).

1.

Deploy the portlet into a staging area (that is, a test installation of the portal Web application) for verification
and testing.

2.

For information about how to deploy a PAR file into the portal Web application, see Adding Custom−Developed
Portlets in the "Adding Content to the Portal" chapter in the SAS Intelligence Platform: Web Application
Administration Guide.

Step 5: Create the PAR File, and Deploy and Test the Portlet 101

Developing Custom Themes
A theme is a collection of specifications (for example, colors, fonts, and font styles) and graphics that control the
appearance of an application.

To customize the appearance of the portal Web application and of SAS solutions that run in the Portal, you can create
one or more new custom themes. A typical custom theme might include a banner with a unique color scheme and
logo, a navigation bar with colors that coordinate with the banner, and new colors for portlet borders and title bars.

SAS Default Theme and SAS Winter Theme

The SAS Web Infrastructure Kit is delivered with two themes: the SAS default theme and the SAS Winter theme. The
SAS Winter theme is a relatively simple theme that is provided as an example of a custom theme. You can use this
theme as a starting point for creating your own custom themes. Here is the top portion of a portal page with the SAS
Winter theme applied:

Theme Components

Themes are delivered as Web archive (WAR) files which contain the following components:

Theme templates
are HTML fragments that render small, specific portions of pages in the portal and in SAS solutions that run
in the portal. You can modify these templates in order to customize the way that certain portions of the user
interface, such as the banner, are rendered.

Cascading style sheets
determine the attributes and backgrounds for text in the portal Web application. A cascading style sheet is a
standard mechanism for defining consistent and reusable formatting instructions for Web−based content.
When developing a new theme, you can modify the styles in the style sheets that are provided.

Graphical elements
include images for the company logo and the banner. You can incorporate your own customized graphics files
as part of a new theme.

Theme descriptors
are XML files that describe the elements of a theme. You must provide at least one theme descriptor for any
new themes that you create.

A configuration file
specifies the names of the theme descriptors

Note:

Developing Custom Themes 102

The application name, "SAS Portal," which appears in the banner of the portal Web application, is not part of
the theme. However, you can change it. For details, see Changing the Application Name.

•

You cannot change the application name "SAS Information Delivery Portal," which appears in the title bar of
the browser window.

•

How Custom Themes are Created and Deployed

Instead of creating a new theme from scratch, the recommended approach is to use the SAS Winter theme as a starting
point. First, copy the SAS Winter theme and assign it a new name. Then deploy it, modify it, and test it in a
nonproduction environment. It is helpful to make changes on an incremental basis, viewing the results of each change
before you make the next change. For details, see Steps for Defining a New Theme.

After the new theme has the desired appearance and has been thoroughly tested, you can deploy it into the production
environment (see Theme Deployment in the "Customizing the Portal's Display" chapter in the SAS Intelligence
Platform: Web Application Administration Guide). Users will then be able to select the theme using the Preferences
page in the portal Web application. You can also specify the theme as the default (see Changing the Default Theme in
the "Customizing the Portal's Display" chapter in the SAS Intelligence Platform: Web Application Administration
Guide). This means the theme will be applied automatically for users who have not made a selection on the
Preferences page.

Requirements for Custom Theme Migration for Service Pack 3 or
Service Pack 4

If you have created a custom theme, and you then install SAS 9.1.3 Service Pack 3 or Service Pack 4, you must
migrate your theme customizations to the new theme elements that are included in the service pack. For details, see
Migrating Custom Themes After Installing a Service Pack.

SAS® Web Infrastructure Kit: Developer's Guide

Developing Custom Themes 103

Steps for Defining a New Theme
To develop a new theme, you should use the following recommended approach:

Instead of creating a new theme from scratch, use the SAS Winter theme as a starting point. (The SAS Winter
theme is easier to modify than the SAS Default theme.)

•

Use a nonproduction environment to make your changes and test them. For example, you can use a
single−machine portal installation on your desktop, or you can use a portal installation that is reserved for
development activities.

•

Place all of your style changes in a separate style sheet that will supercede the SAS style sheets. (Note: There
is one exception to this approach. To customize the page that displays information maps, you must modify the
styles directly in sasComponentsTheme.css.)

•

Make changes on an incremental basis, viewing the results of each change in an active portal session before
you make the next change.

•

If you make changes to a template file, you must restart the portal Web application.•

Here are the detailed steps for this process:

Create a directory, and extract files from SASTheme_winter.war.1.
Assign a theme name and create a new, empty style sheet.2.
Deploy the renamed theme in a nonproduction environment.3.
Make desired changes to the styles, graphics, and theme templates.4.
Add a background image to the banner (optional).5.
Update the theme descriptors.6.
Deploy the new theme in the production environment.7.

Step 1: Create a Directory, and Extract Files from
SASTheme_winter.war

It is recommended that you use the SAS Winter theme as the basis for creating your new theme. You should begin by
creating a directory that contains a copy of the SAS Winter theme, as follows:

Create a directory for your new theme. In naming the directory, follow these guidelines:

The directory name must not contain spaces.♦
To distinguish your custom theme from themes that are provided by SAS, it is recommended that you
not use the character string "SASTheme" in the directory name.

♦

Note: This directory name is not the theme name. The theme name is assigned in Step 2.

a.

The SAS Web Infrastructure Kit includes an archive named SASTheme_winter.war which contains all of
the elements that make up the SAS Winter theme. You can find this archive either in the portal Web
application's directory structure on the Web server, or in the SAS Web Infrastructure Kit's original installation
location. For example, if you installed the product in the default location on a Windows system, then the
SASTheme_winter.war file would be located in the following path:

c:\Program Files\SAS\Web\Portal2.0.1

Extract the contents of SASTheme_winter.war to the directory that you created in Step 1.a. The
following directory structure is created:

b.

Steps for Defining a New Theme 104

Directory Contents

/themes This directory contains the following theme
descriptors:

SASthemes.xml
SolutionsThemes.xml

You will need to update the theme descriptors
with the name of your new theme, as described in
Step 2. You may need to make other changes, as
described in Step 6.

/themes/winter You will need to rename this directory, as
described in Step 2. This directory does not
contain any files.

/themes/winter/images This directory contains the theme's images. The
images can be modified as described in Step 4.

/themes/winter/styles This directory contains the following Cascading
Style Sheets:

Portal.css
sasStyle.css
sasComponents.css
sasComponentsLayout.css
sasComponentsTheme.css
sasScorecard.css

You will be creating an additional style sheet in
this directory, as described in Step 2.

/themes/winter/templates This directory contains HTML document
templates. The templates can be modified as
described in Step 4.

/WEB−INF This directory contains the file web.xml, which
is the Web application deployment descriptor for
the theme. Some Web servers require this
directory and file to be present.

Step 2: Assign a Theme Name and Create a New, Empty Style Sheet

In this step, you will assign a name to your theme, create a new (empty) style sheet for your theme, and make
corresponding updates to the theme descriptors. Follow these steps:

Rename the winter directory (located under the themes directory) to the name for your new theme. The
name cannot contain spaces.

a.

Open SASthemes.xml in a text editor, and edit the theme element as follows:

name

b.

SAS® Web Infrastructure Kit: Developer's Guide

Steps for Defining a New Theme 105

Replace winter with the unique name for your theme. The name must match the directory name
that you assigned in Step 2.a.

label
Replace SAS Winter with a descriptive label for your theme. When users choose Preferences on
the Options menu, this label will appear as a selection in the Theme field.

Note: The current version of the Web Infrastructure Kit does not support localization of the theme
label.

description
Replace winter theme for SAS applications with a free−form description.

URIPath
In the path themes/winter, replace winter with the name of the directory in which the new
theme is to be deployed. The directory name must be the same as the theme name, as defined in the
name attribute.

Repeat Step 2.b for every theme descriptor (XML) file.c.
Use a style sheet editor or text editor to create a new cascading style sheet. For best results, do not enter any
classes into the file in this step. Instead, you may want to enter some comment lines to describe the purpose of
the file.

Using a file name of your choice and the filename extension .css, save the style sheet in the styles
subdirectory of your new theme.

d.

Open SASthemes.xml in a text editor. In the Styles element, create a new StyleSheet subelement as
follows:

name
Enter a unique name for your new style sheet.

description
Enter a free−form description of your style sheet.

order
Enter a number to indicate the order in which this style sheet is to be loaded. To ensure that your class
definitions will supercede all other class definitions, specify a number that is higher than those
specified for the other style sheets.

media
Specify screen, which is the display media to which your style sheet applies.

file
Specify the file name that you assigned when you saved your style sheet in Step 2d.

e.

Note: It is important to update the theme element in every theme descriptor (XML) file, as described in Step 2.c.
However, the StyleSheet element needs to be added only to the SASthemes.xml file.

Step 3: Deploy the Renamed Theme in a Nonproduction
Environment

Deploy the copied, renamed theme to a nonproduction installation of the portal. For example, deploy it to a
single−machine portal installation on your desktop, or deploy it to a portal installation that is reserved for
development activities. For instructions, see Theme Deployment in the "Customizing the Portal's Display" chapter in
the SAS Intelligence Platform: Web Application Administration Guide.

After you have completed the deployment procedure, do the following:

SAS® Web Infrastructure Kit: Developer's Guide

Steps for Defining a New Theme 106

Bring up the nonproduction portal.a.
Log on, and select Preferences on the Options menu. The new theme should appear as a selection on the
Preferences page.

b.

Select the new theme so that you will be able to observe the effect of the changes that you will make in Step 4.c.

Step 4: Make Desired Changes to the Styles, Graphics, and Theme
Templates

First, determine which visual elements you want to change in the new theme. Generally, you can make the largest
impact by updating the style classes that control the background colors, border colors, and text attributes for portal
pages and portlets. In addition, you might want to replace the SAS logo with our own organization's logo.

Changes to the theme templates are needed only if you want to change the layout of the portal's elements (for
example, the logo's placement in the banner or the padding between rows in a menu).

To determine which specific styles, graphics, and templates to change, refer to the following topics:

Style Sheet and Graphics Reference•
Theme Template Reference•

Then make the desired changes to the appropriate components. Follow these guidelines:

Put all of your style changes in the new style sheet that you created in Step 2. Using a style sheet editor, locate
the appropriate style in the SAS style sheets. Then copy and paste the class definition to your new style sheet
and make the desired changes.

Note: There is one exception to this approach. To customize the page that displays information maps, you
must modify the styles directly in sasComponentsTheme.css.

•

Use an incremental approach to making changes. For example, add one or two style classes to your style sheet
and modify the colors. Then save the style sheet, and refresh the portal image to view the results of the
change. Repeat these steps for each additional change.

•

In the template files, do not change the substitution variables, since these are required by the portal Web
application.

•

If you assign new names to any of the template files, you must update the theme descriptor files to specify the
new file names, as described in Step 6.

•

You might want to assign new names to any graphics files that you have changed. However, you must update
the theme descriptor files with the new names, as described in Step 6.

•

To debug the theme, you can insert comments into the theme template HTML files, and then use the source
viewer in your browser to determine where each template is surfaced. In addition, you can use the source
viewer in your browser to locate the style class names that affect specific portions of the display.

•

Step 5: Add a Background Image to the Banner (Optional)

The banner for the Winter theme does not include a background image. However, you can add a background image to
the banner by following these steps:

Place your background image in the images subdirectory.a.
In the theme descriptor files, locate the image element for banner_background, and specify the name of
your image file in the file attribute. Do not modify the name attribute.

b.

SAS® Web Infrastructure Kit: Developer's Guide

Steps for Defining a New Theme 107

In your custom style sheet, assign the attribute background−color: transparent to the following
style classes: .primaryMenuRow, table.linkbar, td#banbullet, td#banlogo, div#banner,
and div#banner td#bantitle.

If you want the top section of banner (which contains the banner links) to be shaded, assign the appropriate
opacity level to the div.transbar class. Otherwise, assign the attribute background−color:
transparent to this class.

Here is an example of the entries that you might make to your custom style sheet:

.primaryMenuRow {background−color: transparent;}
table.linkbar {background−color: transparent;}
td#banbullet {background−color: transparent;}
td#banlogo {background−color: transparent;}
div#banner {background−color: transparent;}
div#banner td#bantitle {background−color: transparent;}
div.transbar {filter:alpha(opacity=25); −moz−opacity:.25;}

c.

In the file banner.html (located in the templates subdirectory), locate the following text:

<div id="banner" class="primaryMenuRow">

Replace this text with the following text:

<div id="banner" style='background−image: url("%BANNER_BACKGROUND")'>

d.

Step 6: Update the Theme Descriptors

A theme descriptor is an XML file that describes the elements of a theme. The default theme has two theme
descriptors:

SASthemes.xml specifies the image files, the page templates, and style sheets for the portal Web
application.

•

SolutionsThemes.xml specifies image files, page templates, and style sheets for SAS solutions
applications that run in the portal.

•

Use these steps to update the theme descriptors. For more information about the elements and attributes, see the
Element Descriptions and the comments at the top of SASthemes.xml.

In the Image elements of the appropriate descriptor file(s), update the file attribute to reflect any new
names that you have assigned to graphics files. If you changed the size of an image, you must also update the
width and height attributes. (Note: Do not change the name attributes, since the portal Web application
uses these names to determine which graphics to display. For example, the name attribute for the logo image
must retain the value logo. However, you can change the file attribute from logo.gif to
MyCompanyLogo.gif.)

a.

In the Template elements of the appropriate descriptor file(s), update the file attribute to reflect any new
names that you have assigned to template files.

b.

Make any other necessary changes to the descriptor files. For example, if you change the directory name
images or styles, then you must change the directory attribute in the Styles or Images elements.
However, it is not advisable to change these directory names.

c.

Save the updated files.d.

SAS® Web Infrastructure Kit: Developer's Guide

Steps for Defining a New Theme 108

Step 7: Deploy the New Theme in the Production Environment

Use the following steps to deploy the new theme so that it will be available to the portal Web application and to other
applications running in the portal:

Note: It is recommended that you test your new theme in a nonproduction environment before deploying it into a
production environment.

Compress the theme's directories and files into a WAR file. When creating the file, follow these guidelines:

Be sure to include the WEB−INF directory and the web.xml file that it contains, because some Web
servers require this directory and file to be present.

♦

Give the WAR file a name that does not contain spaces. To distinguish your custom theme from
themes that are provided by SAS, it is recommended that you not use the character string
"SASTheme" in the name.

Note: Instead of creating a new WAR file, you can place the directory that contains the new theme
directly into the servlet container.

♦

a.

Deploy the new WAR file by using the appropriate procedures for your servlet container.b.
Have the administrator use the program LoadThemeConnection.sas to update your metadata repository
with information about the new theme. For instructions, see Theme Deployment in the "Customizing the
Portal's Display" chapter in the SAS Intelligence Platform: Web Application Administration Guide. After
LoadThemeConnection.sas has been run, users will see the new theme as a selection on the
Preferences page in the portal Web application.

c.

The administrator can use the program UpdateDefaultTheme.sas to specify the new theme as the
default theme. For details, see Changing the Default Theme in the "Customizing the Portal's Display" chapter
in the SAS Intelligence Platform: Web Application Administration Guide.

After UpdateDefaultTheme.sas has been run, the new theme will be in effect for users who have not
selected a different theme on the Preferences page.

d.

Note: If you need to delete a custom−developed theme from the deployment for the portal Web application, then you
can use the program DeleteThemeConnection.sas. For details, see Deleting Custom−Developed Themes in
the "Customizing the Portal's Display" chapter in the SAS Intelligence Platform: Web Application Administration
Guide.

Developing Custom Themes

SAS® Web Infrastructure Kit: Developer's Guide

Steps for Defining a New Theme 109

Style Sheet and Graphics Reference for the SAS Winter
Theme
The SAS Winter theme includes several different style sheets and graphics files. As you create your own style sheets
and graphics files (as described in Steps for Defining a New Theme), you can refer to the information in the following
tables to determine which style classes to override and which graphics files to modify for each area of the portal
interface:

Banner•
Vertical Navigation Bar•
Options Menu and Help Menu•
Portlet Title Bars, Backgrounds, and Borders•
Contents of Collection Portlets•
Contents of Bookmarks Portlet•
Contents of Navigator Portlets•
Search Dialog Box for Navigator Portlets•

Note: The order in which style sheets are applied is based on the value of the order attribute of the StyleSheet
elements in the theme descriptor files. In the default installation, sasComponents.css is applied first, followed by
sasStyle.css, followed by Portal.css. If a style exists in all three style sheets, the style in Portal.css
overrides the others. When you create a new theme, you should create a new style sheet that overrides Portal.css.

Note: With SAS 9.1.3 Service Pack 3, sasComponents.css imports styles from two new style sheets:
sasComponentsLayout.css and sasComponentsTheme.css. The sasComponentsTheme.css style
sheet contains attributes that you are most likely to modify when you create a new theme.

SAS 9.1.3 Service Pack 3 and Service Pack 4 contain a number of other changes to theme elements. If you have
created a custom theme, and you then install Service Pack 3 or Service Pack 4, you must migrate your theme
customizations. For details, see Migrating Custom Themes After Installing a Service Pack.

Banner

The following figure shows the classes and graphics that are used in the banner. The table that follows the figure
provides the class names, image names, and style sheet locations.

Label
Number

Area Affected Class Name or Image Name
Style Sheet

Name

Background for the top of the banner, which
contains banner links (Options, Search, Log

table.linkbar sasStyle.css

Style Sheet and Graphics Reference for the SAS Winter Theme 110

On, Log Off, Help)

Background color for the left middle area of
the banner, which contains the banner title

div#banner td#bantitle sasStyle.css

Text for the banner title div#banner td#bantitle sasStyle.css

Background color for the portion of the
banner to the right of the banner title

td#banbullet sasStyle.css

Background color for the right middle area of
the banner, which contains the logo

td#banlogo sasStyle.css

Text for role identification (appears if the user
is a portal administrator or a content
administrator)

banuserwelcome sasStyle.css

Text for banner links (Options, Search, Log
On, Log Off, Help)

table.Linkbar td a sasStyle.css

Arrows to the right of the Options and Help
links

BannerDownArrowWhite.gif N/A

Dividers between banner links pipetop.gif N/A

SAS logo (you can edit the size in the
descriptor file SASThemes.xml)

logo.gif N/A

Tab text for the active page menuLink sasStyle.css

Background color of the tab for the active
page

tabSelected sasStyle.css

Tab text for inactive pages menu:link
menu:visited
menu:active

sasStyle.css

Background color of the tabs for inactive
pages

tab sasStyle
.css

Background color of the lower banner area to
the right of the tabs

div#banner sasStyle.css

Background color of the divider between the
banner and the page area

secondaryMenuRow sasStyle.css

Vertical Navigation Bar

The following figure shows the classes that are used in the navigation bar when it is displayed vertically. The table
that follows the figure provides the class names and style sheet locations.

SAS® Web Infrastructure Kit: Developer's Guide

Style Sheet and Graphics Reference for the SAS WinterTheme 111

Label
Number

Area Affected Class Name or Image Name
Style Sheet

Name

Tab text for the active page menuLink sasStyle.css

Background color of the tab for
the active page

tabSelected sasStyle.css

Tab text for inactive pages menu:link
menu:visited
menu:active

sasStyle.css

Background color of the tabs for
inactive pages

tab sasStyle
.css

Top and bottom borders of the
tab for active page

primaryVertMenuSelectedOuterTable sasStyle.css

Top and bottom borders of the
tabs for inactive pages

primaryVertMenuNonSelectedOuterTablesasStyle.css

Background color of the 6−pixel
column to the right of the
navigation bar

secondaryMenuRow sasStyle.css

Right and left borders of the
6−pixel column to the right of
the navigation bar

verticalTabDivider Portal.css

Background color of the
rectangular area below the tabs

td.darkBlue Portal.css

Options Menu and Help Menu

The following figures show the classes that are used in the Options menu and the Help menu. The table that follows
the figures provides the class names and style sheet locations.

SAS® Web Infrastructure Kit: Developer's Guide

Style Sheet and Graphics Reference for the SAS WinterTheme 112

Label
Number

Area Affected Class Name or Image Name
Style Sheet

Name

Headings on the Options menu utilmenuHeader Portal.css

Menu links utilmenudropdown:link
utilmenudropdown:hover
utilmenudropdown:active
utilmenudropdown:visited

Portal.css

Border and dividers on the Options
menu

utilmenuDivider Portal.css

Background color of the Options
menu

body sasStyle.css

Border of the Help menu utilmenuTable Portal.css

Background color of the Help menuutilmenuTable Portal.css

Portlet Title Bars, Backgrounds, and Borders

The following figure shows the classes and graphics that are used for the title bars, backgrounds, and borders of
portlets. The table that follows the figure provides the class names, image names, and style sheet locations.

Label
Number

Area Affected Class Name or Image Name
Style Sheet

Name

Portlet name portletTableHeaderLeft sasStyle.css

Border for portlets portletTableBorder sasStyle.css

Background for the portlet title bar portletTableHeader sasStyle.css

Background for the portlet body workarea sasStyle.css

Edit portlet properties icon PortletProp.gif N/A

Edit portlet content icon PortletNote.gif N/A

SAS® Web Infrastructure Kit: Developer's Guide

Style Sheet and Graphics Reference for the SAS WinterTheme 113

Remove icon PortletClose.gif N/A

Minimize icon and maximize icon PortletMinimize.gif
PortletMaximize.gif

N/A

Contents of Collection Portlets

The following figure shows the classes that are used in the body of collection portlets. The table that follows the figure
provides the class names and style sheet locations.

Label
Number

Area Affected
Class Name or Image

Name
Style Sheet Name

"Click here to refresh
collection" message

A (default link style) sasStyle.css

Item labels in collection portletstreetext sasStyle.css

Item descriptions in collection
portlets

treeDescription sasComponentsTheme.css
sasStyle.css
Portal.css

Contents of Bookmarks Portlet

The following figure shows the classes that are used in the body of the Bookmarks portlet. The table that follows the
figure provides the class names and style sheet locations.

SAS® Web Infrastructure Kit: Developer's Guide

Style Sheet and Graphics Reference for the SAS WinterTheme 114

Label
Number

Area Affected
Class Name or Image

Name
Style Sheet Name

Background of the first column
heading

centeredTableHeader sasStyle.css

Button style button sasComponentsTheme.css
sasStyle.css

Background color and borders of
all column headings except the
first column heading

searchResultsTableHeader sasStyle.css

Border of the table mainTable sasComponentsTheme.css
sasStyle.css

Heading text for all columns
except the last column

portalTableSubheading Portal.css

Heading text for the last columnportalTableSubheadingTransPortal.css

Background color of
odd−numbered rows

dataRow1_tableRow sasStyle.css

Background color of
even−numbered rows

dataRow2_tableRow sasStyle.css

Link text for contents of the
Name column

A (default link style) sasStyle.css

Text for contents of the
Description column

textTableCell sasStyle.css

Text for contents of the Location
column

textTableCellTrans sasStyle.css

Contents of Navigator Portlets

The following figure shows the classes that are used in navigator portlets such as the Tree Navigator portlet, the
Reports Navigator portlet, WebDAV navigator portlets, and the Stored Process Navigator portlet. The table that
follows the figure provides the class names and style sheet locations.

Area Affected Class Name or Image Name Style Sheet Name

SAS® Web Infrastructure Kit: Developer's Guide

Style Sheet and Graphics Reference for the SAS WinterTheme 115

Label
Number

Search label rfs_SearchExpandCollapseTitle sasComponentsTheme.css

Contents of Location box rfs_ToolbarContainer sasComponentsTheme.css

Border and background of
the Search box

rfs_SearchExpandCollapseContainersasComponentsTheme.css

Up one level icon up_one_level.gif N/A

Up one level label .rfs_ToolBarAction_ButtonCenter sasComponentsTheme.css

Background for column
headings

rfs_FileDetailViewColumnHeader sasComponentsTheme.css

Background of
expand/collapse icon;
image for expand icon

sas_ExpandCollapsebutton

DataViewerMax.gif

sasComponentsTheme.css

Location and Show
description labels

rfs_ToolbarContainer sasComponentsTheme.css

Text for all column
headings, and link text in
the Name column

rfs_FileDetailViewData
 A:active
rfs_FileDetailViewData
 A:link
rfs_FileDetailViewData
 A:visited

sasComponentsTheme.css

Background for
odd−numbered rows

rfs_DetailViewOddRow sasComponentsTheme.css

Text in the author, date,
and keyword columns for
odd−numbered rows

rfs_DetailViewOddRow sasComponentsTheme.css

Background for
even−numbered rows

rfs_DetailViewEvenRow sasComponentsTheme.css

Text in the author, date,
and keyword columns for
even−numbered rows

rfs_DetailViewEvenRow sasComponentsTheme.css

Search Dialog Box in Navigator Portlets

The following figure shows the classes that are used in the search panel when you expand it in a navigator portlet such
as the Tree Navigator portlet, the Reports Navigator portlet, WebDAV navigator portlets, and the Stored Process
Navigator portlet. The table that follows the figure provides the class names and style sheet locations.

SAS® Web Infrastructure Kit: Developer's Guide

Style Sheet and Graphics Reference for the SAS WinterTheme 116

Label
Number

Area Affected Class Name or Image Name Style Sheet Name

Search for label rfs_SearchTextLabel sasComponentsTheme.css

Search what label rfs_SearchWhatLabel sasComponentsTheme.css

Search where label rfs_SearchWhereLabel sasComponentsTheme.css

Date/time limits label rfs_SearchDateTimeLimitsLabel sasComponentsTheme.css

Text entered in the
Search for box

rfs_SearchTextComponent sasComponentsTheme.css

Choices in the Search
what drop−down box

rfs_SearchWhatComponent sasComponentsTheme.css

Choices in the Search
where drop−down box

rfs_SearchWhereComponent sasComponentsTheme.css

Search subfolders
label

rfs_SearchSubfoldersLabel sasComponentsTheme.css

Choices in Date/time
limits drop−down box

rfs_SearchDateTimeLimitsComponentsasComponentsTheme.css

In the last label rfs_SearchInTheLastLabel sasComponentsTheme.css

Entry in the In the last
value box

rfs_SearchInTheLastValueComponentsasComponentsTheme.css

Choices in the In the
last units drop−down
box

rfs_SearchInTheLastUnitComponentsasComponentsTheme.css

Text in the Search
button

buttonCenter sasComponentsTheme.css

Background of the
Search button

rfs_SearchButton sasComponentsTheme.css

Background of the
search dialog box

rfs_SearchContainer sasComponentsTheme.css

Developing Custom Themes

SAS® Web Infrastructure Kit: Developer's Guide

Style Sheet and Graphics Reference for the SAS WinterTheme 117

Theme Templates Reference
The Web Infrastructure Kit's themes (SAS Default and SAS Winter) include theme templates. A theme template is an
HTML fragment that renders a small, specific portion of an HTML page.

Each theme template is associated with a SAS custom tag. The portal's JSP pages use these custom tags along with the
style sheets to render elements of portal pages such as the banner, the navigation bar, and menus. By modifying a
template and including it in a custom theme, you can change the way the tag renders its output when that theme is
invoked.

Caution: The templates contain dynamic substitution variables in the form of %VARIABLE_NAME%. Do not change
the variable names, since they are required by the portal Web application.

The theme templates reside in the path themes\<themename>\templates. You can modify the following
templates in order to customize the look and feel of the portal interface.

banner.html
is used to display the main banner at the top of all portal pages. By modifying this template, you can
customize the banner's borders or the placement of items in the banner such as the logo, the application name,
and links. You can also add a custom background image to the banner; for instructions, see Step 5 in Steps for
Defining a New Theme.

helpmenu.html
is used to display the menu that appears when a user clicks the Help link in the banner. By modifying this
template, you can can customize features of the menu such as borders, cell padding, and text alignment.

searchactionsmenu.html
is used to display the popup menu that appears when a user clicks the action menu in the first column of
the search results panel. By modifying this template, you can can customize features of the menu such as
borders, cell padding, and text alignment.

secondarymenu.html
is used to display the divider that appears between the banner and the main contents of a page. By modifying
this template, you can can customize the divider's height and borders.

tab_menu_first.html
tab_menu_first_selected.html
tab_menu.html
tab_menu_selected.html

are used to display the tabs in the navigation bar when the navigation bar is displayed horizontally. By
modifying these templates, you can customize the shape, borders, and cell padding of the tabs, as well as the
alignment of the page names that appear in the tabs.

The templates whose names contain the word first are used for the tab that is in the first position. The
templates whose names contain the word selected are used for the tab that is currently selected.

tab_vert_menu_first.html
tab_vert_menu_first_selected.html
tab_vert_menu.html
tab_vert_menu_selected.html

are used to display the tabs in the navigation bar when the navigation bar is displayed vertically. By
modifying these templates, you can customize the shape, borders, and cell padding of the tabs, as well as the
alignment of the page names that appear in the tabs.

Theme Templates Reference 118

The templates whose names contain the word first are used for the tab that is in the first position. The
templates whose names contain the word selected are used for the tab that is currently selected.

utilmenu.html
is used to display the Options menu, which appears when a user clicks the Options link in the banner. By
modifying this template, you can can customize features of the menu such as borders, cell padding, and text
alignment.

viewer_action_menu.html
is used to display the toolbar that appears below the banner when a full−page view of a content item is
displayed. The toolbar includes actions such as Bookmark, Publish, and E−mail. By modifying this template,
you can can customize features of the toolbar such as borders, height, cell padding, and text alignment.

SAS® Web Infrastructure Kit: Developer's Guide

Theme Templates Reference 119

SASthemes.xml File
The contents of the SASthemes.xml file for the SAS Winter theme are shown below. You should use this file as a
basis for creating your own theme descriptor(s).

Note: The current version of the Web Infrastructure Kit does not support localization of the theme label.

<?xml version="1.0" encoding="UTF−8" ?>
<!DOCTYPE Themes SYSTEM "http://www.sas.com/webapp/themes.dtd">
<!−−

 Themes consist of images, templates and stylesheets. Templates
 are typically HTML files.

 Themes must have a name, which will not be localized. Themes
 must have a label that will be displayed to users.

 All file paths must be relative to the URI path of the theme.
 Within the theme−name directory, create subdirectories named
 templates, images, and styles.

 Put cascading style sheets into the styles folder, image files
 into images, and all template files into templates.

 <Themes>
 <Theme name="" // the name of the theme (without blanks). Not
 localized. Required.
 label="" // a label for display to users. Required.
 description="" // a description for display to users.
 Optional.
 device="" // name suitable display device, e.g. desktop
 browser, PDA, WAP phone. Required.
 URIPath="" //the path to the theme's directory. If it does not
 include a final "/", one will be appended when
 constructing paths to subdirectories. Required.
/>
 <Images directory=""> // the name of directory where the images are
 located (without backslash). Required
 <Image name="" // Required.
 description=""
 altTextKey="" // Optional. Resource key for alt= text
 on img tag
 path="" // Optional. Used if path to image is not
 URIPath + images
 appliesTo="ALL | className(s)" − indicates that ALL
 classes will make use of this value, or if there is a
 list of classes, only apply to those. 'ALL' is a
 reserved word. Required
 width="" //Optional. Value for width= attr on img tag
 height="" //Optional. Value for height= attr on img tag
 file="" // the name of image file (for example, logo.gif).
 Required
 />
 <Styles directory="" // the name of directory where the stylesheets
 are located (without backslash).
 <StyleSheet name="" // descriptive name of the cascading style
 sheet.
 description="" // description of the style's purpose
 media="" // valid values are: screen|print Required.

SASthemes.xml File 120

 order="n" // for each media type, the order in which
 to load the style sheet. Required. The value for order
 must be an ASCII integer (no Unicode−escaped characters).
 file="" // The file name, e.g. sasStyle.css Required.
 />
 <Templates directory=""> // the name of directory where the
 templates are located (without backslash). Required
 <Template name="" // name of the template. Required
 description="" // description of the template's purpose
 markup="" // markup language used in the template Required
 file="" // name of the template file Required
 />
 </Theme>
</Themes>

path=Theme.URIPath + Images.dir + file OR path=Theme.URIPath +
asset.path + file

The actual path to an asset is the concatenation
of the URIPath attribute on the Theme element, the dir attribute
on the Asset type (style, image, or template), and, of course, the
value of the file itself. For example, for the logo, it would be

 themes/default/images/logo.gif

Alternatively, if an image element includes a "path=" attribute, then
the actual path to the file is the concatenation of the URIPath
attribute on the Theme element, the path attribute on the image element,
and the value of the file itself.
−−>

<Themes>
 <Theme name="winter" label="SAS Winter"
 description="Winter theme for SAS applications"
 URIPath="themes/winter" device="DESKTOP">
 <Styles directory="styles">
 <StyleSheet name="SAS Style" description="Default SAS style"
 order="2" media="SCREEN" file="sasStyle.css"/>
 <StyleSheet name="AppDev Studio" order="1" media="SCREEN"
 file="sasComponents.css"/>
 </Styles>
 <Images directory="images">
 <Image name="logo"
 description="SAS Logo" altTextKey="desktop.logo.txt"
 appliesTo="ALL" width="70" height="32" file="logo.gif"/>
 <Image name="banner_background"
 description="SAS banner swirl background"
 altTextKey="" appliesTo="ALL" height="184"
 file="BannerBackground.gif"/>
 <Image name="Banner_downArrow"
 description="banner: a down arrow"
 width="4" height="7" file="BannerDownArrowWhite.gif"/>
 <Image name="Banner_backArrow"
 description="banner: a back arrow" width="4" height="7"
 file="BannerBackArrowYellow.gif"/>
 <Image name="tab_left"
 description="MenuBar: left side of tab"
 appliesTo="ALL" file="TabLeftFirst.gif"/>
 <Image name="tab_left_select"
 description="MenuBar: left side of selected tab"
 appliesTo="ALL" file="TabLeftSelectFirst.gif"/>

SAS® Web Infrastructure Kit: Developer's Guide

SASthemes.xml File 121

 <Image name="tab_right"
 description="MenuBar: right side of tab"
 appliesTo="ALL" file="TabRight.gif"/>
 <Image name="tab_right_select"
 description="MenuBar: right side of tab−selected"
 appliesTo="ALL" file="TabRightSelect.gif"/>
 <Image name="tab_top" description="MenuBar: top of tab"
 appliesTo="ALL" file="TabTop.gif"/>
 <Image name="tab_top_select"
 description="MenuBar: top of tab−selected"
 appliesTo="ALL" file="TabTopSelect.gif"/>
 <Image name="tab_upper_left"
 description="MenuBar: rounded upper−left corner"
 appliesTo="ALL" file="TabUpperLeft.gif"/>
 <Image name="tab_upper_left_select"
 description="MenuBar: rounded upper−left
 corner−selected" appliesTo="ALL"
 file="TabUpperLeftSelect.gif"/>
 <Image name="tab_upper_right"
 description="MenuBar: rounded upper−right corner"
 appliesTo="ALL" file="TabUpperRight.gif"/>
 <Image name="tab_upper_right_select"
 description="MenuBar: rounded upper−right
 corner−selected" appliesTo="ALL"
 file="TabUpperRightSelect.gif"/>
 <Image name="tab_right_vert"
 description="MenuBar: right side of vertical tab"
 appliesTo="ALL" file="TabRightVert.gif"/>
 <Image name="tab_right_select_vert"
 description="MenuBar: right side of vertical tab−selected"
 appliesTo="ALL" file="TabRightSelectVert.gif"/>
 <Image name="tab_upper_right_vert"
 description="MenuBar: upper−right corner of vertical tab"
 appliesTo="ALL" file="TabUpperRightVert.gif"/>
 <Image name="tab_upper_right_select_vert"
 description="MenuBar: upper−right corner of vertical tab−selected"
 appliesTo="ALL" file="TabUpperRightSelectVert.gif"/>
 <Image name="portlet_Close"
 description="portlet decoration: close" file="PortletClose.gif"/>
 <Image name="portlet_Help"
 description="portlet decoration: help" file="PortletHelp.gif"/>
 <Image name="portlet_Maximize"
 description="portlet decoration: maximize"
 file="PortletMaximize.gif" altTextKey="MaximizePortlet.alt.txt"/>
 <Image name="portlet_Minimize"
 description="portlet decoration: minimize"
 file="PortletMinimize.gif" altTextKey="MinimizePortlet.alt.txt"/>
 <Image name="portlet_Note"
 description="portlet decoration: note" file="PortletNote.gif"/>
 <Image name="portlet_Pipe"
 description="portlet decoration: vertical pipe"
 file="PortletPipe.gif"/>
 <Image name="portlet_Remove"
 description="portlet decoration: remove" file="PortletRemove.gif"
 altTextKey="RemovePortlet.alt.txt"/>
 <Image name="Banner_pipeTop"
 description="banner: a vertical pipe" file="PipeTop.gif"/>
 <Image name="Banner_verticalLine"
 description="banner: a vertical blue line"
 file="VerticalLineBlue.gif"/>
 <Image name="Arrow_down"

SAS® Web Infrastructure Kit: Developer's Guide

SASthemes.xml File 122

 description="Arrow: down, triangle"
 file="Down.gif" width="16" height="16"/>
 <Image name="Arrow_up"
 description="Arrow: up, triangle" file="Up.gif"
 width="16" height="16"/>
 <Image name="Arrow_right"
 description="Arrow: move right" file="MoveRight.gif"
 width="12" height="14"/>
 <Image name="Arrow_left"
 description="Arrow: move left" file="MoveLeft.gif"
 width="12" height="14"/>
 <Image name="Remove"
 description="Remove: an x" file="Remove.gif"
 width="12" height="14"/>
 <Image name="Sidebar_right"
 description="Sidebar, curved blue" file="CommonSidebarLogon.gif"
 width="100" height="186"/>
 <Image name="collapse_left"
 description="collapse_left" file="CollapseLeftArrows.gif"
 width="11" height="14"/>
 <Image name="collapse_right"
 description="collapse_right" file="CollapseRightArrows.gif"
 width="11" height="14"/>
 <Image name="input_required"
 description="input_required" file="InputRequired.gif"
 width="12" height="12"/>
 <Image name="Publish"
 description="publish" file="Publish.gif" width="16" height="16"
 altTextKey="Publish.alt.txt"/>
 <Image name="tbar_Bookmark"
 description="bookmark" file="TbarBookmark.gif" width="16"
 height="16" altTextKey="Bookmark.alt.txt"/>
 <Image name="tbar_Email"
 description="email" file="TbarEmail.gif" width="16" height="16"
 altTextKey="email.alt.txt"/>
 <Image name="ResultsRowDownLast"
 description="Search Results Down Arrow"
 file="ResultsRowDownLast.gif" width="16" height="16"/>
 <Image name="ResultsRowDownLastDis"
 description="Search Results Down Arrow Last"
 file="ResultsRowDownLastDis.gif" width="16" height="16"/>
 <Image name="ResultsRowUp"
 description="Search Results Up Arrow Last"
 file="ResultsRowUp.gif" width="16" height="16"/>
 <Image name="ResultsRowUpDis"
 description="Search Results Up Arrow Disabled"
 file="ResultsRowUpDis.gif" width="16" height="16"/>
 <Image name="ResultsRowUpFirst"
 description="Search Results Up Arrow First"
 file="ResultsRowUpFirst.gif" width="16" height="16"/>
 <Image name="ResultsRowUpFirstDis"
 description="Search Results Up Arrow First Disabled"
 file="ResultsRowUpFirstDis.gif" width="16" height="16"/>
 <Image name="ResultsRowDown"
 description="Search Results Down Arrow"
 file="ResultsRowDown.gif" width="16" height="16"/>
 <Image name="ResultsRowDownDis"
 description="Search Results Down Arrow Disabled"
 file="ResultsRowDownDis.gif" width="16" height="16"/>
 <Image name="logon_art_top"
 description="Logon page art top" altTextKey=""

SAS® Web Infrastructure Kit: Developer's Guide

SASthemes.xml File 123

 appliesTo="ALL" file="LogonArtTop.gif"/>
 <Image name="logon_art_tile"
 description="Logon page art tile" altTextKey=""
 appliesTo="ALL" file="LogonArtTile.gif"/>
 </Images>
 <Templates directory="templates">
 <Template name="banner" description="Banner"
 markup="HTML" file="banner.html"/>
 <Template name="tab_menu"
 description="Default Template for Tab Menu"
 markup="HTML" file="TabMenu.html"/>
 <Template name="viewer_action_menu" description="Viewer Action Menu"
 markup="HTML" file="viewer_action_menu.html"/>
 <Template name="secondarymenu"
 description="Divider between banner and page content"
 markup="HTML" file="secondarymenu.html"/>
 <Template name="searchactions"
 description="Actions popup on search page"
 markup="HTML" file="searchactionsmenu.html"/>
 <Template name="utilmenu" description="Options Menu"
 markup="HTML" file="utilmenu.html"/>
 <Template name="helpmenu" description="Help Menu" markup="HTML"
 file="helpmenu.html"/>
 </Templates>
 </Theme>
</Themes>

Themes

SAS® Web Infrastructure Kit: Developer's Guide

SASthemes.xml File 124

Element Descriptions for Themes DTD
Use any of the following links to view detailed descriptions of the elements in themes.dtd:

Top Elements is a list of the top−most elements of the DTD, with links to pages describing each top−most
element. From these pages, you can link to descriptions of individual child elements.

•

All Elements is a list of all elements defined in the DTD. The links on the page provide quick access to the
description of any individual element.

•

Document generated by dtd2html 1.5.1.

themes DTD

Element Descriptions for Themes DTD 125

Changing the Application Name
The application name, "SAS Portal," which appears in the banner of the portal Web application, is not part of the
theme. However, you can specify a different application name to appear in the banner.

Use the following steps to specify a different application name:

In the install.properties file (which is located in PortalConfigure folder of the setup
directory), add the following property:

$NAME_IN_BANNER$=Application Name

where Application Name is the name that you want to display in the banner.

1.

Use the configure_wik.bat utility to create a new Portal.WAR file that incorporates the new
application name. For instructions, see Re−Create and Redeploy the Portal Web Application in the SAS
Intelligence Platform: Web Application Administration Guide.

2.

Deploy the new WAR file by using the appropriate procedures for your servlet container.

Note: If you do not want to create a new WAR file, then you can edit the name−in−banner parameter of
the web.xml file to specify the new name. The web.xml file is located in the Portal/WEB−INF/
directory of your servlet container.

If you use this method, then you should also add the $NAME_IN_BANNER$= parameter to the
install.properties file. Otherwise, the new application name will be destroyed if you run the
configure_wik script again in the future.

3.

Note: You cannot change the application name "SAS Information Delivery Portal," which appears in the title bar of
the browser window.

Changing the Application Name 126

Migrating Custom Themes After Installing a Service Pack
SAS 9.1.3 Service Pack 3 and Service Pack 4 include significant updates to both the Default theme and the Winter
theme to support changes in the user interface. (For details about the theme changes that are included in each service
pack, see List of Theme Changes for SAS 9.1.3 Service Pack 3 and List of Theme Changes for SAS 9.1.3 Service
Pack 4.)

In order for a custom theme to work properly after you install Service Pack 3 or Service Pack 4, you must migrate
your theme customizations by using the following steps:

After the service pack has been installed, locate the WAR files for the updated themes in the portal Web
application's installation directory. Extract the contents of either SASTheme_default.war or
SASTheme_winter.war (depending on which theme was used as the basis for creating your custom
theme) into a working directory.

1.

In the new working directory, rename the winter or default subdirectory to the name for your theme.2.
Open the theme descriptors SASthemes.xml and SolutionsThemes.xml in a text editor, and make
exactly the same changes that you made to the previous versions of these files when you created your custom
theme. For details, see Step 5: Update the Theme Descriptors in Steps for Defining a New Theme.

3.

If the style changes for your custom theme are in a custom style sheet, then move your custom style sheet
from your existing custom theme directory to the styles subdirectory of the working directory.

4.

If you made customizations to style classes directly in Portal.css, sasStyle.css, or
sasComponentsTheme.css when you created the custom theme, then you should create a new custom
style sheet in the styles subdirectory of the working directory. In the new style sheet, include any style
customizations that you had previously made to the other style sheets. (Creating a separate style sheet for your
custom styles will make future upgrades easier.)

Note: There is one exception to this approach. To customize the page that displays information maps, you
must modify the styles directly in sasComponentsTheme.css.

Define the new style sheet in SASThemes.xml by adding a new StyleSheet subelement. For details, see
Steps 2.d and 2.e in Steps for Defining a New Theme.

5.

Review the style class changes and additions in List of Theme Changes for SAS 9.1.3 Service Pack 3 or List
of Theme Changes for SAS 9.1.3 Service Pack 4, and evaluate them as follows:

If your custom style sheet includes modifications to any style classes that have been replaced with
new classes, then update your custom style sheet to refer to the new classes.

a.

Review the style classes that have been added. If necessary, customize these classes to conform to
your theme.

b.

Review the style classes that have been changed. If necessary, customize these classes (or modify
your existing customizations) to conform to your theme.

c.

6.

If your custom theme includes any custom images, then move your images from your custom theme to the
images subdirectory of the working directory, overlaying any images that the custom images replace.

7.

Review the image changes and additions in List of Theme Changes for SAS 9.1.3 Service Pack 3 or List of
Theme Changes for SAS 9.1.3 Service Pack 4, and evaluate them as follows:

Review the list of images that have been added. If necessary, customize these images to conform to
your theme.

a.

Review the list of images that have been changed. If your custom theme includes modifications to
these images, then you might want to make similar modifications to the new images.

b.

8.

Migrating Custom Themes After Installing a Service Pack 127

Note: If you assign different names to any of the images, be sure to update the image definitions in
SASThemes.xml.
Service Pack 3 includes changes to the following theme templates: searchactionsmenu.html,
utilmen.html, and banner.html. Service Pack 4 includes changes to the banner.html template, as
well as new and changed templates that are used in the interface for viewing information maps. (For details,
see List of Theme Changes for SAS 9.1.3 Service Pack 3 and List of Theme Changes for SAS 9.1.3 Service
Pack 4.)

If your custom theme includes modifications to any of the changed templates, then you must incorporate your
modifications into the new versions of these templates, which are in the templates subdirectory of the
working directory.

You might also want to make modifications to the new theme templates that were added. (If you modify a
template, do not change the substitution variables. These variables are required by the portal Web
application.)

9.

Delete the old custom theme from the portal Web application. Then, compress your new working directory
into a WAR file, and deploy the new WAR file by using the appropriate procedures for your servlet container.

Note: It is recommended that you test your custom theme in a nonproduction environment before deploying it
into a production environment. Instead of creating a WAR file, you can place the directory that contains the
theme directly into the servlet container.

If the custom theme has the same name that it had previously, then it is not
necessary to run LoadThemeConnection.sas or UpdateDefaultTheme.sas.

10.

SAS® Web Infrastructure Kit: Developer's Guide

Migrating Custom Themes After Installing a Service Pack 128

List of Theme Changes for SAS 9.1.3 Service Pack 3
The following table shows the changes that were made to the Default theme and the Winter theme with SAS 9.1.3
Service Pack 3.

Theme Element Changes Made Theme
Affected

SASThemes.xmlThe following image definitions were added:
Edit (Edit icon in the action menu on the search results page)
portlet_Prop (Edit Portlet Properties icon)

Default,
Winter

The following template definitions were added for the action menu on the
search results page:
searchactionsitem1
searchactionsitem2
searchactionsitem3

Default,
Winter

Images The following image was added:
PortletProp.gif (Edit Portlet Properties icon)

Default,
Winter

Style sheets In Portal.css, the following style classes were added:
listOfItemsDiv (used to display a list of items that are contained in

a page or a portlet that you are sharing or deleting)
portletLayoutFieldSet (border around the portlet layout

information on the Edit Page Content page)
portletLayoutInnerFieldSet (not used)

Default,
Winter

In Portal.css, the following style classes are no longer used. These
classes were previously used for the tabs for active and inactive pages.
portalActiveTabHoriz
portalActiveTabVert
portalTabHoriz
portalTabVert

Instead of the styles listed above, the following styles in sasStyle.css
are now used for the tabs for active and inactive pages:
menu:active
menu:link
menu:visited
menuLink
tab
tabSelected

Default,
Winter

In Portal.css, the following style classes were removed. These
classes were previously used for navigator portlets, and they are still
present in sasComponentsLayout.css and
sasComponentsTheme.css.
RFSCancel_button SPAN
RFSDetailView_evenRow
RFSDetailView_tablecolumnheader
RFSDetailView_tableviewmenuBar A:active

Default,
Winter

List of Theme Changes for SAS 9.1.3 Service Pack 3 129

RFSDetailView_tableviewmenuBar A:hover
RFSDetailView_tableviewmenuBar A:link
RFSLabel
RFSLimitValueComponent
RFSMenu_menuLink A:active
RFSMenu_menuLink A:hover
RFSMenu_menuLink A:link
RFSMenu_menuLink A:visited
RFSSearch_button
RFSSearchDateTimeLimitsLabel
RFSSearchFieldLabel
RFSSearchFields
RFSSearchFolderLabel
RFSSearchLink
RFSSearchLinkLabel
RFSSearchTextLabel
RFSSearchView_evenRow
RFSSearchView_tablecolumnheader
RFSSearchView_tableviewmenuBar A:active
RFSSearchView_tableviewmenuBar A:hover
RFSSearchView_tableviewmenuBar A:link
RFSSearchView_tableviewmenuBar A:visited

Instead of the styles listed above, the following styles in
sasComponentsTheme.css are now used for navigator portlets:
rfs_DetailViewEvenRow
rfs_DetailViewOddRow
rfs_FileDetailView
rfs_FileDetailViewColumnHeader
rfs_FileDetailViewData
rfs_SearchButton
rfs_SearchContainer
rfs_SearchDateTimeLimitsComponent
rfs_SearchDateTimeLimitsLabel
rfs_SearchDetailView
rfs_SearchDetailViewColumnHeader
rfs_SearchDetailViewData
rfs_SearchExpandCollapseContainer
rfs_SearchExpandCollapseTitle
rfs_SearchInTheLastLabel
rfs_SearchInTheLastUnitComponent
rfs_SearchInTheLastValueComponent
rfs_SearchSubfolders
rfs_SearchSubfoldersLabel
rfs_SearchTextComponent
rfs_SearchTextLabel
rfs_SearchWhatComponent
rfs_SearchWhatLabel
rfs_SearchWhereComponent
rfs_SearchWhereLabel

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 3 130

rfs_ToolBarAction_ButtonCenter
rfs_ToolBarAction_ButtonCenterDisabled
rfs_ToolBarChoice
rfs_ToolBarContainer

In sasStyle.css, the following style class was added:
banuserwelcome (used for the role identifier for administrators in the

banner)

Default,
Winter

The classes in sasComponents.css have been moved to two new
style sheets: sasComponentsLayout.css and
sasComponentsTheme.css (which contains the attributes that you
are most likely to modify when you create a new theme).

The style sheet sasComponentsTheme.css no longer contains any
classes. Instead, it imports classes from sasComponentsLayout.css
and sasComponentsTheme.css.

Default,
Winter

Theme
templates

The following templates were added for the action menu on the search
results page:
searchitemactionsmenu1.html
searchitemactionsmenu2.html
searchitemactionsmenu3.html

Default,
Winter

The following templates were revised:
banner.html
searchactionsmenu.html
utilmenu.html (used for the Options menu, on which the Add

Portlet and Share Page selections were removed, and the following
selections were added: Edit Page Properties, Edit Page Content, Create
Page Template, and Create New Content.)

Default,
Winter

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 3 131

List of Theme Changes for SAS 9.1.3 Service Pack 4
The following table shows the changes that were made to the Default theme and the Winter theme with SAS 9.1.3
Service Pack 4.

Theme
Element

Changes Made Theme
Affected

Images The following images were revised. These images are used in the title bars for
portlets.
PortletClose.gif
PortletMaximize.gif
PortletMinimize.gif
PortletNote.gif

Default

The following images were revised. These images are used in the interface for
viewing information maps.
BackgroundColor.gif
BackgroundColorDisabled.gif
BlueFrown.gif
BlueNeutral.gif
BlueSmiley.gif
Bold.gif
folderClosed.gif
folderDisabled.gif
folderOpen.gif
ForegroundColor.gif
ForegroundColorDisabled.gif
GreenBall.gif
GreenCheck.gif
GreenDiamond.gif
GreenFrown.gif
GreenNeutral.gif
GreenSmiley.gif
GreenSquare.gif
GreenStar.gif
GreenUp.gif
Info.gif
Italic.gif
map_full_extents.gif
Pan.gif
RedBall.gif
RedCheck.gif
RedDiamond.gif
RedDown.gif
RedFrown.gif
RedNeutral.gif
RedSmiley.gif
RedSquare.gif
RedStar.gif

Default,
Winter

List of Theme Changes for SAS 9.1.3 Service Pack 4 132

ThumbsDown1.gif
ThumbsDown2.gif
ThumbsUp1.gif
ThumbsUp2.gif
Underline.gif
WeatherPartiallyCloudy.gif
WeatherStormy.gif
WeatherSunny.gif
YellowBall.gif
YellowCheck.gif
YellowDiamond.gif
YellowFrown.gif
YellowNeutral.gif
YellowSideways.gif
YellowSmiley.gif
YellowSquare.gif
YellowStar.gif
ZoomIn.gif
ZoomOut.gif

The following images were added. These images are used in the interface for
viewing information maps.
AddBlue.gif
AddBlue_disabled.gif
BoldDaDeHuSv.gif
BoldDaDeHuSvDisabled.gif
BoldEs.gif
BoldEsDisabled.gif
BoldFrIt.gif
BoldFrItDisabled.gif
BoldRu.gif
BoldRuDisabled.gif
BookmarkNew.gif
BookmarkNewDisabled.gif
BookmarkProperties.gif
BookmarkPropertiesDisabled.gif
BookmarkUpdate.gif
BookmarkUpdateDisabled.gif
DivideBlue.gif
DivideBlue_disabled.gif drill_up_swovj.gif
italic_disabled.gif
ItalicDaDeEsSv.gif
ItalicDaDeEsSvDisabled.gif
ItalicHu.gif
ItalicHuDisabled.gif
ItalicIt.gif
ItalicItDisabled.gif
ItalicRu.gif
ItalicRuDisabled.gif
MapCollapse.gif
MapDrillDown.gif

Default,
Winter

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 4 133

MapDrillUp.gif
MapExpand.gif
MapFilterSelect.gif
MapFilterSelect_disabled.gif
MenuDownArrowDisabled.gif
MultiplyBlue.gif
MultiplyBlue_disabled.gif
OrderRows.gif
pan_default.gif
pan_inactive.gif
pan_rollover.gif
pan_selected.gif
ParenthesesBlue.gif
ParenthesesBlue_disabled.gif
progress.gif
Register.gif
RegisterProject.gif
ReorderScorecard.gif
report_link_default.gif
report_link_inactive.gif
report_link_rollover.gif
report_link_selected.gif
reset_default.gif
reset_rollover.gif
SubtractBlue.gif
SubtractBlue_disabled.gif
underline_disabled.gif
UnderlineEsFrIt.gif
UnderlineEsFrItDisabled.gif
UnderlineHu.gif
UnderlineHuDisabled.gif
UnderlineRu.gif
UnderlineRuDisabled.gif

Style
sheets

In Portal.css, the following style classes were revised:
listOfItemsDiv (used to display a list of items that are contained in a

page or a portlet that you are sharing or deleting)
portletLayoutFieldSet (border around the portlet layout information

on the Edit Page Content page)
portletLayoutInnerFieldSet (not used)

Winter

In sasComponentsLayout.css, the following style classes were revised.
(These classes are used in the interface for viewing information maps.)
advancedFilterSelectorExpression
ColorPickerPreviewCell
FileSelector_RFSDetailView
fontPickerButtonSpacer
fontPickerToolBar
GraphOLAPTableFooter
GraphOLAPTableTitle
mainTable

Default,
Winter

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 4 134

OLAPTableFooter
OLAPTableTitle
PaletteContainer
rfs_SearchInTheLastUnitComponent
sortSelectorChoiceBox
tableFooter
tableTitle
td.emptyTableData
visualDataExplorerManageViewsNavigatorTree
visualDataExplorerViewsNavigatorTree

In sasComponentsLayout.css, the following style classes were added.
These classes are used in the interface for viewing information maps.
ColorPickerAutomatic
ColorPickerAutomaticSwatch
ColorPickerContainer
ColorPickerContainerDisabled
ESRIIdentifyContainer
ESRISelectedMenu
ESRISelectedMenu IMG
exceptionHighlightingSelectorContainer
exceptionHighlightingSelectorPreviewContents
exceptionHighlightingSelectorTabContainer
exceptionHighlightingSelectorTextEntry
exportSelectorOrderedCheckBoxList
fontPickerAlignCenterButton
fontPickerAlignLeftButton
fontPickerAlignRightButton
fontPickerBackgroundColor
fontPickerBoldButton
fontPickerButtonSpacer
fontPickerFontName
fontPickerFontSize
fontPickerForegroundColor
fontPickerForegroundColor
fontPickerItalicButton
fontPickerPreviewText
fontPickerUnderlineButton
formatSelectorDescriptionLabel
formatSelectorListBox (empty)
graphMenuBar
highlightColumn
highlightColumnOther
highlightGraph
imageSelectedStyle
imageSelectedStyle A
imageSelectedStyle IMG
imageStyle
imageStyle A
imageStyle IMG
listBoxViewDropDownXPDisabled

Default,
Winter

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 4 135

listBoxViewListTableXPDisabled
OLAPTimeBasedFilterSelectorContainer
OLAPTimeBasedFilterSelectorStartEndTreeContainer
PaletteContainer
resizer
resizerBoth
resizerRight
resizerVert
selectorComponentDiv
selectorRadioLabelItalic (empty)
SimpleCalculatedItemSelectorFormatEntry
SimpleCalculatedItemSelectorFormatNote
SimpleCalculatedItemSelectorTreeview
tableViewCompositeCustomizerPanelCombo
tcd_choice
tcd_description
tcd_groupboxFieldSet
tcd_label
tcd_leftMargin
td.ESRIMapIdentifyTableData
td.OLAPTable_ch_menu (empty)
td.OLAPTable_ch_menu A:hover (empty)
td.OLAPTable_ct_menu (empty)
td.OLAPTable_ct_menu A (empty)
td.OLAPTable_ct_menu A:hover (empty)
td.OLAPTable_rh_menu (empty)
td.OLAPTable_rh_menu A:hover (empty)
td.OLAPTable_rt_menu (empty)
td.OLAPTable_rt_menu A (empty)
td.OLAPTable_rt_menu A:hover (empty)
treeText
treeViewImage
treeViewImageBorder
treeViewNodeRowDiv
visualDataExplorerManageViewsTreeSelected
visualDataExplorerManageViewsTreeText
visualDataExplorerProcessing
visualDataExplorerViewsNavigatorTreeSelected
visualDataExplorerViewsNavigatorTreeText
visualDataExplorerViewsNavigatorTreeText:active
visualDataExplorerViewsNavigatorTreeText:hover
visualDataExplorerViewsNavigatorTreeText:link
visualDataExplorerViewsNavigatorTreeText:visited
@media print {.resizer, .resizerVert, .resizerBoth,

resizerRight

In sasComponentsTheme.css, the following style classes were revised.
These classes are used in the interface for viewing information maps.
CubeSelector_RFSDetailView_evenRow
dualSelectorContainer
dualSelectorSource

Default,
Winter

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 4 136

dualSelectorSourceLabel
dualSelectorTarget
dualSelectorTargetLabel
ESRIZoomLayer
fastClickProtectingElement
fontPickerContainer
fontPickerSelectedButton
fontPickerToolBar
listBoxViewListHighlight
listBoxViewListSelected
listBoxViewListUnHighlight
menuItem A:hover
menuItemLink A:hover
OLAPTable_ch_menuItem A:hover
OLAPTable_ch_menuItemLink A:hover
OLAPTable_ct_menuItem A:hover
OLAPTable_ct_menuItemLink A:hover
OLAPTable_dt_menuItem A:hover
OLAPTable_dt_menuItemLink A:hover
OLAPTable_rh_menuItem A:hover
OLAPTable_rh_menuItemLink A:hover
OLAPTable_rt_menuItem A:hover
OLAPTable_rt_menuItemLink A:hover
OLAPTableData A:active
OLAPTableData A:link
OLAPTableData A:visited
PaletteContainer
PaletteTable
rfs_DetailViewEvenRow
selectorLabel
tableviewmenu A:hover
tableviewmenuItem A:hover
tableviewmenuItemLink A:hover

In sasComponentsTheme.css, the following style classes were added.
These classes are used in the interface for viewing information maps.
ColorPickerAutomatic
ColorPickerAutomaticRollover
ColorPickerAutomaticRollover span
ColorPickerContainer
ColorPickerContainerDisabled
CubeSelector_RFSDetailView_

fileSelectorUnderlineHoover A:hover
ESRIIdentifyContainer
ESRIIdentifyLabel
ESRIIdentifyText
ESRISelectedMenu
exportSelectorOrderedCheckBoxList
fileSelectorUnderlineHoover A:hover
fontPickerButtonSpacer
fontPickerFontName

Default,
Winter

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 4 137

fontPickerFontSize
fontPickerPreviewText
highlightColumn
highlightColumnOther
highlightExtraColumnHeader
highlightGraph
imageSelectedStyle
imageStyle
javaScriptNodeSelectedText
listBoxViewDropDownXPDisabled
listBoxViewListTableXPDisabled
mapPropertyContainer
menuItemHighlight
mps_dualSelectorContainer
OLAPTable_ch_menuItemDisabled A
OLAPTable_ct_menuItemDisabled A
OLAPTable_dt_menuItemDisabled A
OLAPTable_rh_menuItemDisabled A
OLAPTable_rt_menuItemDisabled A
OLAPTableColumnMeasureHeader A:hover
OLAPTimeBasedFilterSelectorContainer
OLAPTimeBasedFilterSelectorStartEndTreeContainer
PaletteContainerDisabled
.selectorRadioLabelItalic
SimpleCalculatedItemSelectorFormatEntry
SimpleCalculatedItemSelectorFormatNote
tabContainer
tableviewmenuItemDisabled A
tcd_checkBox
tcd_choice
tcd_container
tcd_description
tcd_groupboxFieldSet
tcd_groupboxLegend
tcd_paletteContainer
td.ESRIMapIdentifyTableData
td.OLAPTable_ch_menu
td.OLAPTable_ch_menu A:hover
td.OLAPTable_ct_menu
td.OLAPTable_ct_menu A
td.OLAPTable_ct_menu A:hover
td.OLAPTable_rh_menu
td.OLAPTable_rh_menu A:hover
td.OLAPTable_rt_menu
td.OLAPTable_rt_menu A
td.OLAPTable_rt_menu A:hover
visualDataExplorerESRIToolbar .ESRIMenu A
visualDataExplorerESRIToolbar .ESRIMenu A:hover
visualDataExplorerExpandCollapseContainer
visualDataExplorerViewsNavigatorTreeText

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 4 138

visualDataExplorerViewsNavigatorTreeText:active
visualDataExplorerViewsNavigatorTreeText:hover
visualDataExplorerViewsNavigatorTreeText:link
visualDataExplorerViewsNavigatorTreeText:visited
OLAPTableRowMeasureHeader A:hover

Theme
templates

The banner.html template was revised. Changes were made to the column
percentages and spacing in the top section of the banner.

Default,
Winter

The following templates were revised. These templates are used in the interface
for viewing information maps.
AdvancedFilterSelector.html
BaseExpressionEditor.html
DefaultSelectorTemplate.html
ExceptionHighlightingChartSelectorPanel.html
ExceptionHighlightingSelectorPanel.html
ExportSelectorPanel.html
FileSelectorPanel.html
FontPicker.html
ImagePaletteCell.html
MapComposite.html
MapCrossingSelectorPanel.html
MemberPropertiesDualTreeSelector.html
Palette.html
SimpleCalculatedItemSelectorPanel.html
TableViewCompositeCustomizerPanel.html
VisualDataExplorer.html
VisualDataExplorerCustomizerPanel.html
VisualDataExplorerExpandCollapse.html
VisualDataExplorerManageViewsSelectorPanel.html
VisualDataExplorerQuery.html
VisualDataExplorerSaveViewAsSelectorPanel.html
VisualDataExplorerSlicerSelector.html
VisualDataExplorerViewsNavigatorSelector.html
VisualDataExplorerViewsPropertySelectorPanel.html

Default,
Winter

The following templates were added. These templates are used in the interface
for viewing information maps.
FormatSelectorPanel.html
GraphLegendLayoutSelectorPanel.html
GraphPropertySelectorPanel.html
MapPropertySelectorPanel.html
OLAPTableViewCompositeCustomizerPanel.html
OLAPTimeBasedFilterSelectorPanel.html
OrderedList.html
StylePropertySelectorPanel.html
TileChartHighlightIndicatorsSelectorPanel.html
TileChartHighlightSelectorPanel.html
TileChartPropertySelectorPanel.html
TitlesAndFootnotesSelectorPanel.html
VisualDataExplorerViewQuerySelectorPanel.html

Default,
Winter

SAS® Web Infrastructure Kit: Developer's Guide

List of Theme Changes for SAS 9.1.3 Service Pack 4 139

Integrating Other Web Applications With the Portal
The SAS Web Infrastructure Kit enables you to easily integrate other applications with the portal Web application. To
make a Web application available in the portal Web application, use one of the following approaches:

Implement a remote portlet and a corresponding Web application. A remote portlet looks like any other
portlet, but it calls a remote Web application. The remote Web application returns an HTML fragment to the
portal Web application to be displayed within the portlet's borders. This approach is useful when you want to
incorporate a portion of the output from your application into the portal Web application.

•

Implement a stand−alone application that is invoked from the portal Web application but executed
remotely. The stand−alone Web application returns a complete HTML page that is displayed in a separate
browser window. This approach is useful when you want to enable users to invoke your application from the
portal Web application, but the application output needs to appear separately.

•

Using SAS Foundation Services to Integrate Applications and Enable
Single Signon

Whether your application is called by a remote portlet or is invoked on a stand−alone basis, the SAS Web
Infrastructure Kit provides tools to facilitate secure information sharing between the portal Web application and the
remote application. One type of information sharing is the single signon feature, which enables other applications to
be invoked from the portal Web application without requiring the user to re−enter a user name and password. Other
information related to a portal Web application session can be shared as well.

To incorporate the single signon feature or other information sharing into a remote portlet application or a stand−alone
Web application, do the following:

Use classes from SAS Foundation Services in your Web application. SAS Foundation Services is a set of
infrastructure and extension services that support the development of integrated, scalable, and secure
Java−based applications. For convenient access to the most common access patterns, you will probably want
to use the foundation services facade classes, which are part of the Portlet API. For more information, see
Using SAS Foundation Services with the Portal.

•

Use these classes to access SAS Foundation Services that have been deployed remotely. The SAS Services
application (SASServices), which is provided with the SAS Web Infrastructure Kit, provides the remote
service deployment. This application, which can be installed anywhere on your network, provides a secure
mechanism for the portal Web application to share information with remote Web applications.

•

For more information about developing Web applications that are enabled by SAS Foundation Services, see the
following:

Sample Web Application (HelloUserWikExample)•
Using SAS Foundation Services with the Portal•

For more information about SAS Foundation Services, see SAS Foundation Services in the SAS Integration
Technologies: Developer's Guide.

Making Web Applications Available in the Portal Web Application

If your application is to be called by a remote portlet, you must create a portlet deployment descriptor for the portlet
and package it in a portal archive (PAR) file. When you deploy the portlet, its metadata is registered automatically

Integrating Other Web Applications With the Portal 140

with the portal Web application. For more information, see the following:

Creating a Remote Portlet•
Sample Remote Portlet (HelloUserRemotePortlet)•
Adding Custom−Developed Portlets in the "Adding Content to the Portal" chapter in the SAS Intelligence
Platform: Web Application Administration Guide.

•

If you want to add a stand−alone application to the portal Web application, then you must use a SAS program to
register the application's metadata. For instructions, see Adding Web Applications in the "Adding Content to the
Portal" chapter in the SAS Intelligence Platform: Web Application Administration Guide.

SAS® Web Infrastructure Kit: Developer's Guide

Integrating Other Web Applications With the Portal 141

Using SAS Foundation Services With the Portal
SAS Foundation Services is a set of infrastructure and extension services that support the development of integrated,
scalable, and secure applications that are developed using Java. The design model for SAS Foundation Services
supports both local and remote resource deployment and promotes resource sharing among applications. Sharing can
occur for a specific session, for a specific user, or globally, as appropriate. At the same time, the model controls access
to protected resources based on privileged−user status and group membership.

For a list and description of each service, refer to SAS Foundation Services in the SAS Integration Technologies:
Developer's Guide.

The SAS Web Infrastructure Kit includes the SAS Foundation Services Facade API, which is a set of convenience
classes that developers can use to obtain references to the most commonly used foundation services. The foundation
services facade should provide all of the necessary functionality to integrate your applications with the portal Web
application. The foundation services facade is part of the Portlet API. For detailed information about the facade
classes, select com.sas.services.webapp in the Portlet API class documentation.

You can also choose to use the SAS Foundation Services classes directly.

Local and Remote Service Deployment

You can deploy the SAS Foundation Services on the same machine as the portal Web application (default installation)
or on a remote machine.

Using Locally Deployed SAS Foundation Services

When SAS Foundation Services is deployed locally, the core local services stack is used, as follows:

com.sas.services.security.AuthenticationService1.
com.sas.services.user.UserService2.
com.sas.services.logging.LoggingService3.
com.sas.services.information.InformationService4.
com.sas.services.session.SessionService5.

Using Remotely Deployed SAS Foundation Services

In the portal Web application architecture, an application called SAS Services (SASServices) is used to remotely
deploy SAS Foundation Services. This application enables secure information sharing among applications. Through
SAS Services, you can implement remotely deployed content viewers, remote portlets, and stand−alone Web
applications that are called by the portal Web application and invoked with the portal Web application user's
credentials. The user does not need to log on again, and user and session information can be shared as needed.

The SAS Services application makes the following stack available to applications that are enabled by SAS Foundation
Services:

com.sas.services.security.AuthenticationService1.
com.sas.services.user.UserService2.
com.sas.services.logging.LoggingService3.
com.sas.services.information.InformationService4.

Using SAS Foundation Services With the Portal 142

com.sas.services.session.SessionService5.

The SAS Services application must be up and running on a machine that is accessible to the remote Web application.
In addition, the remote Web application must include a properties file that points to the definition of the remote
services.

The portal Web application provides the SAS Services application with session context information for each
authenticated user who is logged on. If the portal Web application passes a unique session ID to a remote Web
application, then the remote Web application can obtain the appropriate user's session context information from the
SAS Services session. The remote Web application should use the following steps to accomplish this:

Retrieve the session ID from the portal Web application request and use it to obtain a reference to the SAS
Services session. This is done by creating a new WebappContextParams object, as follows.

•

UserContextInterface privilegedUser =
 ServletUtil.getPrivilegedUser("portalprivilege");
WebappContextParams params =
 new WebappContextParams(privilegedUser, request);

Note: Replace portalprivilege with the user ID of a privileged user, which is required in order
to create the WebappContextParams object. The privileged user must be a member of the SAS System
Service group, and it must be specified in the user service of the remote Web application's local
service deployment. For an example of how to set up the privileged user, see Step 3: Create a
Privileged User in the Sample Web Application (HelloUserWikExample).

Use the SessionContextInterface to get the remote session, as follows:•

sharedSession = params.getSessionContext();

Protect the session with a lock object, as follows:•

sessionLock = SharedSession.lock("com.sas.MySessionName");

Call methods from the WebappContextParams class to retrieve data, as in this example:•

UserContextInterface userContext =
 sharedSession.getUserContext();

Unlock the session, as follows:•

sharedSession.unlock(sessionLock);

For an illustration of the use of SAS Foundation Services to access a SAS Services session, see the Sample Web
Application (HelloUserWikExample). For more information about service deployment, see SAS Foundation Service
Deployment and Use in the "Foundation Services and WebDAV Server Deployment" chapter in the SAS Intelligence
Platform: Web Application Administration Guide.

SAS® Web Infrastructure Kit: Developer's Guide

Using SAS Foundation Services With the Portal 143

Configuring Foundation Service Deployments

When you install the Portal Web application, you can choose whether to store the metadata for the local and remote
service deployment configurations in XML files, or on the SAS Metadata Server, as follows:

SAS Metadata Server
If you chose to import the metadata for your deployment configurations to the SAS Metadata Server, then the
Foundation Services Manager plug−in of SAS Management Console displays the BIP Local Services group
and the BIP Remote Services group.

XML Files
If you chose to store the metadata for your deployment configurations in XML files, then the configurations
are contained in two files: a local services deployment file, called
sas_services_idp_local_omr.xml, and a remote services deployment file, called
sas_services_idp_remote_omr.xml.

Note: In SAS 9.1.2 Integration Technologies and subsequent releases, the Web Infrastructure Kit supports the use of
either XML files or the SAS Metadata Server to store service deployment configurations. In SAS 9.1 Integration
Technologies, the Web Infrastructure Kit supports only the use of XML files to store service deployment
configurations.

For more information, see Service Deployment Configurations in the "Foundation Services and WebDAV Server
Deployment" chapter in the SAS Intelligence Platform: Web Application Administration Guide.

SAS® Web Infrastructure Kit: Developer's Guide

Using SAS Foundation Services With the Portal 144

Your Turn

If you have comments or suggestions about SAS Web Infrastructure Kit 1.0:
Developer's Guide, Fifth Edition, please send them to us on a photocopy of this page or
send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	SAS® Web Infrastructure Kit: Developer's Guide
	Developing Custom Portlets
	Development Steps
	Creating a Deployment Descriptor
	Example Deployment Descriptor for a Local Portlet
	Example Deployment Descriptor for a Remote Portlet
	Detailed Element Descriptions for Portlet Deployment Descriptor DTD
	Creating Display Resources Files
	Developing the Presentation JSP Page
	Creating Action Classes
	Creating an Initializer Action Class
	Creating a Portlet Action Class
	Creating a Postprocessing Action Class
	Creating an Error Handling Action
	Implementing Portlet Help
	Creating a PAR File for Deployment in the Portal
	Use Cases
	Creating a Simple Display Portlet
	Creating a Localized Portlet
	Creating a Portlet Template (Editable Portlet)
	Creating a Remote Portlet
	Tips and Best Practices
	Using the Portlet API
	Sample Portlets
	Sample: Localized Display Portlet (Welcome Portlet)
	Step 1: Create the Directory Structure
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Page
	Step 4: Create the Action Class
	Step 5: Create the Resource Bundles
	Step 6: Create Translated Titles and Descriptions
	Step 7: Create the PAR File, and Deploy and Test the Portlet
	Sample: Interactive Form Portlet (FormExample)
	Step 1: Create the Directory Structure
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Page
	Step 4: Create the Action Class
	Step 5: Create the JavaBean
	Step 6: Create the PAR File, and Deploy and Test the Portlet
	Sample: Portlet Template, or Editable Portlet (DisplayURL)
	Step 1: Create the Directory Structure
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Pages for the Portlet and the Editor
	Viewer.jsp
	Editor.jsp
	Error.jsp
	Step 4: Create the Action Classes
	Initializer Action
	Base Action
	Display Action
	Editor Action
	OK and Cancel Actions
	Error Handler Action
	Step 5: Create the Resource Bundle
	Step 6: Create the Display Resources File
	Step 7: Create the PAR File, and Deploy and Test the Portlet
	Sample: Web Application (HelloUserWikExample)
	Step 1: Create the Directory Structure
	Step 2: Make Deployment Configurations Available for Local and Remote Services
	Step 3: Create a Privileged User
	Step 4: Create the Web Application Deployment Descriptor
	Step 5: Create the Display Page (JSP)
	Step 6: Create the WAR File, and Deploy and Test the Application
	Sample: Remote Portlet (HelloUserRemotePortlet)
	Step 1: Create the Directory Structure
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Resources File
	Step 4: Create the Web Application
	Step 5: Create the PAR File, and Deploy and Test the Portlet
	Developing Custom Themes
	Steps for Defining a New Theme
	Style Sheet and Graphics Reference for the SAS Winter Theme
	Theme Templates Reference
	SASthemes.xml File
	Element Descriptions for Themes DTD
	Changing the Application Name
	Migrating Custom Themes After Installing a Service Pack
	List of Theme Changes for SAS 9.1.3 Service Pack 3
	List of Theme Changes for SAS 9.1.3 Service Pack 4
	Integrating Other Web Applications With the Portal
	Using SAS Foundation Services With the Portal

