
SAS®

 9.1.3 Integration
Technologies
Administrator's Guide, Fourth Edition

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2006. SAS® 9.1.3 Integration
Technologies: Administrator’s Guide, Fourth Edition. Cary, NC: SAS Institute Inc.

SAS 9.1.3 Integration Technologies: Administrator’s Guide, Fourth Edition

Copyright © 2006, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the
vendor at the time you acquire this publication.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this software and related
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in
FAR 52.227-19 Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st printing, July 2006
2nd printing, November 2006

SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

http://support.sas.com/pubs

Table of Contents
SAS® Integration Technologies: Administrator's Guide...1

Getting Started...2

SAS Foundation Services...4

Understanding Service Deployments...8

Understanding Service Deployment Configuration..11

Defining Service Deployments..12

Importing Service Deployments...15

Exporting Service Deployments..16

Duplicating Service Deployments...17

Redistributing Service Deployments..18

Installing and Running Foundation Services as a Windows Service..19

Understanding How Applications Deploy Foundation Services..23

Understanding How Applications Locate Foundation Services..25

Scenario: Stand−alone Application..27

Scenario: Remote−accessible Services...29

Scenario: Local and Remote−accessible Services...31

Understanding How Applications Share Foundation Services..33

Modifying Service Configurations..34

Understanding the Event Broker Service..35

Understanding Events and Process Flows...38

Modifying an Event Broker Service Configuration..42

Creating Events and Process Flows..43

Modifying the Information Service Configuration...45

SAS® Integration Technologies: Administrator's Guide

i

Table of Contents
Modifying the Logging Service Configuration..49

Pattern Layouts..52

Modifying the Session and User Service Configurations...53

Monitoring Applications..56

Stored Processes...57

Publishing Framework..58

Planning Your Publishing Solution..59

Managing Subscribers...62

Delivery Transports...64

Filters...67

Managing Channels...70

Persistent Stores...73

Publishing to Secure Servers...77

Example: Creating a Subscriber..79

Example: Creating a Channel...85

SAS® Integration Technologies: Administrator's Guide

ii

SAS® Integration Technologies: Administrator's Guide
This is the Administrator's Guide for SAS Integration Technologies. It is provided for SAS Integration Technologies
customers who use the SAS Open Metadata Architecture.

This guide provides detailed instructions for administration of the following SAS Integration Technologies features:

SAS Foundation Services•
SAS Stored Processes•
SAS Publishing Framework•

Many of the administrative tasks can be performed using the SAS Management Console application. SAS
Management Console is a graphical user interface that enables you to easily enter and modify metadata on your SAS
Metadata Server.

Before you begin the SAS Integration Technologies administration tasks, refer to the Getting Started chapter for
introductory information and references.

Use this Administrator's Guide in conjunction with the following guides:

SAS Integration Technologies: Server Administrator's Guide provides detailed information for administering
SAS Workspace servers and spawners, and SAS Stored Process servers and spawners. It also provides general
information for administering all IOM servers.

•

SAS Integration Technologies: Developer's Guide provides details about using SAS Integration Technologies
to develop and integrate applications.

•

Note: If you are implementing SAS Integration Technologies by using the Lightweight Directory Access Protocol
(LDAP) instead of the Open Metadata Architecture, refer to the SAS Integration Technologies: Administrator's Guide
(LDAP Version).

Getting Started

SAS® Integration Technologies: Administrator's Guide 1

Getting Started
To utilize the features of SAS Integration Technologies, you must define the appropriate resources on the SAS
Metadata Server (SAS Foundation Services, SAS Stored Processes, and SAS Publishing Framework) or in a
configuration file (SAS Foundation Services only). You can then access the resource information as required for your
implementation. You should have already determined the appropriate authorization (access controls) for the resources
that you will define and access. (To understand and implement the Open Metadata Architecture security, refer to the
SAS Intelligence Platform: Security Administration Guide).

To set up and access SAS Integration Technologies resources, see the following topics:

SAS Foundation Services. To implement SAS Foundation Services service deployment configurations,
define the service deployment on the SAS Metadata Server (or in an XML file) and then access the service
deployment configuration to deploy and access the services:

Define Service Deployments. Use the Foundation Services Manager to define service deployments
for local and remote SAS Foundation Services. For details, see Service Deployment Configuration.

♦

Deploy and Access Service Deployments. Code your applications to retrieve the service deployment
configuration from one of the following locations:

SAS Metadata Repository on a SAS Metadata Server◊
XML file that contains the service deployment configuration◊

Code one application to retrieve the service deployment configuration and deploy and access the
services as local services. Code other applications to retrieve the service deployment configuration
and access and use the remotely deployed services. For details about local and remote services and
coding client applications to deploy and access services, see the SAS Foundation Services chapter in
this guide, the SAS Foundation Services topic in the SAS Integration Technologies: Developer's
Guide, and the SAS Foundation Services class documentation for com.sas.services.discovery in the
SAS Integration Technologies: Developer's Guide.

♦

•

SAS Stored Processes. To implement SAS Stored Process definitions on the SAS Metadata Server, define
and then access the stored process definitions:

Define Stored Processes. Use the BI Manager in SAS Management Console to define stored
processes. For details, see Stored Processes.

♦

Access Stored Process Definitions. Access stored process definitions by running applications or
stored processes that connect to the SAS Metadata Server and access stored process definitions. For
details, see the Stored Processes chapter of the SAS Integration Technologies: Developer's Guide.

♦

•

Publication Channels. To implement publication channel definitions on the SAS Metadata Server, define the
publication channels and then publish or subscribe to the publication channel.

Define Publication Channels. Use the Publishing Framework in SAS Management Console to define
publication channels. For details, see Publishing Framework.

♦

Publish and Subscribe to Publication Channels. You can access the publication channel definitions
on the SAS Metadata Server, and publish and subscribe to the defined publication channels, in two
ways:

SAS Integration Technologies Publishing Framework. For details, see the Publishing
Framework chapter of the SAS Integration Technologies: Developer's Guide.

◊

SAS Information Delivery Portal. For details, see the online Help for the SAS Information
Delivery Portal.

◊

♦

•

Getting Started 2

After you set up your resources, ensure that the appropriate authorization (access control) is specified for the resource
definition.

SAS Foundation Services

SAS® Integration Technologies: Administrator's Guide

Getting Started 3

SAS Foundation Services
SAS Foundation Services 1.1 includes tools to enable application development and service administration for the SAS
Foundation Services. Depending on the components you choose to install, SAS Foundation Services 1.1 includes one
or more of the following components:

SAS Foundation Services, which is a set of platform infrastructure and extension services for programmers
who want to write applications that are integrated with the SAS platform.

For information about coding applications that use the SAS Foundation Services, see SAS Foundation
Services in the Java client section of the SAS Integration Technologies: Developer's Guide and the Java class
documentation for SAS Foundation Services.

The following table presents the function and related documentation for each of the SAS Foundation Services:

SAS Foundation Services

Service Class Documentation Function
Related

Documentation

Connection
Service

com.sas.services.connection.platform
IOM connection
management

For details about
administering the SAS
servers that you connect
to with the Connection
Service, see the SAS
Integration
Technologies: Server
Administrator's Guide.
For development
information and coding
examples, see Using the
Connection Factory in
the SAS Integration
Technologies:
Developer's Guide.

Discovery
Service

com.sas.services.discovery
locating and binding to
deployed services

For details about how
applications use the
Discovery Service, see
Understanding How
Applications Locate
Services.

Event
Broker
Service

com.sas.services.events.broker asynchronous event
notification and request
management to support
dynamic, event−driven
processes

For details about editing
the Event Broker
Service configuration,
see Modifying the Event
Broker Service
Configuration.

For information about
using the Publishing
Framework to generate

•

SAS Foundation Services 4

and publish events, see
About Events in the SAS
Integration
Technologies:
Developer's Guide.

Event
Broker
Discovery
Services

com.sas.services.events.discovery locates event brokers

Information
Service

com.sas.services.information

repository federation,
searching repositories, a
common entity
interface, and creating
personal repositories

For details about editing
the Information Service
configuration, see
Modifying the
Information Service
Configuration.

Logging
Service

com.sas.services.logging

runtime execution
tracing, response metric
and resource utilization
reporting, and error
tracking.

For details about editing
the logging service
configuration, see
Modifying the Logging
Service Configuration.

Publish
Service

com.sas.services.publish
access to the publication
framework

For details about
configuring and
administering channels
and subscriptions for the
Publishing Framework,
see the Publishing
Framework section in
the SAS Integration
Technologies:
Administrator's Guide.

For information about
using publish and
subscribe software
components and SAS
CALL routines, see the
Publishing Framework
section in the SAS
Integration
Technologies:
Developer's Guide.

Security
Service

com.sas.services.security user authentication,
propagation of user
identity context across
distributed security
domains, and
protected−resource
access policy
administration and

For detailed information
about implementing
security in your
environment, see the
Security section in the
SAS Integration
Technologies: Server
Administrator's Guide.

SAS® Integration Technologies: Administrator's Guide

SAS Foundation Services 5

enforcement

Session
Service

com.sas.services.session
context management,
resource management,
and context passing

For details about editing
the session service
configuration, see
Modifying the Session
and User Service
Configurations.

Stored
Process
Service

com.sas.services.storedprocess
access to stored process
execution and package
navigation

For details about
administering stored
processes, see the Stored
Processes section of this
guide.

For information about
developing stored
processes, see SAS
Stored Processes in the
SAS Integration
Technologies:
Developer's Guide.

User Servicecom.sas.services.user

access to authenticated
user context, access to
global, solution−wide,
and application−specific
profiles, and access to
personal objects

For details about editing
the User Service
configuration, see
Modifying the Session
and User Service
Configurations.

In addition, you use the deployment utilities (com.sas.services.deployment) to deploy the services.

SAS Management Console plug−ins, which enable you to administer configuration metadata in a metadata
repository. The following plug−ins can be installed with the SAS Foundation Services:

Application Monitor, which enables administrators to monitor the performance and activities of a
foundation service−enabled application.

♦

BI Manager, which enables administrators to perform the following tasks:
register and manage metadata for stored processes◊
view metadata for information maps◊
manage report content and metadata◊
schedule reports◊
export and import a group of objects, including stored processes, information maps, reports,
and folders

◊

BI Manager is available beginning with SAS Foundation Services 1.2. If you have not upgraded to
this release, then you can use Stored Process Manager to register and manage stored processes. BI
Manager replaces Stored Process Manager.

♦

Foundation Services Manager, which enables administrators to define and manage service
deployments and service configurations.

♦

Publishing Framework Manager, which enables administrators to set up metadata for users and
applications to do the following:

♦

•

SAS® Integration Technologies: Administrator's Guide

SAS Foundation Services 6

publish SAS files to a variety of destinations◊
receive and process published information.◊

Stored Process Manager, which enables administrators to register and manage metadata for stored
processes. Stored Process Manager is replaced by BI Manager starting with SAS Foundation Services
1.2. For more information about using BI Manager to create and maintain the metadata defining a
stored process, see the Help in SAS Management Console.

♦

For further information about SAS Foundation Services administration, see the online Help for the appropriate
administrative plug−in.

This section covers the following SAS Foundation Services topics:

Service Deployments. In order to use the foundation services in your applications, you must deploy the
services. To deploy the services, you must configure a service deployment. To understand service
deployments and service deployment configuration, see Understanding Service Deployments and
Understanding Service Deployment Configuration.

•

Service Deployment Definitions. To define and manage service deployments, see the Managing Service
Deployments topics.

•

Installing and Running Foundation Services as a Windows Service. With SAS 9.1.3, the Java Service
Wrapper from Tanuki Software is provided with SAS Foundation Services. You can use this software to
install and run SAS Foundation Services as a Windows service for use with any foundation services−enabled
application. For details, see Installing and Running Foundation Services as a Windows Service.

•

SAS Foundation Service−Enabled Applications. To understand how applications deploy, locate, and share
services, see the following topics:

Understanding How Applications Deploy Foundation Services♦
Understanding How Applications Locate Foundation Services and related scenarios.♦
Understanding How Applications Share Foundation Services♦

•

Service Configurations. To understand how to modify the configurations of certain foundation services, see
Modifying Service Configurations.

•

Application Monitoring. For information about how to monitor foundation service−enabled applications, see
Monitoring Applications.

•

Foundation Services

SAS® Integration Technologies: Administrator's Guide

SAS Foundation Services 7

Understanding Service Deployments
A service deployment is a configuration of a collection of SAS Foundation Services that specifies the data necessary
to instantiate the services, as well as dependencies upon other services. You create service deployments for
applications that will deploy or access the services. You can store the service deployment configuration in either one
of the following locations:

SAS Metadata Repository: you can use the Foundation Services Manager plug−in (of SAS Management
Console) to administer service deployment metadata that is stored in a SAS Metadata Server repository. The
SAS Metadata Server also controls access to the metadata.

•

XML file: you can export service deployment metadata from the SAS Metadata Server to an XML file. You
can then use the XML file to import service deployment metadata into another SAS Metadata Server
repository. If you use an XML file to store service deployment metadata, there is no administration or access
control for the metadata in the XML file.

•

Note: It is recommended that you store the service deployment metadata on a SAS Metadata Server; storing the
service deployment metadata in a SAS Metadata Server enables it to be updated and queried from one centralized
location.

To enable your application to deploy and access the foundation services, you can create local or remote service
deployments:

Local service deployment: a local service deployment supports exclusive access to a set of services deployed
within a single Java Virtual Machine (JVM). Use a local service deployment when you want your application
to have its own exclusive set of foundation services.

•

Remote service deployment: a remote service deployment supports shared access to a set of services that are
deployed within a single JVM, but are available to other JVM processes. Use a remote service deployment
when you want to share a foundation service deployment among multiple applications. When you create
services for remote service deployments, you must specify that the services will be accessed remotely. In
order to allow remote access to the services, you must also create a service registry and associate named
services with the named components for the remote services.

•

A service deployment contains:

service deployment group(s). When you create service deployments (local or remote), you can also create
groups within the service deployment in order to organize services within a deployment hierarchy.

•

services and service initialization data. Within each service deployment group, you must define the services
for that group. Service definitions contain the following information:

Service types (interfaces): service types designate which service interfaces are implemented by the
service. The Discovery Service is used to locate services based upon their service interfaces. For
example, if you want to locate a service that implements a Logging Service interface, have the
Discovery Service search for a service that implements the
com.sas.services.logging.LoggingServiceInterface.

Note: All SAS Foundation Services (including local services) implement the
RemoteServiceInterface.

♦

Service configuration: the service configuration specifies the Java class used to create the service,
the service's optional configuration data, and the service's configuration user interface. The service
configuration user interface defines the Java class used by the Foundation Services Manager to

♦

•

Understanding Service Deployments 8

configure the service's configuration details.
Service dependencies: when they are deployed, foundation services might depend on the availability
of one or more other foundation services. When you define a service, you must specify the other
services upon which that service depends. For example, the Authentication Service uses the Logging
Service. Therefore, when you define the Authentication Service in a service deployment, you must
specify the Logging Service as a dependency.

♦

Service names (for remote access only): if a foundation service is to be made available for remote
clients, you must enable the service for remote access and define named services (service names) that
specify the service's name bindings to one or more service registries.

♦

Authorization permissions: authorization parameters allow you to specify which user or group
identities can perform which actions on a particular resource.

♦

Important Note: If a service is dependent upon other services, you must define those services before defining
the service that depends on them. For details about service dependencies and order of definition, see the
Service Dependencies Table.
service registries and associated named services (remote service deployments only). To enable services
for remote access, you must define a service registry to use in locating remote services. (A service registry is a
searchable registry of service descriptions that is used to register named service bindings).

You must then register the services with the service registry by creating or associating named services that
define how each service is to be used within the context of the Discovery Service.

•

To understand where service deployments are defined, see Understanding Service Deployment Configuration.

Service Dependencies

If a service has a dependency on another service, you must first create the service upon which it depends. The
following table shows the service dependencies and the relative order in which you must define the services.

Service Dependencies Table

Service Service Dependencies

Logging Service

Authentication Service Logging Service

Information Service Logging Service

User Service
Logging Service
Authentication Service
Information Service

Session Service Logging Service

Discovery Service Logging Service

Event Broker Discovery Service
Logging Service
Discovery Service

Event Broker Service

Logging Service
Authentication Service
Information Service
User Service
Session Service

Stored Process Service Logging Service

SAS® Integration Technologies: Administrator's Guide

Understanding Service Deployments 9

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Understanding Service Deployments 10

Understanding Service Deployment Configuration
The following diagram shows the SAS Management Console Foundation Services Manager connected to a SAS
Metadata Repository that contains a service deployment named Remote Services. The diagram also points to the
service deployment group, services, and service registry defined within the Remote Services service deployment.

You can define a service deployment in a SAS Metadata Repository in one of the following ways:

use the Foundation Services Manager Plug−in of SAS Management Console to create a service deployment.
For details, see Defining Service Deployments.

•

import an XML file containing the service deployment. If your application's service deployment configuration
is contained in an XML file, you can import it into a SAS Metadata Repository. For details, see Importing
Service Deployments

•

After you import or create a service deployment, you can do the following:

export the service deployment to an XML file. If an application does not have access to a SAS Metadata
Repository in its runtime environment, you can export the service deployment configuration to an XML file
that the application can access for service deployment configuration information. For details, see Exporting
Service Deployments.

•

duplicate the service deployment. If you need to use a service deployment that is similar to an existing service
deployment, you can duplicate an existing service deployment configuration. For details, see Duplicating
Service Deployments

•

In addition, you might need to update the prototypes that define the foundation services. (To update prototypes, select
the Foundation Services Manager and select Actions Update Prototypes). For further information about using the

Foundation Services Manager to create service deployments, see the Foundation Services Manager Help.

Foundation Services

Understanding Service Deployment Configuration 11

Defining Service Deployments
You create service deployments for applications to deploy and access SAS Foundation Services. Applications deploy
service deployments using the service deployment name configured in a SAS Metadata Repository or XML file. To
understand the components of service deployments, see Understanding Service Deployments.

To create a service deployment, follow these steps:

Create a service deployment1.
Create service deployment groups for your service deployment2.
Create services within each service deployment group.3.
For Remote−Accessible services, create a service registry and associated named services.4.

Step 1: Create a Service Deployment

To create a service deployment using the Foundation Services Manager, follow these steps:

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, click the next to Foundation Services Manager to expand the Foundation Services
Manager view.

2.

Right−click the Foundation Services Manger folder and select New Service Deployment from the pop−up
menu. The New Service Deployment window appears.

3.

Enter a Name and, optionally, a Description for the service deployment.4.
Click Finish to define the service deployment5.

You may now define service deployment groups for your service deployment.

Step 2: Create Service Deployment Groups

After you have defined a service deployment, you can define service deployment groups as follows:

In the SAS Management Console navigation tree, select the service deployment in which you want to create a
new service deployment group. Right−click the service deployment and select New Service Deployment
Group from the pop−up menu. The New Service Deployment Group window is displayed.

1.

Enter a Name and, optionally, a Description for the service deployment group.2.
Click Finish to create the new service deployment group3.

After you create the deployment group, you can select the deployment group and do one of the following:

for local service deployments, create new services within that service deployment group•
for remote service deployments, create the services registry within that service deployment group.•

Step 3: Create a Service

If a service is dependent upon other services, you must define those services before defining the service which
depends on them. For details about service dependencies and order of definition, see the Server Dependencies Table.

To create a new service:

Defining Service Deployments 12

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, expand the Foundation Services Manager tree to locate and select the service
deployment group where you want to create a new service. Right−click the service deployment group and
select New Service from the pop−up menu. The New Service wizard − Prototype window appears.

2.

Select a service to use as a prototype. Click Next. The New Service wizard − Names window appears.3.
Enter a Name and, optionally, a Description for the service. Click Next. The New Service wizard − Service
Interfaces window appears and displays the associated service interfaces.

4.

Click Next. The New Service wizard − Service Details window appears and displays the Service Factory for
the service. If the service has customizable configuration data, you can click Edit Configuration to supply
the configuration information.

5.

Click Next. The New Service wizard − Remote Clients window appears.6.
To make this service a remote service, select the Enable remote clients to access service capabilities check
box and click Service Names. The Service Names window appears.

7.

Click New to define a new named service. The New Named Service wizard − Name window appears.
Enter the Name and optionally, a Description for the named service. Click Next. The New Named
Service wizard − Details window appears.

a.

Enter the Name of the binding, select the Type of binding (bind or rebind). If you are creating an
Event Broker Service, enter a Codebase. If you are creating a new named service for a service
registry, click Select to select the named component associated with this named service. Click Next.
The New Named Service wizard − Finish window appears.

b.

Review the named service definition.c.
Click Finish to save the named service definition in a metadata repository.d.

When you are finished creating new named services, click OK to return to the New Service wizard − Remote
Clients window. Click Next. The New Service wizard − Service Dependencies window appears.

8.

Select the services that your new service requires. Click Next.9.
If you are creating a new Event Broker Service, complete the following steps:

In the New Service wizard − Defaults window, enter the default event name for the Event Broker
Service. Click Next.

a.

In the New Service wizard − Resources window, specify the resources for the Event Broker Service.
Click Next.

b.

In the New Service wizard − Connections window, specify the administrator port and transport
monitors for the Event Broker Service. Click Next.

c.

10.

In the New Service wizard − Finish window, review the service definition.11.
Click Finish to save the service definition in a metadata repository.12.

You can create additional services for your service deployment. If the service is enabled for remote access, you must
create a new service registry and associate named services.

Step 4: Create a Service Registry and Named Services

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, expand the Foundation Services Manager tree to locate and select the service
deployment group where you want to create a new service registry. Right−click the service deployment group
and select New Service Registry from the pop−up menu. The New Service Registry wizard − Type window
appears.

2.

Select the type of service registry you wish to define. Click Next. The New Service Registry wizard − Name
window appears.

3.

Enter a Name and Description (optional) for the service registry. Click Next. The New Service Registry
wizard − Service Interfaces window appears and displays the service interfaces satisfied by this definition of a

4.

SAS® Integration Technologies: Administrator's Guide

Defining Service Deployments 13

service registry. Click Next. The New Service Registry wizard − Host window appears.
Specify the Host Name and Port Number to use to bind to the service registry. The only currently supported
application protocol is RMI. Click Next. The New Service Registry wizard − Named Services window
appears.

5.

If you have not already defined the appropriate remote accessible service, Click New to define a new named
service. The New Named Service wizard appears.

Enter the Name and optionally, a Description for the named service. Click Next. The New Named
Service wizard − Details window appears.

a.

Enter the Name of the binding, select the Type of binding (bind or rebind). If you are creating an
Event Broker Service, enter a Codebase. If you are creating a new named service for a service
registry, click Select to select the named component associated with this named service. Click Next.
The New Named Service wizard − Finish window appears.

b.

Review the named service definition.c.
Click Finish to save the named service definition in a metadata repository.d.

When you are finished creating new named services, click OK. Click Next. The New Service Registry wizard
− Finish window appears.

6.

Review the service registry definition.7.
Click Finish to define the service registry in a metadata repository.8.

After you create the service registry, you can select the service deployment group for the registry and create the
services, including the named services associated with the service registry.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Defining Service Deployments 14

Importing Service Deployments
The Foundation Services Manager enables you to import an XML file that contains the metadata necessary to create a
service deployment in the Foundation Services Manager. To import a service deployment:

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, right−click Foundation Services Manager and select Import Service Development
from the pop−up menu. The Import Service Development window appears.

2.

The Foundation Services Deployment Import Files field lists the files you have selected to import. To
select a new file, click Add. To remove the file from the import list, click Remove or Remove All.

3.

Click OK to import the files and close the window.4.

The following SAS Management Console screen shot shows the Import Service Deployment window:

Foundation Services

Importing Service Deployments 15

Exporting Service Deployments
You can export the metadata for a service deployment and its contained objects to an XML file. To export a
deployment:

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, click the next to Foundation Services Manager to expand the Foundation Services
Manager view.

2.

Right−click a service deployment in the navigation tree and select Export Service Deployment from the
pop−up menu. The Export Service Deployment window appears.

3.

In the Export Service Deployment window, select the deployments whose data you want to export from the
list in the Application Service Deployments field.

4.

In the Export File field, type the name of the file (including the .xml extension) to which you want to export
the data. You can also click Browse to interactively select a file. Note: You must specify the .xml file
extension with the file name.

5.

Click OK to export the service deployment to a file and close the window.6.

The following SAS Management Console screen shot shows the Export Service Deployment window:

Foundation Services

Exporting Service Deployments 16

Duplicating Service Deployments
The Foundation Services Manager plug−in of the SAS Management Console enables you to duplicate an existing
service deployment under a new name. To duplicate a service deployment:

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, click the next to Foundation Services Manager to expand the Foundation Services
Manager view.

2.

Right−click a service deployment in the navigation tree and select Duplicate Service Deployment from the
pop−up menu. The Duplicate Service Development window appears.

3.

The Name field contains the name of the service deployment you are duplicating. You must change this name
to a unique deployment name. Enter a new Description if needed.

4.

Click OK to duplicate the service deployment. The new deployment appears in the navigation tree under the
Foundation Services Manager.

5.

The following SAS Management Console screen shot shows the Duplicate Foundation Services Deployment window:

Foundation Services

Duplicating Service Deployments 17

Redistributing Service Deployments
After you have configured a remote service deployment, you might need to move your remote service deployment or
service registry to a different machine.

Note: Before you can redistribute service deployments or service registries, if the service deployment exists in an
XML file instead of on the SAS Metadata Server, you must first import the service deployment into a SAS Metadata
Repository.

You can use SAS Management Console to reconfigure parameters as follows:

move the remote service deployment to another machine. To move a remote service deployment to another
machine, you must use the Foundation Services Manager to reconfigure any machine−specific service
configuration data. For example, the logging service might be configured to send its output to a file in the
directory c:\original\log.txt on a Windows machine. If you move the remote service deployment to
a UNIX machine, you must edit the logging service configuration and change the log file directory to
/newmachine/log.txt

Note: If the application that deploys the remote services is starting the service registry, the service registry
must be located on the same machine as the remote services deployment.

•

move the service registry to another machine. To move a service registry to another machine, follow these
steps:

reconfigure the Service Registry definition in the service deployment. To reconfigure the service
registry, use the Foundation Services Manager to update the service registry's host name and port
number.

Note: If the service registry's host name is configured as localhost, you do not need to update the
configuration when you move the service registry to a different machine.

Note: You must ensure that the port configured for the service registry does not conflict with a port
that is already in use on the new machine.

♦

for Event Broker Service definitions only, reconfigure any codebase property changes in the Named
Services definition. To reconfigure the codebase properties, use the Foundation Services Manager to
update the named service definitions on the service registry or in the service definition.

♦

ensure that the application that starts the service registry is coded to call the correct host name. For
details, see the SAS Foundation Services class documentation for the Deployment Service.

♦

•

After you have finished using SAS Management Console to re−configure the service deployment, if the service
deployment was imported into the SAS Management Console from an XML file, use SAS Management Console to
export the service deployment back to an XML file. You must export or copy the file to the location where the
application accesses the XML file.

Foundation Services

Redistributing Service Deployments 18

Installing and Running Foundation Services as a
Windows Service
With SAS 9.1.3, the Java Service Wrapper from Tanuki Software is provided with SAS Foundation Services. You can
use this software to install and run SAS Foundation Services as a Windows service for use with any foundation
services−enabled application. The Java Service Wrapper handles user logouts, and it also provides automatic restarts
when they are required.

Note: The SAS Web Infrastructure Kit includes a separate implementation of the Java Service Wrapper that enables
you to easily install the SAS Services application (which is provided with the SAS Web Infrastructure Kit) as a
Windows service. To use this implementation, see Running Remotely Deployed Services as a Windows Service in the
SAS Intelligence Platform: Web Application Administration Guide.

Wrapper Directory

When you install SAS Foundation Services, a Wrapper directory is created in the installation directory. For example,
if you use the default installation path, the Wrapper directory is located in C:\Program
Files\SAS\SASFoundationServices\1.1.. The Wrapper directory contains the following subdirectories:

bin
contains the following executable files:

InstallRemoteServices.bat
a sample of a script that you can use to install remotely deployed foundation services as a Windows
service.

StartRemoteServices.bat
a sample of a script that you can use to run remotely deployed foundation services as a console
application.

UninstallRemoteServices.bat
a sample of a script that you can use to uninstall remotely deployed foundation services as a Windows
service.

Wrapper.exe
an executable file that each of the above scripts calls in order to launch the Java Service Wrapper.

conf
contains the following configuration files:

wrapper.conf
the Java Service Wrapper configuration file.

sample.config
a sample metadata source configuration file, which specifies the location of the deployment
configuration for remote foundation services. The location can be either a SAS Metadata Repository
or a URL−accessible file.

Installing and Running Foundation Services as a Windows Service 19

The file sample.config specifies that the remote service deployment configuration is located in
the file sample.xml. If your deployment configuration is in a different location, see Specifying the
Location of the Deployment Metadata.

sample.xml
a sample remote services deployment file. This file contains default service configurations for the
core foundation services, except that the services are configured to be remotely accessible.

java.policy
a sample Java security policy file.

login.config
a sample Java Authentication and Authorization Service (JAAS) login configuration file.

lib
contains the following library files:

wrapper.jar
contains the Java Service Wrapper's integration classes.

Wrapper.dll
the Java Service Wrapper's Java Native Interface (JNI) library for Windows.

logs
location of the log files that are written by the Java Service Wrapper.

Configuring the Java Service Wrapper

The file wrapper.conf is the configuration file for the Java Service Wrapper. In most cases, you can use the
wrapper.conf file without making any changes. Instead, you can use command−line arguments in the executable
scripts to override the configuration settings. The wrapper.conf file contains the following configuration
directives:

wrapper.java.mainclass
specifies the name of the class that will be instantiated by wrapper.exe. This class must contain a main
method and must implement WrapperListener. In the sample configuration file wrapper.conf, this
directive specifies a class called
com.sas.services.deployment.servicewrapper.ServiceWrapperImpl, which is provided
with SAS Foundation Services. When this class is instantiated by Wrapper.exe, it registers itself as an
event listener and takes action whenever the native wrapper signals an event. For more information, see the
class documentation.

wrapper.app.parameter.1
specifies the metadata source configuration file, which specifies the location of the the deployment
configuration for remote foundation services. In wrapper.conf, this directive specifies sample.config
as the metadata source configuration file.

wrapper.additional.1
specifies an alternate Java security policy file.

wrapper.additional.2

SAS® Integration Technologies: Administrator's Guide

Installing and Running Foundation Services as aWindows Service 20

specifies an alternate JAAS login configuration file that is used by the SAS Authentication Service.

Setting a Dependency for the Metadata Server Service

If your deployment metadata is stored in a SAS Metadata Repository, and the SAS Metadata Server has been installed
as a service on the same machine as the SAS Services application, then you will need to specify a service dependency
to ensure that the services start in the correct order. You can specify the service dependency by adding the following
line to wrapper.conf:

wrapper.ntservice.dependency.1=Metadata−Service−Name

Changing Timeout Intervals

If the Java Service Wrapper is timing out while starting up or shutting down, it might be necessary to increase the
timeout intervals from the default values. Add the following parameters to wrapper.conf as appropriate.

wrapper.startup.timeout
specifies the startup timeout interval in seconds. The default value is 30.

wrapper.shutdown.timeout
specifies the shutdown timeout interval in seconds. The default value is 30.

Specifying the Location of the Deployment Metadata

The file sample.config is a sample metadata source configuration file which specifies that the remote service
deployment configuration is contained in the file sample.xml. If your deployment configuration is in a different
location, then you must update your metadata source configuration file to point to either the appropriate XML file or
to the appropriate SAS Metadata Repository. If the deployment configuration is in a SAS Metadata Repository, then
use the following syntax in your metadata source configuration file:

software_component=name
deployment_group_1=name

omr_host=fully−qualified machine name
omr_port=port number
omr_user=domain−qualified user ID
omr_password=password
omr_repository=repository name

For more information, see Using a SAS Metadata Repository Metadata Source in the Foundation Services class
documentation.

Executing the Java Service Wrapper

To use the Java Service Wrapper to install and run SAS Foundation Services as a Windows service, execute the
following scripts. In these scripts, you can use command−line arguments to override any of the configuration
directives that are contained in the wrapper.conf configuration file.

InstallRemoteServices
installs SAS Foundation Services as a Windows service.

SAS® Integration Technologies: Administrator's Guide

Installing and Running Foundation Services as aWindows Service 21

UninstallRemoteServices
uninstalls the Windows service after it has been installed.

StartRemoteServices
executes SAS Foundation Services as a Java Service Wrapper console application.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Installing and Running Foundation Services as aWindows Service 22

Understanding How Applications Deploy Foundation
Services
Applications can access service deployments from a SAS Metadata Repository or an XML file (that contains exported
metadata). Applications deploy services as follows:

For a local service deployment, the application uses a service loader utility to instantiate and initialize the
SAS Foundation Services for a local service deployment, and register the deployed services with a local
Discovery Service. The application then has exclusive access to these locally deployed services. For a
stand−alone deployment, you do not need to configure a Discovery Service.

•

For a remote service deployment that is shared between applications, one of the applications must deploy
the remote service deployment. The application uses a service loader utility to instantiate and initialize the
foundation services for a remote service deployment, and register the deployed services with a local
Discovery Service. The application then has local access to the services. To enable the services for remote
access, the remote service deployment specifies a remote Discovery Service which registers with the service
registry. The remote service deployment also contains a distributable configuration for any service that remote
clients will access. These remote services are registered with a remote Discovery Service. Other applications
can then use the remote Discovery Service to access the remote services.

•

Note: A foundation service−enabled application can be either a standard client application or a Web client application
that runs in a servlet container.

Your application must install the appropriate JAR files (for example, sas.svc.core.jar) in a location that is only
accessible to its own classloader. This installation restriction is due to the inheritance hierarchy of classloaders. This
inheritance hierarchy enables multiple applications to access classes that are available to higher level class loaders.
Therefore, each foundation service−enabled application should NOT install the required JAR files in a location that is
accessible to a class loader that might be shared amongst multiple applications. For details about coding client
applications for service deployment, see the SAS Foundation Services class documentation for
com.sas.services.deployment and com.sas.services.discovery and the SAS Integration Technologies: Developer's
Guide.

The following diagram shows these components and how they work together.

Understanding How Applications Deploy Foundation Services 23

In the diagram, Applications 1 through 4 all access their local and remote service deployment configurations from a
SAS Metadata Repository.

If Application 1 deploys the remote service deployment, the services are registered with a local Discovery Service and
a remote Discovery Service. Applications 2, 3, and 4 can then use the remote Discovery Service to locate and access
the deployed remote services. All of the applications share the same remote service deployment. In addition, each
application has exclusive access to its own local service deployment. For information about how applications locate
and access services, see Understanding How Applications Locate Services.

The different components in the diagram might exist on the same Web server, or on different Web servers. You can
install your applications and deploy your services on separate machines as required by the needs of your
implementation. For information about distributing service deployments, see Redistributing Service Deployments.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Understanding How Applications Deploy Foundation Services 24

Understanding How Applications Locate Foundation
Services
Applications can access services that are deployed locally or remotely.

Note: Your foundation service−enabled application can be either a standard client application or a Web client
application that runs in a servlet container.

To locate local and remote services:

The application uses a service loader to instantiate and initialize local services, including its local Discovery
Service.

1.

The application initializes and registers the local Discovery Service with a remote Discovery Service. The
application locates the remote Discovery Service by obtaining the Remote Method Invocation (RMI) registry
location from a SAS Metadata Repository (or XML file that contains exported metadata) and performing an
RMI name lookup on the remote Discovery Service. The remote Discovery Service enables the client to locate
remotely deployed SAS Foundation Services.

2.

When the application requests a service, its local Discovery Service first checks to see if the service is a
locally registered service.

If the requested service is a locally registered service, the application binds to the local service.♦
If the requested service is not a locally registered service, then the local Discovery Service uses the
remote Discovery Service to search the remote services deployment for the requested service.

If the requested service is not registered with the remote Discovery Service, an error is
returned.

◊

If the requested service is registered with the remote Discovery Service, a stub to the remote
service is returned and the application can then use the remote service.

◊

♦

3.

For example, in the following diagram, if an application requests the Logging Service, the application will bind to the
local Logging Service. If an application requests the Session Service, the application will use the remote Discovery
Service to locate and bind to the remote Session Service.

Note: If the application that deploys the remote services also starts the service registry, the service registry must exist
on the same machine as that application.

Understanding How Applications Locate Foundation Services 25

The following scenarios show examples of local and remote service deployment and access.

Scenario: Standalone Application•
Scenario: Remote−Accessible Services•
Scenario: Local and Remote−Accessible Services•

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Understanding How Applications Locate Foundation Services 26

Scenario: Stand−alone Application
A stand−alone application deploys services locally, uses the services, and terminates the services when they are no
longer needed. If an application does not need to interact with any other applications, then it can be a stand−alone
application with its own exclusive local service deployment. Services locally deployed by this application are not
available to any other application; in addition, no remote services are available.

Note: A foundation service−enabled application can be either a standard client application or a Web client application
that runs in a servlet container.

To deploy local services for its own exclusive use, the application:

Uses the service loader to query service deployment metadata from either a SAS Metadata Server or XML file
(that contains exported metadata).

1.

Uses the service loader to instantiate services defined in the service deployment metadata and registers them
with the local Discovery Service.

2.

Uses the local Discovery Service to find services based upon their service interfaces and optionally, their
service attributes.

3.

When the application no longer needs the services or is ready to exit, it terminates the local Discovery Service; the
local Discovery Service then destroys all locally instantiated services.

Figures 1 and 2 show standalone applications that access their service deployments from a SAS Metadata Repository
or XML file respectively. Figure 3 shows two standalone Web applications that access their service deployments from
a SAS Metadata Repository and each deploy their own local services for their own exclusive use.

Figure 1: Standalone Application accessing Local Deployment from a SAS Metadata Server

Figure 2: Standalone Application accessing Local Deployment from an XML File

Scenario: Stand−alone Application 27

Figure 3: Two Standalone Web Applications accessing Local Deployments from a SAS Metadata Repository

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Scenario: Stand−alone Application 28

Scenario: Remote−accessible Services
To enable applications to access remote services, one application must deploy the remote services. (The application
that deploys the remote services can then access the services as local services). Instead of deploying their own set of
local services, other applications can access the remote services. To access the remote service deployment,
applications locate the deploying application's remote Discovery Service in order to locate and access the deployed
remote services. This scenario is useful if one or more client applications need to use the same set of services.

In this scenario, Application 1 deploys the remote services and accesses them as local services. Applications 2, 3, and
4 locate Application 1's remote Discovery Service in order to access the remote services. Note that Applications 2 and
3 are Web client applications that run in the same servlet container and each deploy their own local services for their
own exclusive use.

To deploy remote services, Application 1 does the following:

Uses the service loader to query service deployment metadata from either a SAS Metadata Server or an XML
file (that contains exported metadata).

1.

Uses the service loader to instantiate services defined in the service deployment metadata and register them
with the local Discovery Service.

Note: In this scenario, these services must be configured as remote−accessible.

2.

Uses its local Discovery Service to find services based upon their service interfaces and optionally, their
service attributes.

3.

To locate the remote−accessible services (that were deployed by Application 1), Applications 2, 3, and 4 do the
following:

Use the service loader to query service deployment metadata from either a SAS Metadata Server or an XML
file (that contains exported metadata).

1.

Use the service loader to obtain a name binding to the remote−accessible Discovery Service instantiated by
Application 1.

2.

Register the remote Discovery Service with their own local Discovery Service.3.
Use their own local Discovery Service to find services based upon their service interfaces and optionally, their
service attributes. The local Discovery Service uses the remote Discovery Service to locate the
remote−accessible services.

4.

Scenario: Remote−accessible Services 29

Note: In this scenario, Applications 2, 3 and 4 do not deploy any services themselves; they only locate
remote−accessible services instantiated by Application 1.
When Applications 2, 3, and 4 no longer need the services, they each terminate their own local Discovery
Service.

5.

When Application 1 exits, it terminates its local Discovery Service; the local Discovery Service then terminates all
locally instantiated services. After all services are terminated, no services are available to any other applications.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Scenario: Remote−accessible Services 30

Scenario: Local and Remote−accessible Services
To enable other applications to access remote services, one application must deploy the remote services. (The
application that deploys the remote services can then access the services as local services). Instead of deploying their
own set of local services, other applications can access the remote service deployment. To access the remote service
deployment, applications locate the deploying application's remote Discovery Service in order to locate and access the
deployed remote services. In addition, these applications can each have their own set of locally deployed services to
which each application has its own exclusive access. This example is useful when client applications need to have
both of the following:

services deployed locally for exclusive use•
use of the same set of remote services•

Note: A foundation service−enabled application can be either a standard client application or a Web client application
that runs in a servlet container.

In this scenario, Application 1 deploys the remote services and accesses them as local services. Application 2 locates
Application 1's remote Discovery Service in order to access the remote services. Application 2 also deploys local
services for its own exclusive use.

To deploy remote services and access these services locally, Application 1 does the following:

Uses the service loader to query service deployment metadata from either a SAS Metadata Server or an XML
file (that contains exported metadata).

1.

Uses the service loader to instantiate services defined in the metadata and register them with the local
Discovery Service.

Note: These services must be configured for remote access.

2.

Uses its local Discovery Service to find services based upon their service interfaces and optionally, service
attributes.

3.

To deploy local services and access remote services, Application 2 does the following:

Uses the service loader to query service deployment metadata from either a SAS Metadata Server or an XML
file (that contains exported metadata).

1.

Scenario: Local and Remote−accessible Services 31

Uses the service loader to instantiate services defined in the metadata and register them with the local
Discovery Service.

Note: Because these services are only used by Application 2, they are not configured for remote access.

2.

Uses the service loader to query service deployment metadata from either a SAS Metadata Server or an XML
file (that contains exported metadata).

3.

Uses the service loader to obtain a binding to the remote Discovery Service instantiated by Application 1.4.
Uses its local Discovery Service to find services based upon their service interfaces and optionally, service
attributes.

Note: Application 2 has access to both local services and remote services. When services are located, the local
Discovery Service first tries to find a service locally before it looks for a remote−accessible service.

5.

When Application 2 no longer needs the services it terminates its local Discovery Service. This will cause its
locally instantiated services to be destroyed and its bindings to Application 1's remote services to be
terminated.

6.

When Application 1 exits, it terminates the local Discovery Service; the local Discovery Service then terminates all
locally instantiated services. After all services are terminated, no services are available to any applications.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Scenario: Local and Remote−accessible Services 32

Understanding How Applications Share Foundation
Services
An application can use the SAS Foundation Services to access another application's session context.

Note: A foundation service−enabled application can be either a standard client application or a Web client application
that runs in a servlet container.

In the diagram, Applications 1−4 use the same remotely deployed Session Service. When Application 1 launches
Application 2, it passes its session ID to Application 2. Application 2 can then bind to the remote Session Service and
obtain and use Application 1's session and user context information. This allows the user to seamlessly pass−through
to Application 2 without requiring a separate login definition.

Foundation Services

Understanding How Applications Share Foundation Services 33

Modifying Service Configurations
After you define a service deployment and its associated services, you might want to edit the configuration
information for particular services. You can use the Foundation Services Manager to modify the configuration data for
the following services:

Event Broker Service. For details, see Understanding Events and Process Flows and Modifying the Event
Broker Service Configuration.

•

Information Service For details, see Modifying the Information Service Configuration.•
Logging Service. For details, see Modifying the Logging Service Configuration.•
Session Service. For details, see Modifying the Session and User Service Configurations.•
User Service. For details, see Modifying the Session and User Service Configurations.•

Foundation Services

Modifying Service Configurations 34

Understanding the Event Broker Service
The Event Broker Service enables you to receive external event notifications and process them based on the name of
the event that is received. Events can be structured or unstructured as follows:

A structured event is specified as well−formed XML and adheres to the event message specification. (For
details about the event message specification, see the SAS Foundation Services class documentation for the
Event Broker Service.) It contains information such as the name of the event, the associated properties, and
the message body.

•

An unstructured event must also be specified as well−formed XML; however, it does not adhere to the event
message specification. For unstructured events, the entire event is parsed as the message body.

Note: The Event Broker Service only handles unstructured events if default event handlers have been
configured.

•

For details about the event message specification, see com.sas.services.events.broker in the Foundation Services Class
Documentation.

The following diagram shows the components of the Event Broker Service:

The Event Broker Service works as follows:

Listens for incoming events via transports or applications. The Event Broker Service can monitor for and
receive events via the following transports:

RMI: if the RMI transport is enabled, the Event Broker Service registers itself to one or more RMI
registries.

♦

1.

Understanding the Event Broker Service 35

To enable the event broker service to be accessed via RMI, you must enable remote access in the
service configuration. Enabling remote access registers the service to the RMI Registry. Remote
access to the Event Broker Service enables the following:

Java clients that are sending can use the appropriate RMI (remote method invocation) registry
to locate the Event Broker Service in order to send events

◊

Java clients that are listening can use the appropriate RMI (remote method invocation)
registry to locate the Event Broker Service and register to listen for particular events.

◊

HTTP: the HTTP transport listens for events sent from HTTP clients. Clients can also be
SOAP−enabled.

♦

JMS: the JMS transport listens for events sent from any JMS−compliant messaging client. This
transport uses administered objects to isolate client applications from the proprietary aspects of a
provider. When you configure this transport, you specify whether the administered objects are on the
local file system or an LDAP directory server. The transport then uses JNDI to look up the
administered objects on the local files system or LDAP directory server.

♦

MQJMS: the MQJMS transport listens for events sent from WebsphereMQ (formerly MQSeries)
messaging clients.

♦

JMQ: the JMQ transport listens for events sent from SunONEMQ (formerly iPlanet Message Queue)
messaging clients.

♦

Mail: the mail transport listens for events sent to IMAP or POP3 mail servers.♦
IOM: the IOM transport listens for events sent from SAS servers.♦

Determines the event name to use for event configuration information. The Event Broker Service parses
the event XML to determine the event name (or names if a naming hierarchy is used) to use for event
configuration information. If an unstructured event is received, the Event Broker Service uses the service
configuration information to map the unstructured event to a default event name.

2.

Forwards the event to the appropriate event handling agent(s) based on the configured event type. The
Event Broker Service uses configuration information defined for the event name or default event names to
determine appropriate actions to take for the event.

For a broadcast event type, the Event Broker Service notifies all handling agents (process flows and listening
applications) of the event as follows:

If an application is a registered listener for an event, the Event Broker Service notifies the listening
application of the event.

♦

If the event configuration contains process flows, the Event Broker Service instantiates a flow engine
for each configured process flow in order to process the event message.

♦

For a request/response event type, the Event Broker Service notifies only one handling agent (listening
application or process flow) as follows:

If an application is a registered listener for an event, the registered listener has precedence over a
process flow (only one process flow can be defined for request/response types). Therefore, the Event
Broker Service forwards the event to the listening application.

♦

If the event configuration contains a process flow and there is no application that is a registered
listener, the Event Broker Service instantiates a flow engine to process the event message.

♦

3.

Sends a response based on the event response type. The Event Broker Service uses the event configuration
to determine whether to send a response to an event.

If the event sender does not require a reply, the event request should specify a response type of none
or ack (acknowledge). To configure an event for no response or acknowledge, you specify broadcast
as the event type. For acknowledge response types, the Event Broker Service sends an acknowledge
receipt to the event sender.

♦

If the event sender requires a reply, the event request should specify a response type of result. To
configure an event for a response, you specify request/response as the event type. For
request/response types, the Event Broker Service sends a response to the event sender.

♦

4.

SAS® Integration Technologies: Administrator's Guide

Understanding the Event Broker Service 36

Important Note: Unstructured event requests are automatically assigned a response type of none. Therefore,
for event definitions that will be used to handle unstructured event requests, you must configure the response
type as broadcast.

Important Note: An event is completely qualified by its name and type. Therefore, the Event Broker Service
will view events as separate events if they are sent or configured with the same name, but different event
types. For example, if you send an event named AlertHigh with a response type of none to an event broker
that contains an event definition named AlertHigh that is configured as a request/response type of event,
an error is returned.

Applications can send and receive events using either of the following:

transport monitors•
RMI (remote method invocation).•

Overview of Event Broker Discovery Service

The Event Broker Discovery Service provides the ability to locate one or more Event Broker Services that can process
a particular event.

By default, an Event Broker Discovery Service can locate any Event Broker Service that is part of its same
deployment. However, to locate an Event Broker Service outside of its deployment, the Event Broker Service must be
remote−accessible and its location must be defined to the Event Broker Discovery Service. You can define Event
Broker Service location information as part of the Event Broker Discovery Service configuration. Format the
configuration with XML initialization data as follows:

<EventBrokers>
 <Location url="//host:port/name"/>
 <Location url="//host:port/name"/>
 ...
</EventBrokers>

Specify the appropriate RMI URL specification for each remote−accessible Event Broker Service.Foundation
Services

SAS® Integration Technologies: Administrator's Guide

Understanding the Event Broker Service 37

Understanding Events and Process Flows
The Event Broker Service configuration allows you to configure one or more events. When an event is received, the
Event Broker Service maps the event name to a configured event name. If an unstructured event is received, the Event
Broker Service maps the unstructured event to a configured default event name.

An Event configuration consists of the following information:

Name: the name of the event in the incoming XML request maps to the configured event name. You can also
name events so that they are part of a naming hierarchy. Events in a naming hierarchy are separated by a
period. For example: Animals, Animals.Dogs, Animals.Dogs.Retriever. Naming hierarchies are
handled differently based on the event type:

If a broadcast event for Animals.Dogs.Lab is received, the event is delivered to all handling
agents (process flow or application) that are registered for Animals.Dogs.Lab, Animals.Dogs,
and Animals.

♦

If a request/response event is received, it is delivered to a single handling agent. If the incoming
request contains an event name that does not exactly match an event name in the Event Broker
Service configuration, the naming hierarchy is searched for the best possible event name match that is
also configured as a request/response event type.

♦

•

Type: events can be one of the following types:
Broadcast, where a notification is sent to all handling agents, and either no response or an
acknowledge receipt, is sent to the originating client.

♦

Request/Response, where notification is sent to one handling agent and a response is sent to the
originating client.

♦

Configure the event type as follows:
If the incoming XML request specifies a response type of none or ack (acknowledge), the event
sender does not require a reply. To configure an event for no response or acknowledge, you specify
Broadcast as the event type. For unstructured events, specify Broadcast as the event type.

♦

If the incoming XML request specifies a response type of result, the event sender requires a reply. To
configure an event for a response, specify Request/Response as the event type.

♦

The following table summarizes information about the incoming event request/response type and configured
event type.

Event
Request/Response

Type

Configured Event
Response Type

Event Notifications Event Response

none Broadcast

Notification sent to all process flows
configured for the event and all
listening applications registered for
the event.

No response sent

ack Broadcast

Notification sent to all process flows
configured for the event and all
listening applications registered for
the event.

Acknowledge
receipt sent to the
event sender.

result Request/Response Notification sent to only one
handling agent (listening application
or process flow). If there is a
listening application, it takes

Response sent to
the event sender.

•

Understanding Events and Process Flows 38

precedence over the process flow.

Note: If the event configuration does not match the incoming event request response type, then an error is
returned (Event not configured).
Security: you can specify different security attributes for each event:

To authenticate and authorize the sender's credential, select the Check sender's authorization. If you
select the Check sender's authorization property, the event's process flows will not run unless the
sender's credentials are successfully authenticated by the SAS Metadata Server's authentication
provider and then authorized by the SAS Metadata Server's authorization facility as having the
Execute permission for the event.

Note: The sender's event request must contain the sender's user ID and password, and optionally, the
authentication domain. You can configure a default authentication domain in the configuration for the
User Service (see Additional Security Configuration); if you configure a default authentication
domain in the User Service, then the sender is not required to specify the authentication domain in the
event request.

♦

To run event process flows under a particular identity, you must configure the events to run under one
of the following:

the sender's identity◊
the broker's identity
Note: You can only configure event process flows to run under the broker's identity if the
Event Broker Service is deployed using a SAS Metadata Server (instead of an XML file) as
the metadata source.

◊

an identity that you supply in the configuration◊
You can also specify that the event run with no security.

♦

•

Additional Security Configuration

To set up security for sender's credentials or event process flows, you must

use the User Manager plug−in to SAS Management Console to define user or group identities in the SAS
Metadata Repository.

•

create, configure, and deploy the User Service (of the SAS Foundation Services). You must configure and
deploy the User Service as part of the Event Broker Service's service deployment; the User Service must be
available to the Event Broker Service at run−time.

To authenticate users, the User Service requires an appropriate login module configuration file. In addition,
other Java 2 policy and JAAS policy files might be required. For example, to run an event's process flows
under a particular security context, you must set up subject−based security with the JAAS policy
configuration file in order to restrict access to the appropriate resources.

For details about required User Service configuration, see the SAS Foundation Services class documentation
for the User and Security Services. For details about additional User Service configuration in the Foundation
Services Manager, see Modifying the Session and User Service Configurations.

•

In addition, to set up authorization for sender credentials, you must grant the sender the Execute permission for the
event. To grant the Execute permission:

Use the Authorization Manager plug−in to SAS Management Console to define the Execute permission.1.

SAS® Integration Technologies: Administrator's Guide

Understanding Events and Process Flows 39

From the Foundation Services Manager, open the event properties.2.
On the event's Authorization tab, click Add to add the appropriate user or group for the sender.3.
Also on the event's Authorization tab, select the sender's user or group identity and grant the Execute
permission.

4.

After you define an event, you can define your process flows.

Understanding Process Flows

Process flows are used to process event messages. Process flows contain process nodes, which contain logic to process
messages, and message nodes, which encapsulate the inputs and outputs for the process nodes.

For broadcast events, you can configure one or more process flows for an event.•
For request/response events, you can only configure one process flow for an event.•

You can configure a process flow by using the Process Flow Editor to define a Process Flow Diagram (PFD). A
process flow configuration consists of:

Name and description: the process name and optionally, a description.•
Process nodes: a process node is a Java class that can have one or more inputs and outputs. You diagram
these inputs and outputs as message nodes. When an event is received and a process flow needs to be
instantiated for the event, a runtime flow engine is instantiated. The runtime flow engine calls a process node
by instantiating the Java class associated with that node. Currently, all process nodes are executed
synchronously. A process node configuration consists of:

Name and description: the process node name and optionally, a description.♦
A class: the Java class is used to instantiate the process node. You can then generate the skeleton for
the class, define your logic for the class, and compile the class.

♦

Attributes for the class: attributes are name/value pairs for the class.♦
Note: If a process node has no predecessors, it is the starting node for the process flow. Each process flow can
have only one starting node.

•

Message nodes: a message node encapsulates the outputs and inputs to process nodes in a process flow. A
message node configuration consists of:

Name and description: the message node name and optionally, a description.♦
Details: details specify whether a message is required from the previous process node in order to
make a process node eligible for firing.

♦

•

The following screen capture shows an example of a portion of a process flow diagram:

SAS® Integration Technologies: Administrator's Guide

Understanding Events and Process Flows 40

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Understanding Events and Process Flows 41

Modifying an Event Broker Service Configuration
After you create an Event Broker Service in your service deployment, you can modify its service configuration.

To modify the Event Broker Service configuration:

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, expand the folders in the Foundation Services Manager until you find the Event Broker
Service you want to modify.

2.

Right−click the service you want to modify and select Properties from the pop−up menu. The object's
properties are displayed.

3.

Select the Service Configuration tab and click Edit Configuration. The EventBroker Service Configuration
window appears.

4.

On the Defaults tab, enter the Default event name to use for unstructured events. Select the Resources tab.5.
On the Resources tab, enter the event management and thread pool information for the service. Select the
Connections tab.

6.

On the Connections tab, specify an Administrator Port and click Insert to create a new transport or select a
transport and click Edit to edit a transport's properties. For details about creating and editing transports, see
the Foundation Services Manager help. When you are finished editing a transport, click OK.

7.

To enable a service for remote access:
On the Connections tab, select the RMI_Transport and click Edit to edit the RMI transport's
properties. Select the General tab.

a.

On the General tab, to configure a new default event name for RMI transports that overrides the
default Event Broker Service event name, enter a Default event name. Select the RMI Details tab.

b.

On the RMI Details tab, select the Enable remote clients to access service capabilities check box
and click Service Names to define a new named service. When you are finished creating named
services and editing the transport, click OK.

c.

8.

When you are finished creating or editing a transport, click OK to save the Event Broker Service
configuration to the metadata repository.

9.

After you edit the Event Broker Service configuration, you can select the Event Broker Service in the navigation tree
and create event definitions for the Event Broker Service. The event definitions you create can then be used to hold
process flow definitions that you create.

Foundation Services

Modifying an Event Broker Service Configuration 42

Creating Events and Process Flows

Create a New Event

To create a new event:

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, expand the folders in the Foundation Services Manager until you find the Event Broker
Service for which you want to define a new event.

2.

Right−click on the Event Broker Service and select New Event from the pop−up menu. The New Event
wizard window appears.

3.

Enter a Name and optionally, a Description. Click Next. The New Event wizard − Type window appears.4.
Select the type of event that you want to create. Click Next. The New Event wizard − Security window
appears.

5.

Select the type of security to use when running the event. Click Next.6.
Review the event definition and Click Finish to save the event definition in the metadata repository.7.

After you define an event, you can select the event definition in the navigation tree and create process definitions for
the event.

Create a New Process and Process Flow

To create a new process and process flow:

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, expand the folders in the Foundation Services Manager until you find the event for
which you want to define a new process flow.

2.

Right−click on the event and select New Process from the pop−up menu. The New Process Wizard − Name
window appears.

3.

Enter a Name to use for the process flow. Click Finish to save the process flow definition in the metadata
repository.

4.

In the navigation tree, right−click the process flow that you just defined and select Process Editor from the
pop−up menu. The Process Editor appears.

5.

In the toolbar, select , hold down the mouse button, and drag the cursor into the drawing area of the Process
Editor. The New Process Node Wizard appears.

6.

Enter a Name and optionally, a Description for the process node. Click Next. The Process Node Wizard −
Class Window appears.

7.

Enter the Class to instantiate for this process node, and Generate and Compile the class as appropriate. Click
Next. The Process Node Wizard − Attributes Window appears.

8.

Click Insert to add a new row to the name/value columns. Select the added row and double−click the Name
or Value field with the left mouse button in order to edit the field. When you have finished entering your
name/value pairs, click Finish. The Process Node definition is saved. You can now create a message node for
outputs and inputs.

9.

In the toolbar, select , hold down the mouse button, and drag the cursor into the drawing area of the Process
Editor. The Process Message Wizard appears.

10.

Enter a Name and, optionally, a Description for the message node. Click Next. The Process Message Wizard
− Format Window appears.

11.

Select the Usage drop−down and choose whether the input is required or optional for downstream process
nodes. Optionally, specify the Format for the node. Click Finish to define the message node.

12.

Creating Events and Process Flows 43

To create a connection between the process node and the message node, position your cursor on the process or
message node so that a pencil icon appears. Click the left mouse button and drag the cursor to the node to
which you are making the connection.

13.

Create other process nodes, message nodes, and connections as required for the process flow.14.
Click to save the process flow.15.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Creating Events and Process Flows 44

Modifying the Information Service Configuration
The Information Service:

provides a mechanism to perform a federated search of any repositories that a user has a connection to. The
term federated means connected and treated as one. The classes in the Information Service package enable the
creation of a single filter which can search disparate repositories (for example, SAS Metadata Repositories
and LDAP repositories).

•

allows repository−specific searches to be performed, so that efficient searching can be achieved.•
provides a convenience method for fetching an item from a repository using a URL.•
can be used in conjunction with the User Services and the Authentication Service to authenticate users, create
User Contexts, locate servers that the user has access to, and create repository definitions to use in making
server connections.

•

For more information about the Information Service, see com.sas.services.information in the Foundation Services
class documentation.

The Information Service configuration consists of the following items:

Protocols: the protocol definition maps the repository protocol to a Java class that implements the
com.sas.services.information.RepositoryInterface interface. When connecting to a
repository, the protocol class definition is used to create the new repository object.

•

Repositories: a repository is a persistent storage mechanism for metadata and content. The repository
definitions specify how to connect to the repository and how to allow client software to connect to a
repository by name. You must create a repository definition for each repository your application is going to
access. (You must also define a repository when using the getPathUrl method of the
MetadataInterface.)

•

Repository groups: a repository group identifies a set of repositories that can be searched together.•
Smart objects: smart objects are objects that act as wrappers for metadata entries in order to hide the details
of repository−specific metadata types. A smart object definition consists of the following:

the protocol of the repository that contains the metadata♦
the interface for the smart object♦
the repository−specific type of metadata♦
the action to take to implement the object♦
the filter class to use to search for this type of object (object)♦

You can use smart objects to specify implementations (smart object action definition) for one or more
repositories. You must specify an implementation (smart object action definition) for at least one repository
type. In the smart object action definition, you can also specify a filter to use for implementing different smart
objects for the same repository type.

•

Factories: factories are objects that act as wrappers for metadata entries in order to hide the details of
repository−specific metadata types. However, with factories, you can not specify an interface or filter to use
when creating the object. In addition, within each factory, you can only specify implementations (factory
object action definitions) for one type of repository. A factory definition consists of the following:

the protocol of the repository that contains the metadata♦
the repository−specific type of metadata♦
the action to take to implement the factory♦

Note: You must use smart object definitions if you wish to specify the following:

an interface for the object♦
a filter to use when implementing the object♦

•

Modifying the Information Service Configuration 45

multiple repositories for the actions of an object♦

To configure the Information Service, follow these steps:

Open SAS Management Console and connect to a metadata repository.1.
In the navigation tree, expand the Foundation Services Manager tree to locate and select the Information
Service that you want to modify.

2.

Right−click the Information Service and select Properties. The Information Service properties window
appears.

3.

Select the Service Configuration tab. Click Edit Configuration. The Information Service Configuration
window appears.

4.

In the Protocols tab, click New to add a protocol or select a protocol and click Edit to edit a protocol. Enter
the following information:
Protocol

specifies the protocol for the information service.
Class

lists the fully qualified Java class for the selected protocol. When requesting a connection to a new
repository, this class is used in the connect method.

5.

In the Repositories tab, click New to add a repository, or select a repository and click Edit to edit a repository.
Enter the following information:
Information Repositories

lists the repositories for the specified protocol.
Protocol

specifies the protocol for the Information Service.
Description

specifies the repository description.
Host

specifies the fully qualified DNS name of the host where the repository server is running.
Port

specifies the TCP/IP port on which the repository server is listening.
Domain

specifies the authentication domain in which the repository server is running.
Base

specifies the base directory for the repository.
Proxy

specifies a URL for a proxy server.
Auto−Connect

when checked, specifies that the information service should automatically connect each authenticated
user to the repository.

Secure
when checked (and if security is supported), specifies that the connection to the repository should be
made using a secure protocol.

6.

If you want to define repository groups, select the Groups tab. Click New to add a repository group, or select a
repository group and click Edit to edit a repository group. Enter the following information:
Name

specifies the repository group name.
Member Repositories

specifies the repositories that are members of the repository group. Select a repository from the
Available Repositories panel and click the arrow button to move it to the Member Repositories
panel.

7.

SAS® Integration Technologies: Administrator's Guide

Modifying the Information Service Configuration 46

If you want to define smart objects, select the Smart Objects tab. Click New to add a smart object or select a
smart object and click Edit to edit a smart object. Enter the following information:
Name

specifies the smart object type name. This string should exactly match the string returned from the
smart object implementation's getType() method.

Interface Class
specifies the fully−qualified Java interface that objects of this type will implement.

Filter Class
specifies the fully−qualified Java class to use to most effectively search for objects of this type. This
class will likely contain specific extensions to the
com.sas.services.information.Filter class to make searches more efficient.

Actions
defines how and when objects of this type will be created. An action definition contains a protocol, a
repository−specific type, a fully qualified Java class for the implementation to instantiate when that
type is encountered, and an optional filter to run against an object which it must match for the action
to be taken. Click Add to define a new action, or Edit to change an existing action and enter the
following information:
Protocol

specifies the repository protocol that this action applies to. Select omi for Open Metadata
Interface, ldap for LDAP directory server, or dav for WebDAV server.

Type
specifies the repository−specific type to look for when creating this type of object.

Class
specifies the fully qualified Java class to create when encountering this type in the repository.

Filter
specifies an optional filter which an object must validate against before this action is taken.
The format of the filter is
[*association/]@attribute='value'

association
specifies the name of an association from the specified repository type; the objects in
the association will be tested against the attribute portion of the filter.

attribute
specifies an attribute to test for validation. The attribute can be an attribute on the
objects in the association or, if no association is specified, an attribute can be an
attribute on the object itself.

value
specifies the attribute value to test the object against to be sure it is the correct type.

8.

If you want to define factory definitions, select the Factories tab. Click New to add a factory or select a
factory and click Edit to edit a factory. Enter the following information:
Protocol

specifies the protocol for the Information Service.
Types

specifies the factory types associated with the Information Service and the selected protocol. You may
select more than one factory type.

Action
specifies the action associated with the selected factory. The Action table lists the type, class, method,
and filter for each action. Click Add to define a new action, or Edit to change an existing action and
enter the following information:
Type

9.

SAS® Integration Technologies: Administrator's Guide

Modifying the Information Service Configuration 47

specifies the action type. Select Class (to specify a class to generate the smart object),
Constructor (to specify a constructor for a Java class that implements the smart object), or
Service (to specify a Foundation Service).

Filter
specifies the fully qualified Java class to use to search for objects of this type. The class will
most likely contain extensions to the com.sas.services.information.Filter
class to make searches more efficient.

Class
specifies the fully qualified Java class to instantiate for the action.

Method
specifies the method for the action. This field is displayed only for action types of Class and
Service.

Click OK to save the Information Service configuration to the metadata repository.10.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Modifying the Information Service Configuration 48

Modifying the Logging Service Configuration
The Logging Service enables applications to:

send runtime messages to one or more output destinations, including consoles, files, and socket connections.•
configure and control the format of information sent to a particular destination. Configuration can be
performed through static configuration files or by invoking runtime methods that control logging output.

•

perform remote logging, which involves sending log messages generated in one Java virtual machine (JVM)
to another JVM.

•

perform logging either by user session or by JVM.•

For more information about the Logging Service, see com.sas.services.logging in the Foundation Services class
documentation.

When a service deployment is defined and deployed, a base logging configuration is used to determine the appropriate
output destinations. However, you can use SAS Management Console Foundation Services Manager to modify the
Logging Service configuration and configure additional logging contexts and output destinations. The Logging
Service configuration consists of the following items:

Contexts: the logging context definition specifies the name and outputs for a specific logging context. In your
application, you code the Logging Service to send information to a specific logging context. (The
RootLoggingContext is used for any logging context that is not configured.)

When naming the logging context, you can specify the logging context name as part of a naming hierarchy. In
a naming hierarchy, the logging context names are separated by a period (for example,
com.sas.services.event). If a call to a logging context named com.sas.services.event is
made and there is no logging context for com.sas.services.event, then the Logging Service looks for
a logging context of com.sas.services. If there is no logging context for com.sas.services, then
com.sas is used.

When you define a logging context, you associate outputs with the logging context in order to specify where
to send logging messages for that particular logging context.

Note: To associate outputs with a logging context, you must first create the output definition.

•

Outputs: the output definition specifies an output destination for the logging messages. The Logging Service
can send the log messages to a file, console, or socket.

•

To configure the Logging Service:

In the SAS Management Console navigation tree, expand the Foundation Services Manager tree to locate and
select the Logging Service that you want to modify. Right−click on the Logging Service and select
Properties. The Logging Service properties appears.

1.

Select the Service Configuration tab and click Edit Configuration. The Logging Service Configuration
window appears.

2.

On the Outputs tab, click New to add an output, or select an output and click Edit to edit an output. Enter the
following information:
ID

specifies the name or identifier for the output.
Layout Pattern

3.

Modifying the Logging Service Configuration 49

specifies how to format the log message. For details about specifying layout patterns, see Pattern
Layouts.

Async
specifies whether asynchronous logging is activated.

Type
specifies the output type. Valid values are File, Console, or Socket.

If File is selected, the tab contains these items:

Fields when File Is Selected

File specifies the file to use for output

Append
specifies whether to append the logging output to the existing output in
the file. If Append is not selected, then any existing data in the file will be
overwritten.

ImmediateFlush
specifies whether the contents of the log are emptied after each logging
statement.

⋅

If Console is selected, the tab contains these items:

Fields when Console Is Selected

Target specifies the output destination. Valid values are System.out or System.err

⋅

If Socket is selected, the tab contains these items:

Fields when Socket Is Selected

Host specifies the socket host (machine name).

Port specifies the socket port number.

⋅

Click OK to return to the Logging Service Configuration window.
On the Context tab, click New to add a context, or select a context and click Edit to edit a context. Enter the
following information:
Name

specifies the name of the context.
Priority

specifies the priority level of the logging context. The priority levels are
DEBUG

displays the informational events that are most useful for debugging an application.
INFO

displays informational messages that highlight the progress of the application.
WARN

displays potentially harmful situations.
ERROR

displays error events that might allow the application to continue to run.
FATAL

displays very severe error events that will probably cause the application to abort.
Chained

4.

SAS® Integration Technologies: Administrator's Guide

Modifying the Logging Service Configuration 50

specifies whether the context is chained. Chaining designates that the log message is processed by
both the current context and also by logging contexts higher in the logging context hierarchy.

Outputs
specifies the output destinations for the context. Click Add to add an output. The Add Logging
Service Output window appears. Select an output and click Add. Click OK.

Click OK to return to the Logging Service Configuration window.
Click OK to save the new Logging Service configuration to the metadata repository.5.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Modifying the Logging Service Configuration 51

Pattern Layouts
The layout specifies how the output is formatted before it is sent to the output device. The layout is specified as a
pattern string. The following table shows the characters available for use within layout pattern strings:

The following table shows the special conversion characters available for use within layout pattern strings:

Conversion
Character

Result

c

Used to output the logging context. The logging context conversion specifier can be optionally
followed by precision specifier, that is a decimal constant in brackets or braces. The precision
specifier specifies the number of right most components of the logging context name that will
be printed. For example, for the logging context name a.b.c the pattern %c{2} will output b.c.

If you do not specify a precision specifier, the logging context name is printed in full.

d

Used to output the date of the logging event. The date conversion specifier may be followed by
a date format specifier enclosed between braces. For example, %d{HH:mm:ss,SSS} or
%d{dd MMM yyyy HH:mm:ss,SSS}. If no date format specifier is given, then ISO8601
format is assumed.

l

Used to output location information of the caller that generated the logging event. The location
information depends on the JVM implementation, but usually consists of the fully qualified
name of the calling method followed by the caller's source, the file name, and line number all
within parentheses. The location information can be very useful but its generation can cause
performance issues.

m Used to output the application supplied message associated with the logging event.

n
Used to output the platform dependent line separator characters. This conversion character
offers similar performance to using non−portable line separator strings such as "\n", or "\r\n".
Thus, it is the preferred way of specifying a line separator.

p Used to output the priority of the logging event.

r
Used to output the number of milliseconds elapsed since the start of the application until the
creation of the logging event.

s
Used to output the session ID associated with this logging event. The output for this conversion
character will be an empty string if the Logger being used does not have an associated
SessionContext.

t Used to output the name of the thread that generated the logging event.

u
Used to output the user name associated with this logging event. The output for this conversion
character will be an empty string if the Logger being used does not have an associated
SessionContext, or if that SessionContext does not have an associated UserContext.

% The sequence %% outputs a single percent sign.

Foundation Services

Pattern Layouts 52

Modifying the Session and User Service Configurations

Understanding and Editing the User Service

The User Service enables applications to:

create, locate, maintain, and aggregate information about users of the SAS Foundation Services.•
store and retrieve User Context objects for sharing between applications. The User Context contains the user's
active repository connections, identities, and profile.

•

manage and access user profiles. A profile is a collection of name/value pairs that specify preferences and
configuration or initialization data for a user for a particular application.

•

access group profiles. A group profile specifies preferences and configuration or initialization data for a group
of users for a particular application.

•

For more information, see com.sas.services.user in the Foundation Services class documentation.

The User Service utilizes a user context to hold the user's information for connections, identities, and profile. The
profile then contains application profile data for the user. The User Service configuration consists of the following:

Users: the user definition specifies the credentials that are associated with this User Service. The user
definition consists of the user ID, password, and authentication domain of the user.

•

Profiles: the profile definition contains a collection of name/value pairs that specify preferences and
initialization data for a user of an application. The profile definition contains the name of the associated
application, where the profile is located, the class and type of the profile, and a filter used to locate the profile.

•

To configure the User Service configuration:

In the SAS Management Console navigation tree, expand the Foundation Services Manager tree to locate and
select the User Service you wish to modify. Right−click the User Service and select Properties from the
pop−up menu. The User Service properties window appears.

1.

Select the Service Configuration tab. Click Edit Configuration. The User Service Configuration window
appears.

2.

On the General tab, to add authentication domain or base LDAP information, enter the following information:
Name

specifies the default authentication domain name. If an entry for a user does not supply an
authentication domain, this authentication domain name is used.

People
specifies the distinguished name (DN) for the context in LDAP that contains user metadata.

Groups
specifies the distinguished name (DN) for the context in LDAP that contains group metadata.

Credentials
specifies the location in LDAP that contains credential information.

3.

On the Users tab, and click Add to add a user, or select a user and click Edit to edit a user. Enter the
following information:
ID

specifies the user ID (for the SAS Metadata Server) or LDAP directory entry (for LDAP) of the user.
Password

specifies the password needed for the user to log on to the specified authentication domain.
Confirm Password

4.

Modifying the Session and User Service Configurations 53

confirms the password that you specified in the Password field.
Domain

specifies the authentication domain for which the user ID is valid.
Click OK to return to the User Service Configuration window.
On the Profiles tab, click Add to add a profile, or select a profile and click Edit to edit a profile. Enter the
following information:
Application

specifies the application whose profile is specified.
Domain URL

specifies the location of the repository where the application profile is stored.
Class

specifies the class associated with the profile.
Type

specifies the profile type. If you are NOT using a custom profile class, leave this field blank.
Filter

specifies information to help locate the correct profile. If you are NOT using a custom profile class,
leave this field blank.

Click OK to return to the User Service Configuration window.

5.

When you are finished adding User Service configuration information, click OK to save the User Service
configuration to a metadata repository.

6.

Understanding and Editing the Session Service

The Session Service enables applications to:

create a session context. A session context is a control structure that maintains state information within a
bound session, facilitating resource management and context passing.

•

bind objects to a session context.•
use the session context as a convenience container for passing multiple contexts.•
use the session context as a convenience container for passing other services, such as User Services and
Logging Services.

•

notify bound objects when they are removed from the session context or when the session context is
destroyed, so that objects can perform any necessary cleanup.

•

For more information, see com.sas.services.session in the Foundation Services class documentation.

When the Session Service initializes, it discovers the Logging Service, and obtains a default logging context. The
Session Service then uses the Session Service configuration to determine whether to bind to a user context when
creating the root session context:

If the Session Service deployment configuration specifies a user context name, the Session Service discovers
the User Service and obtains the default user context. The Session Service then creates a default root session
context that is bound to this default user context.

•

If the Session Service deployment configuration does not specify a user context name, the Session Service
creates a default root session context that is not bound to any user context.

•

Applications can then use the root session context to track shared resources that are global to the application and to
obtain the initialized logging context and default user context (if one was specified).

SAS® Integration Technologies: Administrator's Guide

Modifying the Session and User Service Configurations 54

To configure a default user context name in the Session Service configuration:

In the SAS Management Console navigation tree, expand the Foundation Services Manager tree to locate and
select the Session Service that you want to modify. Right−click the Session Service and select Properties
from the pop−up menu. The Session Service properties window appears.

1.

Select the Service Configuration tab and click Edit Configuration. The Session Service Configuration
window appears.

2.

Specify the default User Context Name. Click OK to return to the Session Service Configuration window.3.
Click OK to save the Session Service configuration to the metadata repository.4.

Foundation Services

SAS® Integration Technologies: Administrator's Guide

Modifying the Session and User Service Configurations 55

Monitoring Applications
The Application Monitor plug−in to SAS Management Console enables you to monitor the performance and activities
of the various parts of a running application.

Before using the Application Monitor, you must first use the Logging Service that is supplied with the SAS
Foundation Services installation package to code your applications to generate monitoring information. Then, you
must configure the Logging Service in the Foundation Services Manager plug−in to SAS Management Console. You
will then be able to monitor all of your applications' pertinent activities on demand from the Application Monitor.

In order to display monitor output using the Application Monitor, you will need to perform the following tasks:

Code your application using the Logging Service of SAS Foundation Services. For more information about
the Logging Service provided by SAS Foundation Services, see Logging Service in the SAS Integration
Technologies: Developer's Guide.

1.

Configure the Logging Service in the Foundation Services Manager to provide monitoring data. For more
information about configuring the Logging Service, see the online Help for the Foundation Services Manager
plug−in to SAS Management Console.

2.

Add and display one or more monitors to the Application Monitor. For more information, see the online Help
for the Application Monitor plug−in to SAS Management Console.

3.

Edit monitor properties to customize how your output is displayed. For more information, see the online Help
for the Application Monitor plug−in to SAS Management Console.

4.

You can also edit a monitor's properties after adding it to the Application Monitor.Stored Processes

Monitoring Applications 56

Stored Processes
A stored process is a SAS program that is stored centrally on a server. A client application can execute the program,
supply input parameters, and can then receive and process the results. For details about creating a stored process and
processing the results, refer to Stored Processes in the SAS Integration Technologies: Developer's Guide.

To make a stored process accessible to client applications, you can use BI Manager to create metadata that describes
the stored process and its location. BI Manager provides a common interface for the administration of SAS BI objects,
including stored processes. BI Manager enables you to perform the following tasks:

access metadata for BI objects, SAS Data Integration Studio objects, and relational data objects such as stored
processes, jobs, and tables

•

register stored processes•
schedule reports and manage report content•
promote individual objects or groups of objects from one metadata repository to another•
copy and paste a group of objects and folders into a target folder in the same metadata repository•

BI Manager is available beginning with SAS Foundation Services 1.2. If you have not upgraded to this release, then
you can use Stored Process Manager to register and manage stored processes. BI Manager replaces Stored Process
Manager.

For more information about using BI Manager or Stored Process Manager, see the Help in SAS Management Console.

Publishing Framework

Stored Processes 57

Publishing Framework
The Publishing Framework provides a complete publishing environment for information delivery. The Publishing
Framework enables both users and applications to publish SAS files (including data sets, catalogs, and database
views), other digital content, and system−generated events to a variety of destinations, including the following:

e−mail accounts•
message queues•
publication channels and subscribers•
WebDAV−compliant servers•
archive locations.•

The Publishing Framework also provides tools that enable both users and applications to receive and process
published information. For example, users can receive packages with content, such as charts and graphs, that is ready
for viewing; and SAS programs can receive packages with SAS data sets that might in turn trigger additional analyses
of that data.

The Publishing Framework plug−in to SAS Management Console provides an interface with which to administer the
Publishing Framework. With the Publishing Framework plug−in, you can manage subscriber definitions and manage
channel definitions.

For information about implementing the Publishing Framework capabilities in your applications, see Publishing
Framework in the SAS Integration Technologies: Developer's Guide.

Note: To publish to a subscriber who is defined with a WebDAV delivery transport on a secured WebDAV server, or
to persist content on a secured WebDAV server or to an archive path on a secured HTTP or FTP server, the publisher
must have credentials on that server. See Publishing to Secure Servers for details.

Publishing Framework

Publishing Framework 58

Planning Your Publishing Solution

Design Information Channels

Designing a successful publish and subscribe implementation starts with an understanding of why your organization is
implementing the system. You will need to know, at a very basic level, what kind of information needs to be
distributed to users and how widely that information needs to be distributed.

For example, you could start the planning process by understanding that your organization needs to disseminate sales
information throughout the marketing organization and inventory data to the production organization. Starting with
this base level of knowledge, you begin the process of breaking down the general categories of information into
specific information channels by using a hierarchical model.

How you divide and subset the categories depends on your organization's needs, but you should work toward creating
information channels as tightly focused as possible, without making them too tightly focused to be useful. Channels
that are broadly defined leave users not knowing whether information delivered over the channel will be useful to
them; channels that are too narrowly defined force users to subscribe to a long list of channels in order to ensure that
they receive the information that they need.

To help focus the information that users receive, set up policies for name/value keywords. Name/value pairs are
attributes that are specified when a package is published and that help to identify the package contents. Each
subscriber definition can include a name/value filter that only allows packages that meet the subscriber's needs to be
delivered.

For example, if you publish a package with a name/value attribute of market=(Mexico), that package is only seen
by those subscribers whose name/value filter indicates that they are interested in information about the Mexican
market. Although the names and associated values can be anything that your organization finds useful, you must
establish a list of acceptable keywords and values for those keywords. This list is essential for publishers to be able to
provide consistent metadata that identifies published content and for subscribers to be able to filter published content
in order to focus on the information they need.

When you define your information channels, you must also consider the users that will be accessing those channels as
well as any restrictions that need to be placed on the channels. Although these aspects of planning are discussed
separately and in more detail in the following two topics, in practice they are examined at the same time as you are
defining your channels. You cannot define an information channel without first knowing who needs to see the
information and how that information should be restricted.

Planning Your Publishing Solution 59

Identify Initial Subscriptions

When you plan an initial set of information channels, you must identify the users and groups that are initially
subscribed to those channels. The information to set up these subscriptions is taken from the information you collected
when you planned the channels. An understanding of your organization's need for a publish and subscribe system
must include not only what information needs to be published, but also who needs to see that information.

However, you do not have to determine every piece of information that every individual needs to see. Rather, the
process of planning initial subscriptions focuses on wider distributions of information, such as identifying the essential
information that departments and groups of users need. How closely you follow this guideline depends on your
organization's needs −− there might be a few critical users who need to receive specific information, and there might
be a need to subscribe a group of users to a tightly focused channel. In general, however, the initial subscriptions that
you plan should be designed to distribute essential information to the largest number of users. Subscribers can request
subscriptions to tightly focused channels as the need arises.

After you have determined the list of initial subscribers for each channel, you must determine how the information is
to be distributed to users (whether by text− or HTML−formatted e−mail, with a WebDAV server, or through a queue)
and identify their address information. The address information is essential for setting up the subscriber entries.

Analyze Information Security Requirements

When you plan information channels you must also consider security for your publish and subscribe implementation
in order to ensure that the information that is published on each planned channel is uniformly sensitive. For example,
if you plan for a single channel to distribute accounting information throughout your organization, you will encounter
a security problem when the accounting department needs to publish sensitive information (such as employee
salaries). With only a single, unrestricted channel, you cannot publish the information to a specific set of users. In
your consultations with users, you must identify information channels whose access needs to be controlled.

Your plan must address both methods that SAS Integration Technologies uses to implement security −− authentication
and authorization.

Authentication security involves the process of verifying that users are who they say they are. To authenticate users,
servers use the host operating system's authentication provider, or they can use external LDAP or Microsoft Active
Directory services. Therefore, you must implement authentication using the mechanisms provided by the host
operating system authentication provider or alternative authentication provider. Authentication is a prerequisite for
authorization.

Authorization security controls the information channels that users have access to. Without any security, users are able
to subscribe to any information channel in your organization and access sensitive information. To prevent this
situation, you must implement authorization security for each channel that you create. For more information about
authorization security, see Security.

Configure Channels and Subscribers

Use the New Subscriber and New Channel wizards in the Publishing Framework plug−in to SAS Management
Console to define the channels and subscribers that you identified during the planning phase. Begin by defining the
subscribers; the New Channel wizard enables you to associate defined subscribers to a channel. See Managing
Channels and Managing Subscribers for more information.

SAS® Integration Technologies: Administrator's Guide

Planning Your Publishing Solution 60

Develop Applications That Deliver Content

After you set up the publish and subscribe infrastructure and implement the mechanisms that deliver content to a
selected set of users, you must develop or modify applications that will be used to create the content to be published.
These applications can take the form of stand−alone applications that are written in a visual programming language or
SAS programs. See Publishing Framework in the SAS Integration Technologies: Developer's Guide for information
about the tools that are available to create a publishing application.

Make Client Applications Available

After you develop or modify the applications that publish content, the initial structure of the publish and subscribe
implementation is complete. Your next step is to make these applications available to users in your organization.
Using the information that you gathered during initial planning, make the appropriate applications available to each
user or group. Publishers must obtain or install the appropriate publishing application for their needs. For example, an
individual or department that needs to publish data−intensive reports on a regular basis might use a SAS program for
publishing, while a user who needs to send information to a changing number of users on an occasional basis might
use the SAS Publisher application.

Subscribers must also obtain or install any appropriate software that is required to view published content. In
particular, each subscriber must install the SAS Package Reader application in order to be able to view the contents of
published SAS packages. For more information, see SAS Package Reader in the SAS Integration Technologies:
Developer's Guide. If the subscribers receive information through queues, they must also install the SAS Package
Retriever. For more information, see SAS Package Retriever in the SAS Integration Technologies: Developer's Guide.

Announce Solution and Train Users

After the publishers and subscribers install the necessary applications, you can announce your implementation to your
organization. You will also need to follow up the announcement with training for both publishers and subscribers,
with training broken down by publishing methods, publishing needs, and subscriber applications.

Publishing Framework

SAS® Integration Technologies: Administrator's Guide

Planning Your Publishing Solution 61

Managing Subscribers

About Subscribers

A subscriber is a person who has a need for information that is published by the Publishing Framework. Before a user
can receive information from a channel, you must define that user as a subscriber.

The Publishing Framework plug−in to SAS Management Console provides wizards that enable you to create
subscribers. When you create a subscriber with a wizard, the subscriber object with the specified attributes is stored on
the SAS Metadata Server.

You can create two different kinds of subscribers using the Publishing Framework: package subscribers and event
subscribers.

A package subscriber is a subscriber who is configured to receive packages. A package is a bundle of one or
more information entities such as SAS data sets, SAS catalogs, or almost any other type of digital content.

•

An event subscriber is a subscriber who is configured to receive events. An event is a well−formed XML
document that can be published to an HTTP server, a message queue, or a channel that has event subscribers
defined for it.

•

For each kind of subscriber, you can create individual subscribers and group subscribers. A group subscriber can
contain individual subscribers or other group subscribers.

Creating a New Subscriber

To create a new subscriber:

In the SAS Management Console navigation tree, expand the Publishing Framework node.1.
Select the desired metadata repository node.2.
Select the Subscribers node.3.
For new package subscribers, select Package Subscribers and then select Actions New Package

Subscriber or New Subscriber Group from the menu bar. For new event subscribers, select Event
Subscribers, then select Actions New Event Subscriber or New Subscriber Group from the menu bar.

4.

The appropriate wizard opens and guides you through the subscriber creation process. Click Help in the wizards at
any time for detailed information. For examples, see Example: Creating a Subscriber. The examples cover creating
individual and group package subscribers; creating event subscribers is similar.

Duplicating an Existing Subscriber

To create a new subscriber with substantially the same properties as an existing subscriber:

In the SAS Management Console navigation tree, expand the Publishing Framework node.1.
Select the desired metadata repository node.2.
Select the Subscribers node.3.
Select either the Package Subscribers or Event Subscribers folder.4.
Select the existing subscriber and select Actions Duplicate Package Subscriber or Duplicate Event

Subscriber from the menu bar to open the appropriate New Subscriber wizard. All of the wizard's fields are

5.

Managing Subscribers 62

filled in with values from the existing subscriber.
Because subscriber names must be unique, you must change the Name attribute. Click Next to change other
attributes.

6.

Click Finish to create the new subscriber.7.

Modifying an Existing Subscriber

To modify the properties of an existing subscriber:

In the SAS Management Console navigation tree, expand the Publishing Framework node.1.
Select the desired metadata repository node.2.
Select the Subscribers node.3.
Select either the Package Subscribers or Event Subscribers folder.4.
Select the subscriber whose properties you want to modify and select File Properties from the menu bar.

The Properties window for that subscriber displays.

5.

Use the tabs in the Properties window to modify the various properties of the subscriber. Some properties,
such as the User, cannot be modified.

6.

When you are finished modifying properties, click OK.7.

Deleting a Subscriber

To delete a subscriber:

In the SAS Management Console navigation tree, expand the Publishing Framework node.1.
Select the desired metadata repository node.2.
Select the Subscribers node.3.
Select either the Package Subscribers or Event Subscribers folder.4.
Select the subscriber that you want to delete and select Edit Delete from the menu bar.5.

To delete all package subscribers, select the Package Subscribers folder and select Edit Delete from the menu bar.

To delete all event subscribers, select the Event Subscribers folder and select Edit Delete from the menu bar.

Publishing Framework

SAS® Integration Technologies: Administrator's Guide

Managing Subscribers 63

Delivery Transports
The delivery transport is a property of the subscriber that indicates how to deliver content to that subscriber. This
section describes each of the available delivery transports and its attributes.

Note: For the WebDAV delivery transport, if the specified server is secured, then the publisher(s) must have
credentials on that server. See Publishing to Secure Servers for details.

You can choose the following delivery transport options:

None•
E−mail•
WebDAV•
Queue•
HTTP.•

None

Valid for: Package and Event subscribers

If no delivery transport is specified for a subscriber, then that subscriber receives no published content.

E−mail

Valid for: Package subscribers

With the e−mail delivery transport, the content package is delivered to the subscriber as an e−mail attachment. The
attributes of the E−mail delivery transport are e−mail address and format (HTML or plain text).

WebDAV

Valid for: Package subscribers

Delivery Transports 64

With the WebDAV delivery transport, the content package is published as a WebDAV collection to a location on a
WebDAV−enabled server. To specify a WebDAV delivery transport, you must specify a WebDAV−enabled server
and a base path. The relative path is optional. The base path and relative path are combined to form the URL that the
subscriber uses to download the package. You must also specify a URL type (Parent or Collection). With a Parent
URL type, the URL is the location under which the WebDAV collection is published. With a Collection URL type,
the URL is the location of the WebDAV collection itself.

Queue

Valid for: Package and Event subscribers

With the queue delivery transport, the content is published to an MQSeries or MSMQ message queue. The only
attribute is the queue name.

For an MQSeries queue, the name of the queue is as follows:

MQSERIES://queueManager:queueName

queueManager
identifies the target queue manager.

queueName
identifies the name of the queue.

For an MSMQ queue, the name of the queue is as follows:

MSMQ://queueHostMachineName\queueName

queueHostMachineName
identifies the queue's machine name.

queueName
identifies the name of the queue

SAS® Integration Technologies: Administrator's Guide

Delivery Transports 65

HTTP

Valid for: Event subscribers

With the HTTP delivery transport, content is published to a location on an HTTP server. To specify an HTTP delivery
transport, you must specify an HTTP server and a base path. The relative path is optional. The base path and relative
path are combined to form the URL that is used to publish the event content.

Publishing Framework

SAS® Integration Technologies: Administrator's Guide

Delivery Transports 66

Filters

What are Filters?

A filter is a property of a subscriber that enables that subscriber to receive only that content that meets certain criteria.
Filters can be used to exclude content that the subscriber is not interested in, or that the subscriber's computing
resources cannot handle. Filters can be defined based on the entry type, MIME type, or one or more name/value pairs
that are defined for the content. A filter can be an include filter, which means that the subscriber receives all content
that meets the filter criteria, or an exclude filter, which means that the subscriber receives all content that does not
meet the filter criteria.

Notes:

For each type of filter (entry type, MIME type, or name/value pair), you can define either inclusion or
exclusion filters (but not both). If you have previously defined exclusion name/value filters, for example, and
then specify an inclusion filter, then all of the previously defined exclusion filters are deleted from the
repository.

•

The SAS Information Delivery Portal does not currently support subscription filters.•

Entry Filters

Each published package contains one or more entries. Each entry is one of several possible types. You can create a
filter to include or exclude one or more entry types. Valid entry types include the following:

binary catalog dataset

fdb html mddb

reference sqlview nested_package

text viewer

MIME Type Filters

MIME types provide details about the information that is being published. For example, specifying the MIME type
audio/basic indicates that the file is an audio file and requires software that can interpret such content.

You can define a filter that determines the type of information the subscriber receives. For example, a subscriber who
is connecting with a modem might not want to receive some data types that may be large or unwieldy, such as movies
or audio. By excluding those MIME types, the subscriber never encounters those types of information.

Some common MIME types include the following:

application/mswordapplication/octet−stream

application/pdf application/postscript

application/zip audio/basic

image/jpeg image/gif

image/tiff model/vrml

text/html text/plain

Filters 67

text/richtext video/quicktime

video/mpeg

Name/Value Pair Filters

Publishers can specify name/value pairs that describe the package that is being published. Knowledge of name/value
pairs enables you to define filters for a subscriber that determine the packages that are received. If an inclusion
name/value filter is defined for a subscriber, then the subscriber will receive only those packages that match the
name/value filter.

A name/value pair is expressed as either a name or a relationship between a name and a value in the form

name < operator value >

name is a variable to which a value can be assigned. name is not case−sensitive.•
operator relates the variable to the value. Commonly used operators are as follows:

Comparison Operators Logical Operators

= (equals) & (AND)

!= (not equal) | (OR)

? (contains)

•

value is a character string or numeric value. value is case−sensitive.•

Examples:

The following is an example of a package description using name/value pairs that a publisher has assigned to a
published package:

 market=(Mexico, US) type=report Quarter4 sales _priority_=low

Knowing the conventions that a publisher uses to describe packages helps subscribers to write meaningful filters. The
following examples illustrate filter strings that determine whether the preceding example entity would be selected by
the filter. If the package meets the filter conditions, then the package is delivered to the subscriber.

market=(US, Asia, Europe)
No match. Because the equals comparison operator (=) is used, the subscriber values and the publisher values
that are assigned to the variable name MARKET must match exactly. In this example, the subscriber filters
for US, Asia, and Europe, whereas the publisher assigns a value of Mexico and US. The conditions for
selection are not met. Therefore, the package is not delivered to the subscriber.

market=(mexico, us)
No match. Because the equals comparison operator (=) is used, the subscriber values and the publisher values
that are assigned to the variable name MARKET must match exactly. In this example, the subscriber values
do not match the publisher values because of case differences.

market=US | market=Asia | market=Mexico
No match. Because the equals comparison operator (=) is used, the subscriber values and the publisher values
that are assigned to the variable name MARKET must match exactly. In this example, although the OR
operator (|) might seem to cause a matching condition, the equals operator (=) requires that each name/value
pair that is separated by an OR operator (|) match the publisher name/value pair entirely. A match would
result if the subscriber values were written as follows:

SAS® Integration Technologies: Administrator's Guide

Filters 68

market=Mexico, US | market=Asia | market=Mexico

The first name/value pair in the series would match.
market=(Mexico, US)

Match. Because the equals comparison operator (=) is used, the subscriber values and the publisher values
that are assigned to the variable name MARKET must match exactly. In this example, the value set does
match.

market=(US, Mexico)
Match. Because the equals comparison operator (=) is used, the subscriber values and the publisher values
that are assigned to the variable name MARKET must match exactly. In this example, the value set matches,
regardless of the order of values within the value set.

market?US & market?Asia & market?Mexico
No match. The conditions that are specified in the subscriber name/value pair read: Variable name MARKET
must contain the values US and Asia and Mexico. The contains comparison operator (?) identifies the eligible
values for consideration. In this example, although the publisher variable MARKET contains US and Mexico,
it does not also contain Asia. Because the logical AND operator (&) is used, its condition is not satisfied.

market?US | market?Asia | market?Mexico
Match. The conditions that are specified in the subscriber name/value pair read: Variable name MARKET
must contain the values US or Asia or Mexico. The contains comparison operator (?) identifies the eligible
values for consideration. In this example, the publisher variable MARKET contains US, and the logical OR
operator (|) condition is satisfied.

Quarter4=sales
No match. Because the equals comparison operator (=) is used, the subscriber values and the publisher values
that are assigned to the variable name QUARTER4 must match exactly. In this example, because the
publisher variable name QUARTER4 does not contain a value and the subscriber variable name QUARTER4
does contain a value of sales, the value sets do not match.

Quarter4
Match Variable names are not required to have values. In this example, because the publisher variable name
QUARTER4 does not have an assigned value and the subscriber variable name QUARTER4 does not have an
assigned value, the value sets match.

type=report & forecast
No match. Two conditions must be met. The equals comparison operator (=) requires that the subscriber
values and the publisher values that are assigned to variable name TYPE match. In this example, the first
condition is met because both the publisher and the subscriber assign the value report to variable TYPE.
However, the AND logical operator (&) requires that the variable name TYPE also be assigned the value
forecast. Because the publisher variable name TYPE is not assigned a value of forecast, the final condition is
not met.

type=report & sales
Match. Two conditions must be met. The equals comparison operator (=) requires that the subscriber value
and the publisher value that are assigned to variable name TYPE match. In this example, the values match.
Both assign the value report to the variable name TYPE. The AND logical operator (&) also requires that the
variable name SALES match. Because both the publisher and the subscriber identify a variable name sales
with no assigned value, the final condition is also met.

Publishing Framework

SAS® Integration Technologies: Administrator's Guide

Filters 69

Managing Channels

About Channels

A channel is a topic or identifier that acts as a conduit for related information. The channel carries the information
from the publishers who created it to the subscribers who want it.

A channel has a name, a description, a subject, keywords, and a persistent store associated with it. A channel also has
individual and group subscribers associated with it. Subscribers can be event subscribers or package subscribers.

The Publishing Framework plug−in to SAS Management Console provides a New Channel Wizard, which enables
you to define all the properties of a channel, including what subscribers are associated with it. Each association of a
subscriber to a channel is a subscription. A subscription enables the information that is published to a channel to be
delivered to the interested (subscribed) users.

You should create a channel for each distinct topic or audience. For instance, users of a particular application might
want a channel for discussion and data exchange, while the programmers of that application might want another
channel to discuss technical problems and future enhancements. Although the topic is the same application, the
discussion and data exchanged will be very different, so two separate channels would probably best serve the needs of
the two groups of users.

Create a Channel Folder

If you anticipate creating a large number of channels, then consider grouping related channels into channel folders.
You can create subfolders within folders, thereby creating a folder hierarchy to which access controls can be applied.

To create channel folders:

From the SAS Management Console navigation tree, expand the Publishing Framework node.1.
Select the desired metadata repository node.2.
If you are creating a top−level folder, then select Channels. If you are creating a subfolder, then navigate to
and select the desired parent folder.

3.

From the menu bar, select Actions New Folder. The New Channel Folder wizard displays.4.

The New Channel Folder wizard guides you through the process of creating a channel folder. Click Help in the wizard
at any time for more information about the current window.

You can create a subfolder by selecting the desired parent folder and selecting Actions New Folder from the menu

bar.

Note: Currently it is not possible to move an existing channel into a folder or from one folder to another. Plan ahead
to avoid having to delete and recreate channels.

Create a New Channel

To create a new channel:

From the SAS Management Console navigation tree, expand the Publishing Framework node.1.

Managing Channels 70

Select the desired metadata repository node.2.
If you are creating a channel within a folder, select the Channels node and navigate to the desired folder.3.
Select the Channels item or the desired folder and select Actions New Channel from the menu bar to open

the New Channel wizard.

4.

The New Channel wizard guides you through the process of creating a new channel. Click Help in the wizard at any
time for detailed information. For an example, see Example: Creating a Channel.

Duplicate an Existing Channel

To create a channel with substantially the same properties as an existing channel:

In the SAS Management Console navigation tree, expand the Publishing Framework node.1.
Select the desired metadata repository node.2.
Select the Channels node and, if applicable, navigate to the folder where the existing channel is stored.3.
Select the existing channel and select Actions Duplicate Channel from the menu bar to open the New

Channel wizard. All of the wizard's fields are filled in with values from the existing channel.

4.

Because channel names must be unique, you must change the Name attribute. Click Next to change other
attributes.

5.

Click Finish to create the new channel.6.

Modify an Existing Channel

To modify the properties of an existing channel:

In the SAS Management Console navigation tree, expand the Publishing Framework node.1.
Select the desired metadata repository node.2.
Select the Channels node.3.
If applicable, open the appropriate folder(s) to navigate to the desired channel.4.
Select the channel that you want to modify and select File Properties from the menu bar. The Properties

window for that channel displays.

5.

Use the tabs in the Properties window to modify the various properties.6.
When you are finished modifying properties, click OK.7.

Delete a Channel

To delete a channel:

In the SAS Management Console navigation tree, expand the Publishing Framework node.1.
Select the desired metadata repository node.2.
Select the Channels node.3.
If applicable, open the appropriate folders to navigate to the desired channel.4.
Select the channel that you want to delete and select Edit Delete from the menu bar.5.

To delete a channel folder (including any subfolders and channels under it), right−click the folder and click Delete.

To delete all channels, right−click the Channels item and click Delete.

SAS® Integration Technologies: Administrator's Guide

Managing Channels 71

Publishing Framework

SAS® Integration Technologies: Administrator's Guide

Managing Channels 72

Persistent Stores
A channel can be defined to have a persistent store. A persistent store is a location where published content is
permanently stored (or persisted). The Publishing Framework publishes the content to the persistent store location,
and then publishes the content to the subscribers.

This section describes each of the available persistent store options and their attributes.

Note: To persist content on a secured WebDAV server, or to an archive path that as defined as a secured HTTP or
FTP server, the publishers might need credentials on that server. See Publishing to Secure Servers for details.

You can choose the following persistent store options:

None•
Archive (including File, FTP, and HTTP)•
WebDAV.•

None

If you do not specify a persistent store for a channel, then all content that is published on that channel is published
directly to the subscribers and is not persisted.

Archive Persistent Stores

With an archive persistent store, the Publishing Framework publishes the content as an archive (binary .spk) file to
the persistent store location. An archive persistent store can be defined as a physical file location, an FTP server, or an
HTTP server.

File

For an archive persistent store that is defined as a physical file location, you must specify a file path. You can
optionally associate the file path with a logical server if you want to be able to retrieve the archive file from a remote
host.

Persistent Stores 73

FTP Server

For an archive persistent store that is defined as an FTP server, you must specify the name of the FTP server. You can
optionally specify a path within the FTP server and a logical workspace server. The Publish Service component of the
SAS Foundation Services needs an IOM Workspace server defined in order to publish an archive to an FTP location
or to delete a file from an FTP location.

HTTP Server

For an archive persistent store that is defined as an HTTP server, you must specify an HTTP server and base path.
You can optionally specify a relative path. The base path and relative path are combined to form the URL of the
location where the archive is persisted.

SAS® Integration Technologies: Administrator's Guide

Persistent Stores 74

WebDAV Persistent Store

For a WebDAV persistent store, you must specify a WebDAV−enabled HTTP server and base path. You can
optionally specify a relative path. The base path and the relative path are combined to form the URL where the
WebDAV collection is persisted. You also must specify a URL type of either Collection or Parent:

Collection: WebDAV collection is persisted in the specified URL•
Parent: WebDAV collection is persisted under the specified URL•

See Also

Administering HTTP Servers and WebDAV in the SAS Integration Technologies: Server Administrator's Guide.

SAS® Integration Technologies: Administrator's Guide

Persistent Stores 75

Publishing Framework

SAS® Integration Technologies: Administrator's Guide

Persistent Stores 76

Publishing to Secure Servers
Under certain circumstances, when publishing to a channel, the user who is publishing the content (the publisher) will
need credentials in order to connect to a server. The following example scenarios all require the publisher to have
server credentials:

publishing to a subscriber with a delivery transport that is defined as a secured WebDAV server•
publishing to a channel's persistent store that is defined as a secured WebDAV server•
publishing to a channel's persistent store that is defined as an archive path that is a secured HTTP server•
publishing to a channel's persistent store that is defined as an archive path that is a secured FTP server•

In all of the above scenarios, the publisher needs access to the credentials in order to connect to that server. Because
various users can also be publishers, the login information should not be defined in the individual publisher
definitions. Instead, the logins should be defined in a group that can be accessed by all publishers. There are two
major steps to creating this group:

Define the subscribers and persistent stores.1.
Add credentials to the group.2.

Define the Subscribers and Persistent Stores

To define the subscribers and persistent stores, do the following:

Identify the package subscribers whose delivery transport will be defined as WebDAV and the event
subscribers whose delivery transport will be defined as HTTP. From each of these users for which the HTTP
server is secured, obtain a login that will be available for the publisher to access the HTTP server. Using the
Publishing Framework plug−in to SAS Management Console, define these package and event subscribers.

1.

Using the Publishing Framework plug−in to SAS Management Console, define the channel(s) whose
persistent store will be defined as a secured WebDAV server, and the channels whose persistent store will be
an archive path that is defined on a secured HTTP or FTP server. The appropriate server logins should be
available for the publisher to access these servers.

2.

If you use the Xythos WFS WebDAV server, see Implementing Authentication and Authorization for the Xythos
WFS WebDAV Server in the SAS Integration Technologies: Server Administrator's Guide for more information about
security.

Add the HTTP Credentials, FTP Credentials, and Publishers to a
Group

To add the appropriate credentials and publishers to the group, do the following:

Using the User Manager plug−in to SAS Management Console, define a group that will contain all logins that
are needed to access WebDAV, HTTP, and FTP servers.

1.

Add to this group the logins that are needed to access the secured WebDAV servers that are defined as
persistent stores, and the secured HTTP and FTP servers that are defined as persistent store archive paths.
These logins are needed when the persistent store for a channel is defined as a secured WebDAV, HTTP, or
FTP server.

2.

Add to this group the logins for all package subscribers whose delivery transport is defined as a secured
WebDAV server, and all event subscribers whose delivery transport is defined as a secured HTTP server.

3.

Publishing to Secure Servers 77

Obtain the authentication domain, user name, and password for each of these subscribers.
Add any users who will be publishing content.4.

Note: Logins can be added either as group logins or user logins.

Tip: Each login within this group should have a unique authentication domain so that each domain has a specific login
to use. If more than one login has the same domain, then the Publishing Framework tries each login until it finds one
that works. Because you cannot specify the order in which the Publishing Framework tries logins for a given
authentication domain, there is no guarantee that the first successful login will be the desired login.

See Also

For more information, see the following topics in the SAS Integration Technologies: Server Administrator's Guide:

Administering HTTP Servers and WebDAV•
Implementing Authentication and Authorization for the Xythos WFS WebDAV Server•
Defining SAS Users, Groups, and Login Definitions•

Publishing Framework

SAS® Integration Technologies: Administrator's Guide

Publishing to Secure Servers 78

Example: Creating a Subscriber

Creating an Individual Subscriber

The New Package Subscriber wizard and New Event Subscriber wizard in SAS Management Console guide you
through the process of creating, respectively, a new package subscriber and a new event subscriber. (See Managing
Subscribers for information about opening the New Package Subscriber wizard and the New Event Subscriber
wizard.) In this example, an individual package subscriber is created using the New Package Subscriber wizard.

Note: The process of creating an individual event subscriber is similar, except for the following:

You cannot specify filters for an individual event subscriber.•
The available delivery transports for individual event subscribers are HTTP and Queue.•

To create an individual package subscriber, do the following:

Specify a name and a description for this subscriber. The name must be unique within its parent folder. The
description is optional.

1.

Click Next.2.
Click Select to associate a person with this subscriber.3.

Example: Creating a Subscriber 79

The Search Filter enables you to search the repository for users whose names either contain or are equal to a
string that you specify. Enter the string in the text field, select either contains or equals from the drop−down
list, and click Search. A list of users whose names meet your search criteria appears in the Available People
list.

4.

If the desired user does not exist in the repository, then click New User to define that user.5.
Then, select the desired user from the Available People list and click OK.6.
Click Next.7.
Select the subscriber's delivery transport. For this example, Email is selected from the Transport drop−down
list. Other options are WebDAV, Queue, and None. For more information about delivery transports, see
Delivery Transports.

8.

Specify the attributes for the selected delivery transport. For this example, the e−mail format is selected to be
HTML, and one of the user's e−mail addresses is selected.

9.

SAS® Integration Technologies: Administrator's Guide

Example: Creating a Subscriber 80

Click Next.10.
Specify one or more filters to eliminate content that the subscriber does not want to receive. To add a filter,
select the tab that corresponds to the type of filter (Name/Value, Entry, or MIME Type). Select Inclusion or
Exclusion and then click Add to specify the filter criteria. See Filters for more information.

11.

Click Next.12.
Review the subscriber specifications. Click Back to make any corrections. Click Finish when you are
satisfied with your selections.

13.

SAS® Integration Technologies: Administrator's Guide

Example: Creating a Subscriber 81

Creating a Group Subscriber

The New Subscriber Group wizard guides you through the process of creating a subscriber group. (See Managing
Subscribers for information about opening the New Subscriber Group wizard.) In this example, a group package
subscriber is created. The process of creating a group event subscriber is identical.

To create a group subscriber, do the following:

Specify a name and a description for this subscriber group. The name must be unique within its parent folder.
The description is optional.

1.

Click Next.2.
Associate members with the subscriber group. The Available list comprises all individual and group
subscribers for this type of subscription (package or event). Select one or more subscribers from the Available
list and click the right arrow to move them to the Selected list. To move all users to the Selected list, click the
double−right arrow.

3.

SAS® Integration Technologies: Administrator's Guide

Example: Creating a Subscriber 82

Click Next.4.
Optionally, assign an owner to this group. The Owner value is for information purposes only and is not used
by the software. Click Select to open the Select Person dialog box. The owner is chosen from among all
known users and does not need to be a subscriber.

5.

Click Next.6.
Review your specifications. Click Back to make any corrections. Click Finish when you are satisfied with
your selections.

7.

SAS® Integration Technologies: Administrator's Guide

Example: Creating a Subscriber 83

Publishing Framework

SAS® Integration Technologies: Administrator's Guide

Example: Creating a Subscriber 84

Example: Creating a Channel
The New Channel wizard guides you through the process of creating a new channel. (See Managing Channels for
information about how to open the New Channel wizard.)

To create a channel using the New Channel wizard, do the following:

Specify a name for the channel. The channel name must be unique within its folder (if it is in a folder) or
within the Channels node (if it is not in a folder).

1.

Optionally, specify a description and a subject for the channel. The Subject can be used to provide a general
"short description" of the channel's purpose.

2.

Optionally, specify one or more keywords for the channel. Keywords enable you to provide more detailed
description and can also be used in keyword searching. To add a keyword (which can be a single word or a
phrase), click Add and specify the keyword in the Add Keyword dialog box. Click OK to add your keyword
to the keyword list.

3.

Click Next.4.
Optionally, select subscribers to associate with this channel. Use the Package and Event tabs to select package
subscribers and event subscribers. For each type, select zero or more subscribers in the Available list and click
the right arrow to move them to the Selected list. Use the double−right arrow to move all subscribers from the
Available list to the Selected list.

5.

Example: Creating a Channel 85

Click Next.6.
Select a type of persistent store and specify the attributes for that persistent store. See Persistent Stores for
more information. For this example, Archive is selected, and a file on the local disk is specified as the
persistent store location.

7.

Click Next.8.
Review your selections. Click Back to make any corrections. Click Finish when you are satisfied with your
selections.

9.

SAS® Integration Technologies: Administrator's Guide

Example: Creating a Channel 86

SAS® Integration Technologies: Administrator's Guide

Example: Creating a Channel 87

Your Turn

If you have comments or suggestions about SAS 9.1.3 Integration Technologies:
Administrator's Guide, Third Edition, please send them to us on a photocopy of this page
or send us electronic mail.

For comments about this book, please return the photocopy to

SAS Publishing
SAS Campus Drive
Cary, NC 27513
E-mail: yourturn@sas.com

For suggestions about the software, please return the photocopy to

SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
E-mail: suggest@sas.com

	Table of Contents
	SAS® Integration Technologies: Administrator's Guide
	Getting Started
	SAS Foundation Services
	Understanding Service Deployments
	Understanding Service Deployment Configuration
	Defining Service Deployments
	Importing Service Deployments
	Exporting Service Deployments
	Duplicating Service Deployments
	Redistributing Service Deployments
	Installing and Running Foundation Services as a Windows Service
	Understanding How Applications Deploy Foundation Services
	Understanding How Applications Locate Foundation Services
	Scenario: Stand-alone Application
	Scenario: Remote-accessible Services
	Scenario: Local and Remote-accessible Services
	Understanding How Applications Share Foundation Services
	Modifying Service Configurations
	Understanding the Event Broker Service
	Understanding Events and Process Flows
	Modifying an Event Broker Service Configuration
	Creating Events and Process Flows
	Modifying the Information Service Configuration
	Modifying the Logging Service Configuration
	Pattern Layouts
	Modifying the Session and User Service Configurations
	Monitoring Applications
	Stored Processes
	Publishing Framework
	Planning Your Publishing Solution
	Managing Subscribers
	Delivery Transports
	Filters
	Managing Channels
	Persistent Stores
	Publishing to Secure Servers
	Example: Creating a Subscriber
	Example: Creating a Channel

