
SAS® Web Infrastructure Kit 1.0
Developer’s Guide



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004. SAS® Web Infrastructure Kit 
1.0: Developer’s Guide. Cary, NC: SAS Institute Inc.   

SAS Web Infrastructure Kit 1.0: Developer’s Guide 

Copyright © 2002-2004, SAS Institute Inc., Cary, NC, USA 

All rights reserved. Produced in the United States of America. No part of this publication may be reproduced, stored 
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, 
without the prior written permission of the publisher, SAS Institute Inc. 

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related 
documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in 
FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987). 
 
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513. 
 
April 2004 
 
SAS Publishing provides a complete selection of books and electronic products to help customers use SAS software 
to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit 
the SAS Publishing Web site at support.sas.com/pubs or call 1-800-727-3228. 
 
SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration. 
 
Other brand and product names are trademarks of their respective companies. 



Table of Contents
SAS® Web Infrastructure  Kit  1.0: Developer's Guide................................................................................................1

Developing Custom Portlets............................................................................................................................................2

Integrating Web Applications With  the Portal.............................................................................................................4

Tasks..................................................................................................................................................................................6

Creating a Portlet Deployment Descriptor....................................................................................................................7

Example Deployment Descriptor for a Local Portlet...................................................................................................8

Example Deployment Descriptor for a Remote Portlet................................................................................................9

Detailed Element Descriptions for Portlet Deployment Descriptor DTD.................................................................10

Creating Display Resources Files.................................................................................................................................11

Developing the Presentation JSP..................................................................................................................................12

Creating Action Classes.................................................................................................................................................13

Creating an Initializer  Action Class.............................................................................................................................14

Creating a Portlet Action Class....................................................................................................................................15

Creating a Postprocessing Action Class.......................................................................................................................16

Creating an Error  Handling Action.............................................................................................................................17

Creating a PAR File for Deployment in Your Application........................................................................................19

Use Cases.........................................................................................................................................................................20

Creating a Simple Display Portlet................................................................................................................................21

Creating a Localized Portlet.........................................................................................................................................24

Creating a Portlet Template (Editable Portlet)...........................................................................................................27

Creating a Remote Portlet.............................................................................................................................................30

Samples...........................................................................................................................................................................32

Sample: Localized Display Portlet (Welcome Portlet)...............................................................................................33

SAS® Web Infrastructure Kit 1.0: Developer's Guide

i



Table of Contents
Step 1: Create the Directory Structure........................................................................................................................34

Step 2: Create the Portlet Deployment Descriptor.....................................................................................................36

Step 3: Create the Display Page....................................................................................................................................38

Step 4: Create the Action Class....................................................................................................................................39

Step 5: Create the Resource Bundles...........................................................................................................................41

Step 6: Create Translated Titles and Descriptions.....................................................................................................42

Step 7: Create the PAR File, and Deploy and Test the Portlet..................................................................................43

Sample: Interactive Form Portlet (FormExample)....................................................................................................44

Step 1: Create the Directory Structure........................................................................................................................45

Step 2: Create the Portlet Deployment Descriptor.....................................................................................................47

Step 3: Create the Display Page....................................................................................................................................49

Step 4: Create the Action Class....................................................................................................................................50

Step 5: Create the JavaBean.........................................................................................................................................52

Step 6: Create the PAR File, and Deploy and Test the Portlet..................................................................................53

Sample: Portlet Template, or Editable Portlet (DisplayURL)...................................................................................54

Step 1: Create the Directory Structure........................................................................................................................55

Step 2: Create the Portlet Deployment Descriptor.....................................................................................................57

Step 3: Create the Display Pages for the Portlet and the Editor...............................................................................59

Viewer.jsp.......................................................................................................................................................................60

Editor.jsp ........................................................................................................................................................................61

Error.jsp..........................................................................................................................................................................63

Step 4: Create the Action Classes.................................................................................................................................64

Initializer  Action............................................................................................................................................................65

SAS® Web Infrastructure Kit 1.0: Developer's Guide

ii



Table of Contents
Base Action.....................................................................................................................................................................67

Display Action................................................................................................................................................................69

Editor  Action..................................................................................................................................................................70

OK and Cancel Actions.................................................................................................................................................72

Error  Handler Action....................................................................................................................................................74

Step 5: Create the Resource Bundle.............................................................................................................................76

Step 6: Create the Display Resources File...................................................................................................................77

Step 7: Create the PAR File, and Deploy and Test the Portlet..................................................................................78

Sample: Web Application (HelloUserWikExample)..................................................................................................79

Step 1: Create the Directory Structure........................................................................................................................80

Step 2: Create the Web Application Deployment Descriptor....................................................................................81

Step 3: Create Deployment Definitions and Properties Files for Local and Remote Services...............................83

Step 4: Create the Display Page (JSP).........................................................................................................................86

Step 5: Create the WAR File, and Deploy and Test the Application........................................................................88

Sample: Remote Portlet (HelloUserRemotePortlet)...................................................................................................89

Step 1: Create the Directory Structure........................................................................................................................90

Step 2: Create the Portlet Deployment Descriptor.....................................................................................................91

Step 3: Create the Display Resources File...................................................................................................................92

Step 4: Create the Web Application.............................................................................................................................93

Step 5: Create the PAR File, and Deploy and Test the Portlet..................................................................................94

Themes............................................................................................................................................................................95

Defining and Deploying New Themes..........................................................................................................................96

Styles in Portal.css..........................................................................................................................................................99

SAS® Web Infrastructure Kit 1.0: Developer's Guide

iii



Table of Contents
ExampleTheme.xml File..............................................................................................................................................102

Element Descriptions for Themes DTD.....................................................................................................................105

Changing the Application Name.................................................................................................................................106

Resources......................................................................................................................................................................107

Using the Portlet API...................................................................................................................................................108

Using SAS Foundation Services With  the Portal......................................................................................................110

SAS® Web Infrastructure Kit 1.0: Developer's Guide

iv



SAS® Web Infrastructure Kit 1.0: Developer's Guide
The SAS Web Infrastructure Kit: Developer's Guide provides information to help you use the SAS Web Infrastructure
Kit to develop your own custom applications. It also explains how to use the SAS Web Infrastructure Kit to customize
and extend the SAS Information Delivery Portal 2.0 to meet the unique requirements of your organization.

Note: In this guide, "portal Web application" is a generic term that refers to either of the following:

the SAS Portal Web Application Shell, which is a portal−like Web application shell that is included in the
SAS Web Infrastructure Kit and is used by other SAS Web applications, or

• 

the SAS Information Delivery Portal, which (when installed with the SAS Web Infrastructure Kit) fully
implements the capabilities of the SAS Portal Web Application Shell.

• 

The guide includes the following chapters:

Tasks provides step−by−step instructions for performing important application development tasks, which
include creating deployment descriptor files for portlets, creating resource files for portlet metadata,
developing JavaServer Page (JSP) pages for portlets, creating custom action classes for portlets, and creating
portlet archive (PAR) files to use in deploying portlets in the portal Web application.

• 

Use Cases provides development steps and best practices for common use cases. The use cases include
creation of simple display portlets, localized portlets, portlet templates (also called editable portlets), and
remote portlets (Web applications that are deployed and executed outside of the portal Web application).

• 

Samples provides fully developed samples of custom portlets, including all of the portlet deployment
descriptors, JSPs, resource files, and action classes that are required to implement each portlet. The samples
include a localized display portlet, an interactive form portlet, a Web application, a remote portlet, and a
portlet template (editable portlet).

• 

Themes describes how to customize the appearance of the portal Web application by developing new themes,
including text attributes, backgrounds, logos, and other graphical elements. This section also describes how to
change the application name that appears in the banner.

• 

Resources describes the application programming interfaces (APIs) that are provided with the SAS Web
Infrastructure Kit, including the Portlet API and the SAS Foundation Services Facade. Links to the detailed
class documentation are provided.

• 

For details about administrative tasks that are required to support development activities, including the deployment of
new portlets, themes, and content items, refer to the SAS Web Infrastructure Kit Administrator's Guide.

SAS® Web Infrastructure Kit 1.0: Developer's Guide 1



Developing Custom Portlets
A portlet is a Web component that is managed by a Web application and aggregated with other portlets to form a page
within the application. A portlet processes requests from the user and generates dynamic content such as report lists,
alerts, workflow notifications, or performance metrics. The components that are needed to implement a portlet may
include JSP pages, custom classes, and associated resources.

Portlets that are created with the SAS Web Infrastructure Kit have a standard appearance, which includes a title bar
that contains links or icons to portlet actions, as shown in this example:

The framework of the SAS Web Infrastructure Kit makes it easy for you to quickly develop and deploy custom
portlets that meet your organization's needs. This framework, which is based on the Struts architecture and conforms
to industry−standard Model−Viewer−Controller (Model 2) design patterns, provides

an execution environment that allows portlets to execute in the portlet container, in the same way that
servlets execute in the servlet container. The portal Web application processes all HTTP requests for portlets,
while the portal Web application's session and state information are maintained and shared among portlet
actions and across requests.

• 

support for portlets running remotely in other Web technology frameworks, with the option to pass the
portal Web application's session and state information to these portlets.

• 

simplified portlet deployment through the use of the following:

a portlet deployment descriptor, which is an XML file that specifies the portlet's actions as well as
initialization, path, and access control information.

♦ 

a portlet archive (PAR) file, which includes all of the elements needed to deploy a portlet or series
of portlets, including the portlet deployment descriptor, JSP pages, custom Java classes, and
associated resources (such as images, resource bundles, HTML files, and style sheets).

♦ 

• 

a set of action and initializer classes, which reduce the need for developing custom programs. These classes
perform the most commonly used functions, such as displaying the JSP page that is specified in the portlet
deployment descriptor.

• 

access to SAS custom tags and to tags in the Struts development framework to simplify development of
JSP pages for your portlets.

• 

a dynamic (or "hot") deployment mechanism that enables new portlets to be deployed without the need to
restart the Web server.

• 

Options for Implementing Portlets

The action and initializer classes included in the SAS Web Infrastructure Kit are designed to handle a portlet's basic
function of displaying a single JSP page. However, to meet specialized needs you can

Developing Custom Portlets 2



write one or more Java classes that implement the
com.sas.portal.portlet.PortletActionInterface. Alternatively, you can extend
com.sas.portal.portlet.HTMLPortletAction to obtain a basic implementation of the interface.

• 

write Java classes that implement the PortletInitializerInterface,
ErrorHandlerInterface, or PostProcessorInterface in the com.sas.portal.portlet
package in order to meet more specialized requirements.

• 

For more information, see the Portlet API and the sample portlets.

Best Practices

The following is a summary of best practices for developing portlets for deployment in the portal Web application:

To avoid namespace problems, use a standard naming convention for portlet paths. The portlet namespace is
comprised of the path (with leading underscores in place of slashes) and the portlet's name. For example, a
portlet with the name simpleJSP and a path of /sas/portlets would be deployed as
_sas_portlets_simpleJSP.

• 

Deploy new portlets into a staging area (that is, a test installation of the portal Web application) for
verification and testing before deploying them into the production environment.

• 

For remote portlets, use the portlet's direct URL to test and debug the portlet before you deploy it into the
portal Web application.

• 

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Developing Custom Portlets 3



Integrating Web Applications With the Portal
The SAS Web Infrastructure Kit enables you to easily integrate other applications with the portal Web application. To
make a Web application available in the portal Web application, you can

implement a remote portlet and a corresponding Web application. A remote portlet looks like any other
portlet, but it calls a remote Web application. The remote Web application returns an HTML fragment to the
portal Web application to be displayed within the portlet's borders. This approach is useful when you want to
incorporate a portion of the output from your application into the portal Web application.

• 

implement a stand−alone application that is invoked from the portal Web application but executed
remotely. The stand−alone Web application returns a complete HTML page that is displayed in a separate
browser window. This approach is useful when you want to enable users to invoke your application from the
portal Web application, but the application output needs to appear separately.

• 

Using SAS Foundation Services to Integrate Applications and Enable
Single Signon

Whether your application is called by a remote portlet or is invoked on a stand−alone basis, the SAS Web
Infrastructure Kit provides tools to facilitate secure information sharing between the portal Web application and the
remote application. One type of information sharing is the single signon feature, which enables other applications to
be invoked from the portal Web application without requiring the user to re−enter a user name and password. Other
information related to a portal Web application session can be shared as well.

To incorporate the single signon feature or other information sharing into a remote portlet application or a stand−alone
Web application, you must

use classes from SAS Foundation Services in your Web application. SAS Foundation Services is a set of
infrastructure and extension services that support the development of integrated, scalable, and secure
Java−based applications. For convenient access to the most common access patterns, you will probably want
to use the foundation services facade classes, which are part of the Portlet API. For more information, see
Using SAS Foundation Services with the Portal.

• 

use these classes to access SAS Foundation Services that have been deployed remotely. The SAS Services
application (SASServices), which is provided with the SAS Web Infrastructure Kit, provides the remote
service deployment. This application, which can be installed anywhere on your network, provides a secure
mechanism for the portal Web application to share information with remote Web applications.

• 

For more information about developing Web applications that are enabled by SAS Foundation Services, see:

Sample Web Application (HelloUserWikExample)• 
Using SAS Foundation Services with the Portal• 

For more information about SAS Foundation Services, see SAS Foundation Services in the SAS Integration
Technologies Developer's Guide.

Making Web Applications Available in the Portal Web Application

If your application is to be called by a remote portlet, you must create a portlet deployment descriptor for the portlet
and package it in a portal archive (PAR) file. When you deploy the portlet, its metadata is registered automatically
with the portal Web application. For more information, see:

Integrating Web Applications With the Portal 4



Creating a Remote Portlet• 
Sample Remote Portlet (HelloUserRemotePortlet)• 
Deploying Portlets in the SAS Web Infrastructure Kit Administrator's Guide.• 

If you want to add a stand−alone application to the portal Web application, then you must use a SAS program to
register the application's metadata. For instructions, see Adding Applications in the SAS Web Infrastructure Kit
Administrator's Guide.

Tasks

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Integrating Web Applications With the Portal 5



Tasks
This chapter provides step−by−step instructions for tasks that developers can or must perform when creating custom
portlets. The tasks include:

Creating a portlet deployment descriptor (portlet.xml). Each portlet that you deploy must be defined in a
portlet deployment descriptor. A portlet deployment descriptor is an XML file that provides all of the
information that the portal Web application requires in order to deploy one or more portlets. The file includes
information about the portlet's initialization, actions, security settings, and resource paths.

• 

Creating display resources files (portletDisplayResources_xx.properties). The display
resources file contains text strings for the portlet's title and description for use in the portlet's metadata. If you
create multiple display resources files for different locales, the portal Web application uses these files to
localize the portlet title and description at the time of deployment, according to the portal Web application's
default locale.

• 

Developing the presentation JavaServer Pages (JSP). Each portlet must have a JSP page to serve as the
presentation component.

• 

Creating action classes. You can use the resources of the Portlet Development Kit to develop the following
types of action classes for your portlets: initializer classes, portlet actions, postprocessing classes, and error
handling classes.

• 

Creating a portlet archive (PAR) file for deployment in your application. To enable automatic deployment of a
portlet into the portal Web application, you must provide a PAR file which contains all of the needed files. A
PAR file can contain files for one portlet or for multiple related portlets.

• 

For practical applications of these tasks, see Use Cases. For examples of fully developed portlet code, see the
Samples.

Tasks

Tasks 6



Creating a Portlet Deployment Descriptor
For each portal archive (PAR) file that you create for deployment in the portal Web application, you must create a
portlet deployment descriptor. The portlet deployment descriptor is an XML file that provides all of the information
that the portal Web application needs to deploy the portlets that are contained in the PAR file.

A PAR file, and its associated portlet deployment descriptor, can contain one portlet or it can contain multiple related
portlets; there is no limit to the number of portlets that a PAR file and its associated descriptor can contain.

In addition, a PAR file (and its associated portlet deployment descriptor) can contain local portlets, remote portlets, or
a combination of local and remote portlets.

To create a portlet deployment descriptor, use element tags as defined in the portlet deployment descriptor document
type definition (DTD). The following information is provided for your reference:

An example portlet deployment descriptor for a local portlet. You can use this example as a template for
creating deployment descriptors for your own local portlets. Simply replace the element values in the example
with the appropriate values.

• 

An example portlet deployment descriptor for a remote portlet. You can use this example as a template for
creating deployment descriptors for your own remote portlets. Simply replace the element values in the
example with the appropriate values.

• 

A detailed description of elements in the portlet deployment descriptor DTD.• 

After creating the deployment descriptor file, assign it the name portlet.xml. Then include it in the portal archive
(PAR) file that you create for your portlet or group of portlets. For more information, see Creating a PAR File for
Deployment in Your Application.

Tasks

Creating a Portlet Deployment Descriptor 7



Example Deployment Descriptor for a Local Portlet
A local portlet is a portlet that

is deployed within the portal Web application• 
executes inside the portlet container• 
consumes the computing resources (for example, CPU, memory, and disk storage) of the server machine on
which the portal container runs

• 

can include resources such as Web pages, style sheets, images, resource bundles, and Java classes which are
deployed inside the portal Web application.

• 

An example of a portlet deployment descriptor for a local portlet follows. You can use this example as a template for
creating portlet deployment descriptors for your own local portlets. Simply replace the element values with your own
values as appropriate.

<?xml version="1.0" encoding="UTF−8"?>

<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">
<portlets>
  <local−portlet name="simplejsp" title="SimpleJspPortlet"
    icon="images/ndd.jpg">
    <localized−resources locales="en" />
    <deployment scope="user" autoDeploy="true"
      userCanCreateMore="false">
    </deployment>
    <initializer−type>
      com.sas.portal.portlets.JspPortlet.JspPortletInitializer
    </initializer−type>
    <init−param>
      <param−name>display−page</param−name>
      <param−value>simpleJspTest.jsp</param−value>
    </init−param>
    <portlet−path>/sas/portlets</portlet−path>
    <portlet−actions>
      <portlet−action name="display" default="true">
        <type>com.sas.portal.portlets.JspPortlet.JspPortlet</type>
      </portlet−action>
    </portlet−actions>
  </local−portlet>
</portlets>

Tasks

Example Deployment Descriptor for a Local Portlet 8



Example Deployment Descriptor for a Remote Portlet
Remote portlets are portlets that execute outside of the portal container. You can use remote portlets to incorporate
data from external applications into the portal Web application. When a user interacts with a remote portlet, the
remote portlet appears to be the same as a local portlet.

Many of the elements in the portlet deployment descriptor DTD relate only to local portlets. Therefore, a portlet
deployment descriptor for a remote portlet requires fewer elements than a descriptor for a local portlet.

An example of a portlet deployment descriptor for a remote portlet follows. You can use this example as a template
for creating portlet deployment descriptors for your own remote portlets. Simply replace the element values with your
own values as appropriate.

<?xml version="1.0" encoding="UTF−8"?>

<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>
  <remote−portlet name="MyRemotePortlet" title="MyRemotePortlet" >
    <localized−resources locales="en" />
    <deployment scope="group" autoDeploy="true"
      userCanCreateMore="false">
      <group>Public</group>
    </deployment>
    <portlet−path>/sas/portlets/remote</portlet−path>
    <portlet−actions>
      <portlet−action name="display" default="true">
        <url>http://d9999.mycompany.com:8080/test.html</url>
      </portlet−action>
    </portlet−actions>
  </remote−portlet>
</portlets>

Tasks

Example Deployment Descriptor for a Remote Portlet 9



Detailed Element Descriptions for Portlet Deployment
Descriptor DTD
For detailed descriptions of the elements in portlet.dtd, see the following:

Top Elements contains a list of the top−most elements of the DTD, with links to pages describing each
top−most element. From these pages, you can access descriptions of individual child elements.

• 

All Elements contains a list of all elements defined in the DTD and provides quick access to the description of
any individual element.

• 

Top Element Trees displays the content hierarchy trees of the top−most elements in the DTD, with links to
detailed descriptions of the top−most elements and all child elements.

• 

Document generated by dtd2html 1.5.1.

portlet DTDTasks

Detailed Element Descriptions for Portlet Deployment Descriptor DTD 10



Creating Display Resources Files
A display resources file is a file that contains <key>=<value> statements to define text strings for a portlet's title
and description. You can create display resources files for the following purposes:

To specify a description for your portlet. If you do not provide a display resources file, the portal Web
application will use the portlet's name to create a default description.

Note: The local−portlet and remote−portlet elements of the portlet deployment descriptor contain
a description attribute. However, this description is only for internal documentation purposes. It is not
displayed to users.

• 

To enable the portal Web application to localize the portlet title and description at the time of deployment,
according to the portal Web application's default locale. When the portlet is first deployed, the deployment
process checks to see which default locale was specified when the SAS Web Infrastructure Kit was installed.
Based on this locale, the deployment process uses the title and description from the appropriate display
resources file to create metadata and register the portlet in the SAS Metadata Repository.

If your portlet will be deployed in only one locale, then the display resources files can be omitted.

Note: The SAS Metadata Repository cannot store multiple, localized values for metadata. Therefore, the
portlet title and description are translated only into the portal Web application's default locale. They cannot be
translated based on the user's locale preference.

• 

If your portlet does not include any display resources files, the portlet deployment mechanism will send a warning
message to the server log. The message will indicate that no localized title or description can be found.

To create display resources files:

Create a separate file for each language (or each country and language combination) that you need to support.
In each file, use <key>=<value> statements to define text strings for portlet.title and
portlet.description, as in the following examples:

portlet.title=Welcome Portlet
portlet.description=Welcome Portlet

portlet.title=Portlet de bienvenida
portlet.description=Portlet de bienvenida

1. 

Name the files as follows:

Use the base name portletDisplayResources.properties.♦ 
If you are creating files for multiple locales, append each file's name with the appropriate locale
identifier (for example, portletDisplayResources_en_US.properties for U.S. English,
portletDisplayResources_fr_CA.properties for Canadian French, etc.). The file for
the default locale does not need to have a locale identifier.

♦ 

2. 

Place the files in the /portletname/classes directory of the PAR file.3. 

Tasks

Creating Display Resources Files 11



Developing the Presentation JSP
JavaServer Page (JSP) pages are the presentation components of local portlets. Because you can define a local portlet's
initialization, actions, security settings, and resource paths in the portlet deployment descriptor, the JSP page does not
need to contain this information.

In developing the JSP page, you can use the following tags:

tags from the JSP Standard Tag Libraries (JSTL)• 
tags from the Struts tag libraries• 
SAS custom tags, which are available with SAS AppDev Studio (WebAF). For information about these tags,
see  SAS Custom Tags on the AppDev Studio Developer's Site.

• 

When you create a JSP page for a portlet, the only requirements are the following:

the JSP page must be an HTML fragment. This means it must

not contain starting and ending <HTML>, <HEAD>, or <BODY> tags♦ 
be able to be displayed inside a table cell in an HTML document.♦ 

• 

taglib directive. If the JSP page includes custom tags from a tag library, you must include a taglib directive
before the first use of a tag from that library. For the JSTL format tab library, use this taglib directive:

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

• 

UTF−8 directive. You must include a UTF−8 directive if you want the JSP page to provide full support for
internationalization. This directive causes all user input to be encoded in the 8−bit Unicode Transformation
Format, which supports all of the world's languages, including those that use non−Latin1 characters.

Note: The portal Web application supplies this directive when it displays portlets on a portal page. However,
you must supply the directive to ensure correct internationalization when your portlet is displayed from the
Search Results panel. You should consider making your portlet actions extend HTMLPortletAction,
because this class supplies the directive.

The syntax for the UTF−8 directive is:

<%@ page contentType= "text/html; charset=UTF−8"%>

• 

The SAS Web Infrastructure Kit includes a number of sample JSP pages that you can use as templates for creating
your own custom JSP pages. The samples can be found as follows:

Go to the DeployedPortlets directory of the portal setup directory. For example, if you used the default
install location on a Windows system, then you would go to c:\Program
Files\SAS\Web\Portal2.0.1\DeployedPortlets.

1. 

Use a utility such as WinZip to open the portlet archive (PAR) file for the portlet whose JSP page you want to
access. You can then extract the JSP file from the archive.

2. 

Tasks

Developing the Presentation JSP 12



Creating Action Classes
You can use the resources of the SAS Web Infrastructure Kit to develop the following types of action classes for your
local portlets:

Initializer classes• 
Portlet action classes• 
Postprocessing classes• 
Error handling classes• 

The Portlet API includes classes that you can use to create your own action classes for custom portlets. For a summary
of these classes, see Using the Portlet API.

For detailed information about the Portlet API, see the  class documentation.

Thread Safety

Portlet actions, like Struts actions, are multithreaded. There will be only a single instance of your PortletAction
subclass, and you must make your actions thread−safe. This means that

you cannot use class properties to share values between member methods.• 
if you use member methods, be sure to pass all values through the method's signature. The signature passes all
values through the thread−safe stack.

• 

Tasks

Creating Action Classes 13



Creating an Initializer Action Class
When you develop a local portlet, you can implement an initializer class that runs before the portlet is displayed for
the first time on a portal Web application page. The initializer does not execute again if the user interacts with your
portlet or with other portlets on the same page. It also does not execute again if the user navigates to another page and
then back again. However, the initializer does run again if the user logs off, logs on again, and displays the page that
contains the portlet.

Uses for an initializer might include reading initial parameters that are specified in your portlet's deployment
descriptor file (portlet.xml), or connecting to an external resource such as a database.

The portal Web application is delivered with a default initializer class called JspPortletInitializer, which
requires a parameter called display−page. The initializer places the value of this parameter in the
PortletContext object so that it can be used by the portlet's action class. To pass additional parameters, you
would need to create your own initializer class.

If you create an initializer class, the class must

be specified in the initializer−type element of the portlet's deployment descriptor file
(portlet.xml)

• 

implement com.sas.portlet.portlet.PortletInitializerInterface.• 

The com.sas.portlet.portlet.PortletInitializerInterface class includes one method called
initialize(). The following objects are passed to this method:

java.util.Properties, which contains all of the initial parameters that are specified in your portlet's
deployment descriptor. If your portlet's action class or JSP page requires access to these parameters, you
should place them in the portlet context object using its setAttribute() method.

• 

com.sas.portal.portlet.PortletContext, which provides a getter method for the
HttpSession object so that you can access or set session attributes.

• 

Here is an example of an initialize() method that places initial parameters into the portlet context.

/**Puts initial properties into the PortletContext object. 
* These come from the portlet.xml.
* @param initProperties a Properties object
* @param context the PortletContext for this portlet
*/
public void initialize(Properties initProperties,
  PortletContext context) {
    context.setAttribute("display−page", 
          initProperties.getProperty("display−page"));
    context.setAttribute("image−location", 
      initProperties.getProperty("image−location"));
}

Tasks

Creating an Initializer Action Class 14



Creating a Portlet Action Class
When developing a local portlet, you can implement one or more action classes for the portlet. The portlet action class

must be specified in your portlet deployment descriptor file (portlet.xml)• 
must implement com.sas.portal.portlet.PortletActionInterface• 
can extend DefaultPortletAction or HTMLPortletAction in com.sas.portal.portlet.• 

The DefaultPortletAction and HTMLPortletAction contain two simple methods for setting and getting
an instance of com.sas.portal.portlet.PortletActionInfoInterface, as shown in this example:

public void setInfo(PortletActionInfoInterface pai) {
        _actionInfo = pai;
    }
    public PortletActionInfoInterface getInfo() {
        return _actionInfo;
    }

The primary method, called service(), runs before the portlet is displayed and every time the portlet is
redisplayed. For example, it runs after a user interacts with the portlet or with a different portlet on the same page.

The service() method is provided with the HttpServletRequest, HttpServletResponse, and
PortletContext objects. From the PortletContext object, you can obtain the HttpSession object, which
provides access to the most important servlet objects.

Your service() method must return a string representing a valid URL for the portlet. Typically, the URL is the
name of the portlet's JSP page. If your initializer places the display−page property of the portlet.xml into the
PortletContext, you can obtain the URL as in this example:

String url = (String) context.getAttribute("display−page");

If user interaction with your portlet requires a different URL string, you can return that URL instead.

The service() method can handle any kind of exception subclass that is thrown by code within your action. If your
portlet action needs to throw an exception, you can use the portlet error handler. For more information, see Error
Handling.

Tasks

Creating a Portlet Action Class 15



Creating a Postprocessing Action Class
The com.sas.portal.portlet.PostProcessorInterface is available for implementing activity that
should occur when a local portlet is no longer on display. Like other parts of the portlet architecture, it must be
defined in your XML file. You can use the post−processor phase to free resources that you attached to in the portlet
initializer. You could also remove HttpSession attributes that were set in the initializer or action. This is
especially important to consider because multiple copies of your portlet could exist on other portal Web application
pages or even on the same page.

Tasks

Creating a Postprocessing Action Class 16



Creating an Error Handling Action
The com.sas.portal.portlet.ErrorHandlerInterface is available for gracefully handling any errors
that your local portlets encounter. This interface has one method, which is called service(). This method has the
same arguments as the service() method of the PortletActionInterface, plus an additional object called
Exception.

If you specify an error handler in your portlet deployment descriptor file (portlet.xml), the error handler will be
called if the portlet action throws an exception. You can direct your error handler to send messages to the server log
and to return a URL string representing an error page for the user to view.

If your portlet initializer encounters an exception, the error handler will not be called. If you want to ensure that the
error handler will execute, you can store the exception object in the portlet context. Then, in your action class's
service() method, you can get the exception object out of the context and re−throw it. In the following example,
this code is put into a method that should be called at the start of the action's service() method:

/**Check the PortletContext for an exception object. If 
 * present, throw it so that the error handler will kick in.
 * @param context the PortletContext
 */
  private static void errorCheck(PortletContext context)
  throws Exception {
Exception e = (Exception) context.getAttribute("PORTLET_EXCEPTION");
    if (e != null)
    {
      throw e;
    }
  }

Here is a simple error handler that logs the exception and calls a static error page. The error page supplies a general
error message from the portlet's localized resource bundles.

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.sas.portal.portlet.PortletContext;
import com.sas.services.logging.LoggingServiceInterface;
import com.sas.portal.portlet.ErrorHandlerInterface;
import com.sas.portal.portlet.NavigationUtil;

/**Error handler for some portlets.
 * It logs the exception and returns ErrorPage.jsp 
 * for the portlet to display.
 */
public class MyErrorHandler implements ErrorHandlerInterface {

  private final String _loggingContext = this.getClass().getName();

  /**Returns the URL for the portlet controller to call. This is the
   * name of the error page JSP.
   * @param request the HttpServletRequest
   * @param response the HttpServeltResponse
   * @param context the PortletContext
   * @param exception the exception thrown by a portlet action
   * @return the URL to call
   */
public String service(HttpServletRequest request, HttpServletResponse 

Creating an Error Handling Action 17



 response, PortletContext context, Exception thrownException)
  {
  [code omitted for obtaining a LoggerInterface]
    //prepare the localized resources for use by the jsp.
    try {
        NavigationUtil.prepareLocalizedResources(
          "com.mycompany.portlets.Resources", request, context);
    }
    catch (java.io.IOException ioe) {
      logger.error(ioe.getMessage(), _loggingContext, ioe);
    }

    logger.error(thrownException.getMessage(), _loggingContext,
                 thrownException);
    return "ErrorPage.jsp";
  }
}

Tasks

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Creating an Error Handling Action 18



Creating a PAR File for Deployment in Your Application
A portlet archive (PAR) file is an archive file that contains all of the files needed in order to deploy a portlet or a
group of portlets into the portal Web application.

A PAR file can contain files for one portlet, or files for multiple related portlets. There is no limit to the number of
portlets that a PAR file can contain. In addition, a PAR file can contain local portlets, remote portlets, or a
combination of local and remote portlets.

To create a PAR file:

Create the directory structure for the portlet(s) on your local machine, and place the required files in the
appropriate directory location.

1. 

Use the JAR utility to compress the directories and files into an archive.2. 
Rename the archive with a unique name and the extension .par.3. 

For information about how to deploy a PAR file into the portal Web application, refer to Portlet Deployment in the
SAS Web Infrastructure Kit Administrator's Guide.

PAR File Directory Structure

For correct deployment, you must organize the files in a PAR file using the following directory structure:

Directory Contents Notes

(root) Portlet deployment
descriptor file

The name of the deployment descriptor file must be portlet.xml.

/portletname None Include one portletname directory (and associated subdirectories) for
each portlet that is defined in portlet.xml. The directory name must
match the name of the portlet as specified in the name attribute of the
<local−portlet> or <remote−portlet> element in
portlet.xml.

/portletname/classesClass files and any
display resources files
that are used by the
portlet

Replicate any package structure as subdirectories of
/portletname/classes. The display resources files must be in
/portletname/classes.

/portletname/contentWeb resources used by
the portlet, including
JSPs, HTML files, CSS
files, and images

The directory name must be content. Each portlet can have only one
content location directory; however, the content location directory can
have an unlimited number of subdirectories.

/portletname/libJAR files used by the
portlet

Use Cases

Creating a PAR File for Deployment in Your Application 19



Use Cases
This chapter describes the steps that a portlet developer would need to perform in four common uses cases:

Creating a simple display portlet. A simple display portlet is one that displays text, data, and/or images, with
no localization and no interactive capabilities.

• 

Creating a localized portlet. A localized portlet, also referred to as an internationalized portlet, displays its
text, numbers, and dates in the correct language and format for the locale (country and language) that the user
has selected.

• 

Creating a portlet template (editable portlet). A portlet template is a portlet from which users can create their
own portlet instances. By clicking the portlet's Edit icon, the user can change the portlet's behavior as enabled
by the editor action that is associated with the portlet.

• 

Creating a remote portlet. A remote portlet calls a Web application which is deployed and executed outside of
the portal Web application.

• 

For detailed information about a specific portlet development task, refer to the Tasks chapter. For examples of fully
developed portlet code, see the Samples chapter.

Use Cases

Use Cases 20



Creating a Simple Display Portlet
The simplest kind of portlet is a JSP page that displays text, data, and images, with no interactive capabilities.

You might have existing display JSP pages that you would like to deploy in the portal Web application. For example,
you might have custom JSP pages (called widgets) that you created for a previous version of the SAS Information
Delivery Portal Web application. Or you might have created JSP pages using another SAS product such as SAS
Enterprise Guide. It is easy to implement these JSP pages as portlets.

To implement a simple JSP portlet:

Create the JSP page, if it is not already created.1. 
Create a portlet deployment descriptor file.2. 
Create a display resources file containing the portlet title and description.3. 
Pack the files into a PAR file.4. 

Step 1: Create the JSP Page

A JSP page that you deploy as a local portlet can be as simple as the following example:

This is a simple JSP portlet.

The only requirements are that

the JSP page must be an HTML fragment. This means it must

not contain starting and ending <HTML>, <HEAD>, or <BODY> tags♦ 
be able to be displayed inside a table cell in an HTML document♦ 

• 

the file name must have the extension .jsp.• 

For more information, see Developing the Presentation JSP.

Step 2: Create a Portlet Deployment Descriptor File

To create a portlet deployment descriptor file for a simple display JSP portlet:

Specify the portlet name and title using the attributes of the <local−portlet> element. The name cannot
contain spaces. The portlet identifier, which consists of the portlet path (defined in the portlet−path
element) together with the portlet name, must be unique within the portal Web application.

a. 

Optionally, specify key words for use in searching in the <keyword> element.b. 
Specify the portal Web application's default initializer, which is called JspPortletInitializer, in the
initializer−type element. For this initializer, you must specify the following in the <init−param>
element:

display−page in the param−name sub−elementi. 
the name of your JSP page in the param−value sub−element.ii. 

Note: The default initializer passes only the display−page parameter. To pass additional parameters, you
would need to create your own initializer class (see Creating an Initializer Action Class).

c. 

Creating a Simple Display Portlet 21



In most cases, you can use the default settings for the remainder of the elements. For more information, see Creating a
Portlet Deployment Descriptor.

Here is an example of a portal.xml file for a simple display JSP page that will run as a local portlet (that is, inside
the portlet container):

<?xml version="1.0" ?>
<!DOCTYPE portlets SYSTEM "http://localhost:9090/portlet.dtd">
<portlets>
    <local−portlet name="SimpleJsp" title="SIMPLE_JSP_PORTLET">
        <keywords>
                <keyword>example</keywords>
        </keywords>
        <initializer−type>com.sas.portal.portlet.JspPortletInitializer 
                </initializer−type>
        <init−param>
            <param−name>display−page</param−name>
            <param−value>simpleJspTest.jsp</param−value>
        </init−param>
        <content−location>content</content−location>
        <portlet−path>/sas/portlets</portlet−path>
        <portlet−actions>
            <portlet−action name="display">
                <type>com.sas.portal.portlet.JspPortlet</type>
            </portlet−action>
        </portlet−actions>
    </local−portlet>
</portlets>

Step 3: Create a Display Resources File Containing the Portlet Title
and Description

Create the display resources file as follows:

Use <key>=<value> statements to define text strings for portlet.title and
portlet.description, as in the following example:

portlet.title=Welcome Portlet
portlet.description=Welcome Portlet

a. 

Name the file portletDisplayResources.properties.b. 
Place the file in the /portletname/classes directory of the PAR file.c. 

If you want the portlet title and description to be localized at the time of deployment according to the portal Web
application's default locale, you can create multiple display resources files for various locales. For details, see Creating
Display Resources Files.

Note: If you omit this step, the portal Web application will use the portlet's name to create a default description. In
addition, the portlet deployment mechanism will send a warning message to the server log that no localized title or
description can be found.

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Creating a Simple Display Portlet 22



Step 4: Pack the Files into a PAR File

Use the JAR utility to compress the portlet deployment descriptor, the JSP page, and any needed support files into an
archive. For information about the required directory structure, see Creating a PAR File for Deployment in Your Web
Application.

Use Cases

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Creating a Simple Display Portlet 23



Creating a Localized Portlet
A localized portlet, also referred to as an internationalized portlet, is one that displays its text, numbers, and dates in
the correct language and format for the locale (country and language) setting that the user has selected. Users can
specify their locale preference in the Web browser software or in the User Preferences option of the portal Web
application.

To create a localized portlet, use the followings steps :

Create files containing translated messages.1. 
Create display resources files containing translated titles and descriptions (optional).2. 
Create an action class for the portlet.3. 
Use internationalization tags from the JSP Standard Tag Library (JSTL).4. 

Step 1: Create Files Containing Translated Messages

Place translations of your portlet's messages in resource bundles, which are files suitable for use by the Java
ResourceBundle class. These files must be named with the extension .properties.

Create these files as follows:

Create a separate file for each language (or each country and language combination) that you need to support.a. 
In each file, use <key>=<value> statements to define the text strings. Use the same key names in each file.

If a message does not require translation, you can omit it. For example, if the default locale is U.S. English,
some messages might not require translation to British English. These messages can be omitted from the
British English resource bundle, and the default U.S. English translation will be used.

b. 

Name the files as follows:

Use the same base name for each file (for example, Resources).♦ 
Append each file's base name with the appropriate locale identifier (for example, _en_US for U.S.
English, _fr_CA for Canadian French, and so on). The file for the default locale does not need to
have a locale identifier.

♦ 

Give each file name the extension .properties.♦ 
For example, if the default language and country is U.S. English, you could create

a file called Resources.properties that contains U.S. English messages♦ 
a file called Resources_fr_CA.properties that contains Canadian French messages♦ 
a file called Resources_uk_EN.properties that contains British English messages♦ 

c. 

You can place all of the files in the package of your choice. Since the files must be included in the PAR file, it
might be convenient to place them in the package where the portlet's action class will be located.

d. 

For more information on resource bundles, refer to the internationalization information on the Sun Web site at 

http://java.sun.com.

Creating a Localized Portlet 24



Step 2: Create Display Resources Files Containing Translated Titles
and Descriptions (Optional)

The resource files created in Step 1 affect only the text that is displayed inside of the portlet. They do not affect the
metadata (including the title and description) that describes the portlet. The SAS Metadata Repository cannot store
multiple, localized values for metadata. Therefore, the portlet title and description cannot be translated based on the
user's locale preference.

However, the portlet title and description can be translated into the portal Web application's default locale at the time
that the portlet is deployed. To make this happen, you must place translated titles and descriptions for your portlet in
portletDisplayResources.properties files.

When the portlet is first deployed, the deployment process will check to see which default locale was specified when
the portal Web application was installed. Based on this locale, the deployment process uses the title and description
from the appropriate display resource file to create metadata and register the portlet in the SAS Metadata Repository.

Note: If your portlet will be deployed in only one locale (language), this step can be omitted. If you do omit this step,
the portlet deployer mechanism will send a warning message to the server log that no localized title or description can
be found. In addition, you will not be able to specify a description for your portlet. Instead, the portal Web application
will use the portlet's name to create a default description.

Create the display resources files as follows:

Create a separate file for each language (or each country and language combination) that you need to support.
In each file, use <key>=<value> statements to define text strings for portlet.title and
portlet.description, as in the following examples:

portlet.title=Welcome Portlet
portlet.description=Welcome Portlet

portlet.title=Portlet de bienvenida
portlet.description=Portlet de bienvenida

a. 

To name each file, use the base name portletDisplayResources. Append each file's base name with
the appropriate locale identifier(as described in Step 1−c previously) and then with the extension
.properties.

b. 

Place the files in the /portletname/classes directory of the PAR file.c. 

Step 3: Create an Action Class for the Portlet

Create an action class for your portlet, as follows:

Import the com.sas.portal.portlet.NavigationUtil class.a. 
Add the following code to the service() method of your action class, with the correct package and name
for your resources:

NavigationUtil.prepareLocalizedResources(
"com.mycompany.portlets.Resources", request, context);

This method uses the portlet classloader to obtain the resource bundle from the portlet's PAR file. It then uses
the bundle and the locale of the current user to make a new JSTL localization context. The localization

b. 

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Creating a Localized Portlet 25



context will be available to your portlet's JSP page.

Step 4: Use the Internationalization Tags from the JSP Standard Tag
Library (JSTL)

When you create the portlet's JSP page, use tags from the JSP Standard Tag Library to display text, as follows:

First, include the taglib directive for the JSTL formatting tags:

<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>.

The directive must appear before the first use of these tags.

a. 

To display a text message from the resource bundles, use the message tag with the key attribute, as in the
following example:

<fmt:message key="welcome.msg1.txt"/>

This example will obtain text associated with the key welcome.msg1.txt from the resource bundle for
the locale that most closely matches the user's locale preference.

b. 

You can also use the other JSTL tags for formatting such locale−sensitive items as dates and currency. The portal
Web application makes the user's locale available to those tags.

For more information about creating JSP pages for portlets, see Developing the Presentation JSP. For information
about JSTL, refer to the Sun Web site at   http://java.sun.com/products/jsp/jstl. The JSTL jar files are provided with

the SAS Web Infrastructure Kit.

Use Cases

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Creating a Localized Portlet 26



Creating a Portlet Template (Editable Portlet)
A portlet template is a portlet from which users can create their own portlet instances. When created, the new portlet
instance belongs to the user. By clicking the portlet's Edit icon, the user can change the portlet's behavior as enabled
by the editor action that is associated with the portlet.

The portal Web application is delivered with three portlet templates: the Collection Portlet template, the WebDAV
Navigator Portlet template, and the URL Display Portlet template. The Add a Portlet function of the portal Web
application enables users who have the appropriate permissions to create new instances of these portlets. Users can
then edit the portlets that they have created.

The SAS Web Infrastructure Kit enables you to develop and deploy additional portlet templates. After you deploy a
new portlet template, the template name appears in the drop−down box on the Create a New Portlet dialog box along
with the Collection Portlet and the WebDAV Navigator Portlet.

To create a new portlet template, use the following steps:

Code the portlet deployment descriptor file to support replication and editing capabilities.1. 
Code the editor action class.2. 
Code the editor JSP page.3. 
Create resource bundles to support localized text.4. 

Step 1: Code the Portlet Deployment Descriptor File

To support replication and editing capabilities, code the portlet deployment descriptor file (portlet.xml) as
follows:

In the local−portlet element, specify the attribute value editorType="portlet". This value
indicates that portlets created from the template are to be editable.

Note: If you specify this attribute value, you must also specify a portlet action with the attribute
editor="true", as described in Step 1−c, which follows. Otherwise, the portlet deployer will send a
warning to the server log and will not deploy the portlet.

a. 

In the deployment element, specify the attribute value userCanCreateMore="true". This value
indicates that the portlet is a template and can be replicated by portal users.

b. 

Code the action elements:

Code a default action to specify processing that is to occur before the portlet's JSP page renders, as in
this example:

<portlet−action name="display" default="true">
  <type>com.mycompany.portlets.NavigatorAction</type>
</portlet−action>

♦ 

You must code an <action> element to specify the editor action which is to be invoked when a user
clicks the portlet's Edit icon. Use the attribute value editor="true" to indicate that the action is
for this purpose, as in the following example:

<portlet−action name="editor" editor="true" >
  <type>com.mycompany.portlets.EditorAction</type>
</portlet−action>

♦ 

c. 

Creating a Portlet Template (Editable Portlet) 27



Code <action> elements to specify the actions that are to be invoked when the user clicks buttons
on the editor JSP page, as in the following example:

<portlet−action name="ok" default="false" >
  <type>com.mycompany.portlets.ReturnAction</type>
</portlet−action>
<portlet−action name="cancel" default="false" >
  <type>com.mycompany.portlets.CancelAction</type>
</portlet−action>

♦ 

Step 2: Code the Editor Action Class

Code the editor action class, which is the class that is to be invoked when a user clicks the portlet's Edit icon. In the
portlet deployment descriptor file, the name of this action class must be specified in the <action> element with the
attribute value editor="true", as described previously in Step 1−c. The editor action class should

place the portlet's navigation path into the PortletContext object so that it can be used by the portlet's JSP
page.

a. 

use the com.sas.portal.portlet.NavigationUtil class to create URLs for buttons on the JSP
page (for example, OK and Cancel). You can place the URLs into either the HttpServletRequest
object or in the PortletContext object.

b. 

When editing is complete, display the portlet again using the default display action. (This is necessary because
the portlet takes over the entire page as its display mode when it is in edit mode.) To reset the display

check to see that edit mode is active. This is necessary because the editor might have delegated
control to other portlet actions that use the default display.

i. 

if edit mode is active, call the PortletContext's resetMode() method to reset the display mode
from full page to the default display action.

ii. 

c. 

A complete example of an editor action class follows:

public String service(HttpServletRequest request,
  HttpServletResponse response, PortletContext context) throws Exception
{
InformationServicesSelector infoSelector = (InformationServicesSelector)
    context.getAttribute("myISSKey");
String path = infoSelector.getPath();
//put the path into the portlet's context object
        context.setAttribute("myISS_InitialPath", path);

//create the URLs for the OK and Cancel buttons.
request.setAttribute("Return_URL",
        NavigationUtil.buildBaseURL(context, request, "ok"));

request.setAttribute("Cancel_URL",
        NavigationUtil.buildBaseURL(context, request, "cancel"));

//prepare the localized resources for use by the jsp.
try {
    NavigationUtil.prepareLocalizedResources(
        "com.mycompany.portlets.NavigatorResources",
         request, context);
}
  catch (java.io.IOException ioe) {
          Logger.error(ioe.getMessage(), _loggingContext, ioe);

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Creating a Portlet Template (Editable Portlet) 28



}
// be sure we are in edit mode, then call reset.
if (context.getMode().equals(PortletContext.EDIT_MODE)) {
context.resetMode();
}
}

Step 3: Code the Editor JSP Page

When a portlet goes into edit mode, it takes over the entire page as its display area. Code the JSP page for this area as
follows:

Obtain the portlet's navigation path from the portlet context so that the page can be displayed to the user, as in
the following scriptlet code example:

PortletContext context = (PortletContext) request.getAttribute (
com.sas.portal.portlets.PortletConstants.CURRENT_PORTLET_CONTEXT );
String path = (String) request.getAttribute ( "myISS_InitialPath" );

1. 

Create buttons (for example, OK and Cancel) with the appropriate form actions. Obtain URLs for these
buttons from the HttpServletRequest or the PortletContext object (as described previously in
Step 2−b), and assign them to the action attribute. To localize the button text, you can use the message
tag from the JSTL tag library, as in the following scriptlet code example:

<form method="post"
   action = "<%= (String)
     request.getAttribute("myISS_InitialPath") %>">
     <input class="button" type="submit" value= "<fmt:message
     key="action.ok.txt"/>" name="submit" >
</form>

2. 

Code the visual elements of the page as desired.3. 

For a complete example of an editor JSP page, see Sample: Portlet Template, or Editable Portlet (DisplayURL).

Step 4: Create Resource Bundles to Support Localized Text

To ensure that the portlet can display localized text, create a NavigatorResources.properties file, and then
create localized versions of the same file. These files should contain the appropriate key−value pairs that are needed to
obtain localized text. For more information, see Creating a Localized Portlet.

Use Cases

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Creating a Portlet Template (Editable Portlet) 29



Creating a Remote Portlet
A remote portlet is a portlet that calls a remote Web application. A remote Web application is an application that runs
outside of the portal Web application.

To create a remote portlet, use the following steps:

Create the Web application.1. 
Create a portlet deployment descriptor file.2. 
Create display resources files containing the portlet title and description.3. 
Create WAR and PAR files.4. 

Step 1: Create the Web Application

The Web application for a remote portlet can be developed using any Web technology, and can be as simple as a
single JSP page. The Web application

must be located anywhere outside of the portal Web application• 
has access to the portal Web application's context information, including session and user identity
information, through the use of SAS Foundation Services (this is the only point at which remote portlets are
coupled with the portal Web application)

• 

must display an HTML fragment when a request is received from the portal Web application• 
must rewrite URLs so that requests are routed through the portal Web application before they are passed to the
remote portlet.

• 

For an example of a JSP page for a remote portlet's Web application, see Sample: Web Application
(HelloUserWikExample).

Step 2: Create a Portlet Deployment Descriptor File

To create a portlet deployment descriptor file for a remote portlet:

In the <remote−portlet> element

specify the portlet's name and title. The name cannot contain spaces. The portlet identifier, which
consists of the portlet path (defined in the portlet−path element) together with the portlet name,
must be unique within the portal Web application.

i. 

specify the value "true" for the passContextId attribute. This value makes the portal Web
application's session information, including user identity, available to the remote portlet.

ii. 

a. 

Optionally, use the <keyword> element to specify key words for use in searching.b. 
Specify the URL for the remote portlet's Web application in the url subelement of the portlet−action
element. This subelement must contain a fully qualified URL, and the URL must contain a fully qualified host
domain name.

c. 

For more information, see Creating a Portlet Deployment Descriptor. For an example of a deployment descriptor for a
remote portlet, see Sample: Remote Portlet (HelloUserRemotePortlet).

Creating a Remote Portlet 30



Step 3: Create Display Resources Files Containing the Portlet Title
and Description

To specify the title and description for the portlet's metadata, create a
portletDisplayResources.properties file. If you want the portlet title and description to be localized at
the time of deployment according to the portal Web application's default locale, then create a separate
portletDisplayResources.properties for each locale. For details, see Creating Display Resources Files.

Note: If you omit this step, the portal Web application will use the portlet's name to create a default description. In
addition, the portlet deployment mechanism will send a warning message to the server log that no localized title or
description can be found.

Step 4: Create the PAR File and WAR File

Use the JAR utility to place the portlet deployment descriptor into an archive. For information about the required
directory structure, see Creating a PAR File for Deployment in Your Web Application.

You must also create a WAR file to use in deploying the remote portlet's Web application.

Samples

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Creating a Remote Portlet 31



Samples
This chapter provides fully developed samples of custom portlets. The chapter includes complete code for portlet
deployment descriptors, JSP pages, resource files, and action classes as applicable for each portlet. The following
sample portlets are provided:

Welcome is a simple display portlet which has no interactive capabilities. Because it is internationalized, it
displays text in the user's locale (language and country) preference.

• 

FormExample is an interactive form portlet that accepts free−form input and displays it back to the user.• 

DisplayURL is a portlet template (also referred to as an editable portlet), which is a portlet from which users
can create their own portlet instances. The DisplayURL portlet template, which is delivered with the portal
Web application, enables users to create portlets that return HTML content from any URL.

• 

HelloUserWikExample is a Web application that is enabled by SAS Foundation Services. The application
displays the string Hello user, where user is the name of the user who is logged on to the portal Web
application.

• 

HelloUserRemotePortlet is a remote portlet that executes the sample Web application HelloUserWikExample
and displays the name of the user who is logged on to the portal Web application.

• 

For detailed information about a specific portlet development task, see Tasks. For general information about creating
various types of portlets, see Use Cases.

Sample: Localized Display Portlet (Welcome Portlet)

Samples 32



Sample: Localized Display Portlet (Welcome Portlet)

The sample portlet called Welcome is

a simple display portlet that has no interactive capabilities• 
a local portlet that runs inside the portlet container• 
an internationalized portlet that displays text in the user's locale (language and country) preference.• 

The following steps were used to create the Welcome portlet. Click on each step to display details.

Create a directory structure for the portlet.1. 
Create the portlet deployment descriptor (portlet.xml).2. 
Create the display page (Welcome.jsp).3. 
Create the action class (WelcomeAction.class).4. 
Create resource bundles to support eleven different locales.5. 
Create translated titles and descriptions in the portletDisplayResources.properties files to
support eleven different locales.

6. 

Create the PAR file, and deploy and test the portlet.7. 

Sample: Localized Display Portlet (Welcome Portlet)

Sample: Localized Display Portlet (Welcome Portlet) 33



Step 1: Create the Directory Structure
The following directory structure was used to create the Welcome portlet:

This structure includes the following directories and subdirectories:

Directory Contents

Work (root)

This directory serves as a
development area for the portlet.

Portlet deployment descriptor file portlet.xml

The name of the portlet deployment descriptor file must
be portlet.xml.

/Welcome This is the main portlet directory. It does not contain any
files. The directory name must not have any spaces, and it
must match the name of the portlet as specified in the
name attribute of the <local−portlet> element in
portlet.xml.

/Welcome/classes Display resource files:
portletDisplayResources_de.properties,
portletDisplayResources_en.properties,
portletDisplayResources_es.properties,
and so on.

/Welcome/classes/com/sas/portal/
portlets/welcome

The action class called WelcomeAction.class.

/Welcome/classes/com/sas/portal/
portlets/welcome/res

Resource bundles: Resources.properties,
Resources_de.properties,
Resources_es.properties,
Resources_fr.properties, and so on.

Note: Alternatively, the resource bundles could be placed
in the same directory as the action class.

/Welcome/content This directory contains the display page called
Welcome.jsp.

Each portlet can have only one content location directory,
and the directory name must be content. However, the
content location directory can have an unlimited number
of subdirectories.

Step 1: Create the Directory Structure 34



The following rules apply when you set up the directory structure:

Neither portlet names nor their paths can contain spaces.• 
The portlet identifier (which consists of the name and the path) must be unique. Developers should devise a
convention to ensure unique name−spaces, similar to the conventions used for naming Java packages.

For example, the Sales division of a company named ABCD could create portlets in the path ABCD/Sales,
and the Purchasing division could create portlets in the path ABCD/Purchasing. Then, both Sales and
Purchasing could have different portlets named Welcome.

• 

Sample: Localized Display Portlet (Welcome Portlet)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 1: Create the Directory Structure 35



Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information that the portal Web application
needs to deploy one or more portlets. Here is the portlet deployment descriptor for the Welcome portlet. The boxes
contain explanatory comments. For more information, see Creating a Portlet Deployment Descriptor.

<?xml version="1.0" encoding="UTF−8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal setup directory in the
path Portal\WEB−INF. For example, if you used the default install location on a Windows
system, then the DTD is located under the following path: c:\Program
Files\SAS\Web\Portal2.0.1\Portal\WEB−INF.
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>

The local−portlet element assigns the name Welcome to the portlet. The name cannot
contain spaces. The portlet identifier, which consists of the portlet path (defined in the
portlet−path element) together with the portlet name, must be unique within the portal Web
application.

The icon attribute is optional. It specifies the icon that is to appear with the portlet's name in the
portal Web application's search results. In the portlet's directory structure, the icon's image file must
be placed in or under the content directory. If it is in a subdirectory of content, you must
specify the subdirectory with the image name. For example, if the image greeting.gif is in the
path content\icons, then you would specify icon="icons\greeting.gif".

If an icon is not specified, then the default icon for portlets will be used.
  <local−portlet name="Welcome" title="Welcome" icon="Portlet.gif">

The localized resources element lists the locales that the portlet supports. Display resource
files must be provided for each of these locales.
    <localized−resources locales="de,en,es,fr,it,ja,pl,ru,sv,zh_CN" /> 

The deployment element specifies that the portlet is to be available to the Public group. This
means that all users will be able to search for this portlet and add it to their pages.
    <deployment scope="group" autoDeploy="true" userCanCreateMore="false">
      <group>Public</group>
    </deployment>

Since the Welcome portlet does not need its own initializer class, the portal Web application's
default portlet initializer (JspPortletInitializer) is specified. This class requires a
parameter called display−page. The initializer places the value of this parameter in the
PortletContext object so that it can be used by the portlet's action class. The value of the
parameter is the name of the Welcome portlet's JSP page, called Welcome.jsp.

Step 2: Create the Portlet Deployment Descriptor 36



Note: The default initializer passes only the display−page parameter. To pass additional
parameters, you would need to create your own initializer class (see Creating an Initializer Action
Class).

    <initializer−type>
      com.sas.portal.portlets.JspPortlet.JspPortletInitializer
    </initializer−type>
    <init−param>
      <param−name>display−page</param−name>
      <param−value>Welcome.jsp</param−value>
    </init−param>

The portlet−path element specifies the directory location where the portlet is to be deployed.
The portlet identifier, which consists of the portlet path together with the portlet name (defined in
the local−portlet element), must be unique within the portal Web application. For example,
Orion Star Sports & Outdoors could have two Welcome portlets if different paths are specified for
each (as in OrionStar/Sales/Welcome and OrionStar/Purchasing/Welcome).
    <portlet−path>/sas/portlets</portlet−path>
    <portlet−actions>

To provide for internationalization of the text that appears inside the portlet border, the Welcome
portlet has its own action class, called WelcomeAction. The name of the class is specified in the
type subelement of the portlet−action element.
      <portlet−action name="display" default="true">
      <type>com.sas.portal.portlets.welcome.WelcomeAction</type>
      </portlet−action>
    </portlet−actions>
  </local−portlet>
</portlets>

Sample: Localized Display Portlet (Welcome Portlet)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 2: Create the Portlet Deployment Descriptor 37



Step 3: Create the Display Page
JSP pages are the presentation components of portlets. This is the source code for the Welcome portlet's JSP page,
called Welcome.jsp. The boxes contain explanatory comments. For more information, see Creating the
Presentation JSP.

<%−− Copyright (c) 2001 by SAS Institute Inc., Cary, NC 27513 −−%>

The following line contains the UTF−8 directive, which is required for internationalization. This
directive causes all user input to be encoded in the 8−bit Unicode Transformation Format, which
supports all of the world's languages including those that use non−Latin1 characters.
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>     

The following line contains the taglib directive for the JSP Standard Tag Library (JSTL) formatting
tags. The directive must appear before the first use of these tags.
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>
<%−−This portlet provides the welcome greeting on the Public Kiosk.  −−%>

The following lines use JSTL formatting tags to display text. The key attribute is used to obtain
the appropriate text from the resource bundle that most closely matches the user's locale preference.
The SAS Web Infrastructure Kit makes the user's locale available to these tags.
<fmt:message key="welcome.msg1.txt"/>
<br>
<fmt:message key="welcome.msg2.txt"/>

Sample: Localized Display Portlet (Welcome Portlet)

Step 3: Create the Display Page 38



Step 4: Create the Action Class
The Welcome portlet has its own action class, WelcomeAction, which provides support for localizing messages.
This class extends com.sas.portal.portlet.HTMLPortletAction, which contains code to correctly
display non−Latin1 character sets when the portal Web application displays the portlet in preview mode.

The source code for WelcomeAction follows. The boxes contain explanatory comments. For more information, see
Creating Action Classes.

/** Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 *  All Rights Reserved.
 */
package com.sas.portal.portlets.welcome;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.sas.portal.portlet.HTMLPortletAction;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;

/**Action for the Welcome Portlet. This prepares the localized resource
 * bundles for use by the JSTL tags within the portlet's JSP.
 * @version 1
 */
public final class WelcomeAction extends HTMLPortletAction {

  /**
   * Configure the JSTL localization context for use in the Welcome
   * portlet. Returns the value of "display−page" from the portlet's
   * XML descriptor.
   *
   * @param request  The HtppServletRequest associated with the
   *                 method invocation
   * @param response HttpServletResponse associated with the
   *                 method invocation
   * @param context  PortletContext mapped to the request path
   *
   * @return java.lang.String − representing a valid URL.
   */
  public String service(HttpServletRequest request,
      HttpServletResponse response, PortletContext context)
    throws Exception{

In the following code, the NavigationUtil method uses the portlet's classloader to obtain the
portlet's resource bundle. Using this bundle and the locale of the current user, it creates a new JSTL
localization context. The localization context is made available to the portlet's JSP page with
request scope.

        super.service(request, response, context);

NavigationUtil.prepareLocalizedResources(
   "com.sas.portal.portlets.welcome.res.Resources", request, context);

        //This comes from the portlet.xml.
        String url = (String) context.getAttribute("display−page");

Step 4: Create the Action Class 39



        return url;
    }

}

Sample: Localized Display Portlet (Welcome Portlet)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 4: Create the Action Class 40



Step 5: Create the Resource Bundles
The resource bundles provide translated text to be displayed inside the Welcome portlet. The portlet's
WelcomeAction.class calls the NavigationUtil.prepareLocalizedResources() method to create a
JSTL localization context based on the user's locale preference. This context enables the JSTL tags in Welcome.jsp to
use the appropriate resource bundle to display the text. For more information about creating resource bundles, see
Creating a Localized Portlet.

Note: For information about localizing the portlet's title and description, see Step 6: Create Translations of the Title
and Description.

A number of resource bundles are provided with the Welcome portlet. The contents of three of the files
(Resources.properties for U.S. English, Resources_de.properties for German, and
Resources_es.properties for Spanish) follow.

#This is where you put key/value pairs for message strings that need to
#be localized.
##These are the messages for the Welcome portlet
#This is for the Public Kiosk Welcome portlet
welcome.msg1.txt=Welcome to Version 2 of the Information Delivery Portal.
welcome.msg2.txt=Please look around!

#This is where you put key/value pairs for message strings that need to
#be localized.
##These are the messages for the Welcome portlet
#This is for the Public Kiosk Welcome portlet
welcome.msg1.txt=Willkommen bei Information Delivery Portal Version 2.
welcome.msg2.txt=Schauen Sie sich um!

#This is where you put key/value pairs for message strings that need to
#be localized.
##These are the messages for the Welcome portlet
#This is for the Public Kiosk Welcome portlet
welcome.msg1.txt=Bienvenido a la versión 2 de Information Delivery 
  Portal.
welcome.msg2.txt=Puede continuar

Sample: Localized Display Portlet (Welcome Portlet)

Step 5: Create the Resource Bundles 41



Step 6: Create Translated Titles and Descriptions
Display resource files called portletDisplayResources.properties contain translated titles and
descriptions for the Welcome portlet. These files contain text to be used in creating the metadata that describes the
portlet.

When the portlet is first deployed, the deployment process checks to see which default locale was specified when the
portal Web application was installed. Based on this locale, it uses the title and description from the appropriate display
resource file to create metadata and register the portlet in the SAS Metadata Repository.

Note: The SAS Metadata Repository cannot store multiple, localized values for metadata. Therefore, the title and
description are translated only into the portal Web application's default locale. They cannot be translated based on the
user's locale preference.

A number of display resource files are provided for the Welcome portlet. The contents of three of the files
(portletDisplayResources_de.properties, portletDisplayResources_en.properties, and
portletDisplayResources_es.properties) follow.

portlet.title=Begrüßungs−Portlet
portlet.description=Begrüßungs−Portlet

portlet.title=Welcome Portlet
portlet.description=Welcome Portlet

portlet.title=Portlet de bienvenida
portlet.description=Portlet de bienvenida

Sample: Localized Display Portlet (Welcome Portlet)

Step 6: Create Translated Titles and Descriptions 42



Step 7: Create the PAR File, and Deploy and Test the
Portlet
The last step in developing the Welcome portlet was to zip its files into a PAR file. The PAR file includes:

Appropriately named and organized directories and subdirectories, as described in Step 1: Create the
Directory Structure.

• 

All of the portlet's supporting files, including the files created in Steps 2 through 6. The files must be placed in
the appropriate directories as described in Step 1: Create the Directory Structure and Creating a PAR File for
Deployment in Your Application.

• 

The JAR utility was used to compress the directories and files into an archive, and the archive was given the name
Welcome.par.

It is a good practice to deploy new portlets into a staging area (that is, a test installation of the portal Web application)
for verification and testing before deploying them into the production environment. For information about how to
deploy a PAR file into the portal Web application, refer to Portlet Deployment in the SAS Web Infrastructure Kit
Administrator's Guide.

Sample: Interactive Form Portlet (FormExample)

Step 7: Create the PAR File, and Deploy and Test the Portlet 43



Sample: Interactive Form Portlet (FormExample)
The sample portlet called FormExample is an interactive portlet. It accepts free−form input from the user.

When the user clicks Submit Form, the portlet displays the entered text back to the user.

FormExample is a local portlet that runs inside the portlet container. It was developed using a JavaBean, which places
values in the PortletContext object so that the values are available to the JSP page. The
HttpServletRequest or HttpSession object could be used for this purpose. However, the
PortletContext object is unique to the portlet and is not shared with other processes. Therefore, using it avoids
collisions that could cause attribute values to be ovewritten.

The following steps were used to create the FormExample portlet. Click on each step to display details.

Create a directory structure for the portlet.1. 
Create the portlet deployment descriptor (portlet.xml).2. 
Create the display page (FormExample.jsp).3. 
Create the action class (DisplayAction.class).4. 
Create the bean.5. 
Zip the portlet into a PAR file, and deploy and test the portlet.6. 

Sample: Interactive Form Portlet (FormExample)

Sample: Interactive Form Portlet (FormExample) 44



Step 1: Create the Directory Structure
The following directory structure was used to create the FormExample portlet:

This structure includes the following directories and subdirectories:

Directory Contents

work (root)

This directory serves as a development area for the portlet.

Portlet deployment
descriptor file
portlet.xml

The name of the
deployment descriptor file
must be portlet.xml.

/FormExample This is the main portlet
directory. It does not
contain any files. The
directory name must not
have any spaces, and it must
match the name of the
portlet as specified in the
name attribute of the
<local−portlet>
element in portlet.xml.

/FormExample/classes/com/sas/portal/portlets/formexampleThe action class called
DisplayAction.class
and the JavaBean called
ExampleBean.class.

/FormExample/content This directory contains the
display page called
FormExample.jsp.

Each portlet can have only
one content location
directory, and the directory
name must be content.
However, the content
location directory can have
an unlimited number of

Step 1: Create the Directory Structure 45



subdirectories.

The following rules apply when you set up the directory structure:

Neither portlet names nor their paths can contain spaces.• 
The portlet identifier (which consists of the name and the path) must be unique. Developers should devise a
convention to ensure unique name−spaces, similar to the conventions used for naming Java packages.

For example, the Sales division of a company named ABCD could create portlets in the path ABCD/Sales,
and the Purchasing division could create portlets in the path ABCD/Purchasing. Then both Sales and
Purchasing could have different portlets named FormExample.

• 

Sample: Interactive Form Portlet (FormExample)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 1: Create the Directory Structure 46



Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information that the portal Web application
needs to deploy one or more portlets. Here is the portlet deployment descriptor for the FormExample portlet. The
boxes contain explanatory comments. For more information, see Creating a Portlet Deployment Descriptor.

<?xml version="1.0" encoding="UTF−8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal setup directory in the
path Portal\WEB−INF. For example, if you used the default install location on a Windows
system, then the DTD is located under the following path: c:\Program
Files\SAS\Web\Portal2.0.1\Portal\WEB−INF.
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>

The local−portlet element assigns the name FormExample to the portlet. The name cannot
contain spaces. The portlet identifier, which consists of the portlet path (defined in the
portlet−path element) together with the portlet name, must be unique within the portal Web
application.
  <local−portlet name="FormExample" title="Form Example" >
    <localized−resources locales="en" />
    <keywords>
      <keyword></keyword>
    </keywords>

The deployment element specifies that the portlet is to be available to the Public group. This
means that all users will be able to search for this portlet and add it to their pages.
    <deployment scope="group" autoDeploy="true"
            userCanCreateMore="false">
          <group>Public</group>
    </deployment>

Since no initializer class is specified, the FormExample portlet will use the default initializer
JspPortletInitializer. This initializer requires a page name as a parameter. The
FormExample has its own JSP page, called FormExample.jsp.
    <init−param>
      <param−name>display−page</param−name>
      <param−value>FormExample.jsp</param−value>
        </init−param>

The portlet−path element specifies the directory location where the portlet is to be deployed.
The portlet identifier, which consists of the portlet path together with the portlet name (defined in
the local−portlet element), must be unique within the portal Web application.
  <portlet−path>/sas/portlets</portlet−path>

Step 2: Create the Portlet Deployment Descriptor 47



To provide its interactive functionality, the FormExample portlet has its own action class, called
DisplayAction. The name of the class is specified in the type subelement of the
portlet−action element.
  <portlet−actions>
    <portlet−action name="display" default="true">
        <type>com.sas.portal.portlets.formexample.DisplayAction</type>
      </portlet−action>
    </portlet−actions>
  </local−portlet>
</portlets>

Sample: Interactive Form Portlet (FormExample)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 2: Create the Portlet Deployment Descriptor 48



Step 3: Create the Display Page
JSP pages are the presentation components of portlets. This is the source code for the FormExample portlet's JSP
page, called FormExample.jsp.

This JSP page uses SAS custom tags, which are available with SAS AppDev Studio. For more information, see
Creating the Presentation JSP.

<%−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−%>
<%@ page language="java"
import="com.sas.portal.portlet.PortletContext,
   com.sas.portal.portlet.PortletConstants"
contentType= "text/html; charset=UTF−8" %>

<%@taglib uri="http://www.sas.com/taglib/sas" prefix="sas"%>

<%−−This portlet provides for echoing the user input back to the
   portlet display.  −−%>

<% PortletContext context = (PortletContext)
   request.getAttribute(PortletConstants.CURRENT_PORTLET_CONTEXT );

%>

<sas:Form id="form" name="form" method="POST"
   action="<%= (String) context.getAttribute(\"formExample_baseURL\")%>">

<table border="0">
<tr>
   <td align="right">Please type something:</td>
   <td><sas:TextEntry id="userInput" /></td>
</tr>
<tr>
   <td> </td>
</tr>

<tr>
   <td align="right">You typed:</td>
   <td><%=(String) context.getAttribute("formExample_userInput") %></td>
</tr>

</table>

<sas:PushButton id="submit"
   text="Submit Form" type="submit" />

</sas:Form>

Sample: Interactive Form Portlet (FormExample)

Step 3: Create the Display Page 49



Step 4: Create the Action Class
The FormExample portlet has its own action class, DisplayAction. The source code for DisplayAction
follows. For more information, see Creatinyg Action Classes.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.formexample;

import java.util.Enumeration;
import java.util.HashMap;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.commons.beanutils.BeanUtils;

import com.sas.portal.portlet.HTMLPortletAction;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;

/**Action for the Form Example Portlet. This prepares the URL
 * that will be assigned to the form's action within the portlet's 
 * JSP. It also populates a bean with the parameters from the JSP 
 * form.
 *
 * @author Todd.Folsom@sas.com
 * @version 1
 */
public final class DisplayAction extends HTMLPortletAction {

  /**
   * Prepare the URL for the form used in the portlet.
   * Returns the value of "FormExample.jsp".
   *
   * @param request  The HtppServletRequest associated with the 
   *                 method invocation
   * @param response HttpServletResponse associated with the 
   *                 method invocation
   * @param context  PortletContext mapped to the request path
   *
   * @return java.lang.String − representing a valid 
   *                 URL.
   */
  public String service(HttpServletRequest request,
       HttpServletResponse response, PortletContext context)
     throws Exception{

    super.service(request, response, context);

    //prepare the base URL for setting on the form in the JSP.
    // The "display" is the value used in portlet.xml for this 
    // action.  
    String baseURL = NavigationUtil.buildBaseURL(context, request,
        "display");
    context.setAttribute("formExample_baseURL", baseURL);

Step 4: Create the Action Class 50



    //Make a new ExampleBean. Alternatively, this could be made 
    // once in the portlet initializer class, then you manage  
    // its properties in the action.
    ExampleBean bean = new ExampleBean();

    //The BeanUtils class will populate any bean with all the 
    // parameters from the form.
    HashMap map = new HashMap();
    Enumeration names = request.getParameterNames();
    while (names.hasMoreElements()) {
       String name = (String) names.nextElement();
       map.put(name, request.getParameterValues(name));
    }
    BeanUtils.populate(bean, map);

    //put the userInput into the portlet context so we can get it out
    // in the JSP.
    context.setAttribute("formExample_userInput", bean.getUserInput());

    return "FormExample.jsp";
  }

Sample: Interactive Form Portlet (FormExample)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 4: Create the Action Class 51



Step 5: Create the JavaBean
The FormExample portlet was developed using a JavaBean called ExampleBean.java. This JavaBean places
values in the PortletContext object so that the values are available to the JSP page.

The HttpServletRequest or HttpSession object could be used for this purpose. However, the
PortletContext object is unique to the portlet and is not shared with other processes. Therefore, using it avoids
collisions that could cause attribute values to be overwritten.

The source code for ExampleBean.java follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.formexample;

public final class ExampleBean {

/**Sets the user's input to this property. If input
 * is null, it will be changed to "" so that getUserInput()
 * never returns null.
 *
 * @param input
 */
public void setUserInput(String input) {
        if (input == null) {
                input = "";
        }
        this.input = input;
}

/**Returns the user's input or "".
 *
 * @return String
 */
public String getUserInput() {
        return input;
}

private String input = "";
}

Sample: Interactive Form Portlet (FormExample)

Step 5: Create the JavaBean 52



Step 6: Create the PAR File, and Deploy and Test the
Portlet
The last step in developing the FormExample portlet was to archive its files into a PAR file. The PAR file includes

appropriately named and organized directories and subdirectories, as described in Step 1: Create the Directory
Structure.

• 

all of the portlet's supporting files, including the files created in Steps 2 through 5. The files must be placed in
the appropriate directories as described in Step 1: Create the Directory Structure and Creating a PAR File for
Deployment in Your Application.

• 

The JAR utility was used to compress the directories and files into an archive, and the archive was given the name
FormExample.par.

It is a good practice to deploy new portlets into a staging area (that is, a test installation of the portal Web application)
for verification and testing before deploying them into the production environment. For information about how to
deploy a PAR file into the portal Web application, see Portlet Deployment in the SAS Web Infrastructure Kit
Administrator's Guide.

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 6: Create the PAR File, and Deploy and Test the Portlet 53



Sample: Portlet Template, or Editable Portlet
(DisplayURL)
A portlet template, also referred to as an editable portlet, is a portlet from which users can create their own portlet
instances. The portlet called DisplayURL, which is delivered with the portal Web application, is one example of a
portlet template.

Users can create new instances of this portlet by choosing Add a portlet on the Options menu and then choosing
URL Display Portlet as the portlet type in the Create a New Portlet dialog box. The DisplayUrl portlet includes
classes that enable the user to edit the new portlet instance to point to any URL which returns an HTML fragment. For
example, the user could edit the portlet instance to point to a URL which returns this HTML fragment.

If you create a portlet template, the title of the portlet template will appear as a portlet type that users can create their
own instances of. Action classes that you provide with the portlet template will then enable users to edit the portlet
instances that they have created.

The following steps were used to create the DisplayURL portlet and the URL Display Portlet portlet type. Click on
each step to display details.

Create a directory structure for the portlet.1. 
Create the portlet deployment descriptor (portlet.xml).2. 
Create display pages for the portlet and the editor (FormExample.jsp).3. 
Create the action classes.4. 
Create the resource bundle.5. 
Create the display resources file.6. 
Create the PAR file, and deploy and test the portlet.7. 

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Sample: Portlet Template, or Editable Portlet (DisplayURL) 54



Step 1: Create the Directory Structure
The following directory structure was used to create the DisplayURL portlet:

This structure includes this following directories and subdirectories:

Directory Contents

Work (root)

This directory serves as a
development area for the portlet.

Portlet deployment descriptor file portlet.xml

The name of the deployment descriptor file must
be portlet.xml.

/DisplayURL This is the main portlet directory. It does not
contain any files. The directory name must not
have any spaces, and it must match the name of
the portlet as specified in the name attribute of the
<local−portlet> element in
portlet.xml.

/DisplayURL/classes This directory contains the display resources file
file.

/DisplayURL/classes/com/SAS
   /portal/portlets/displayurl

This directory contains the
resources.properties file and the
following action classes:

BaseAction.class• 
CancelAction.class• 
DisplayAction.class• 
EditorAction.class• 
ErrorHandler.class• 
Initializer.class• 
OkAction.class• 

/DisplayURL/content This directory contains the display pages called
Editor.jsp, Error.jsp, and Viewer.jsp.

Each portlet can have only one content location
directory, and the directory name must be
content. However, the content location
directory can have an unlimited number of
subdirectories.

Step 1: Create the Directory Structure 55



The following rules apply when you set up the directory structure:

Neither portlet names nor their paths can contain spaces.• 
The portlet identifier (which consists of the name and the path) must be unique. Developers should devise a
convention to ensure unique name−spaces, similar to the conventions used for naming Java packages.

• 

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 1: Create the Directory Structure 56



Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information that the portal Web application
needs to deploy one or more portlets. Here is the portlet deployment descriptor for the DisplayURL portlet. The boxes
contain explanatory comments. For more information, see Creating a Portlet Deployment Descriptor.

<?xml version="1.0" encoding="UTF−8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal setup directory in the
path Portal\WEB−INF. For example, if you used the default install location on a Windows
system, then the DTD is located under the following path: c:\Program
Files\SAS\Web\Portal2.0.1\Portal\WEB−INF.
<!DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>

In the local−portlet element, the value of the title attribute specifies the new portlet type
that will be displayed to users in the Create a New Portlet dialog box.

The attribute editorType="portlet" indicates that portlets created from the template are to
be editable. When this attribute value is specified, then a portlet action with the attribute
editor="true" must also be specified. Otherwise, the portlet deployer will send a warning to
the server log and will not deploy the portlet.
<local−portlet name="DisplayURL" title="URL Display Portlet"
  editorType="portlet">
  <localized−resources locales="en,de,es,fr,it,ja,pl,ru,sv,zh_CN" />

The deployment element includes the attribute value userCanCreateMore="true". This
value indicates that the portlet is a template and can be replicated by portal users.

  <deployment scope="user" autoDeploy="false" 
     userCanCreateMore="true" />
  <initializer−type>
     com.sas.portal.portlets.displayurl.Initializer
  </initializer−type>
  <init−param>
    <param−name>error−page</param−name>
    <param−value>Error.jsp</param−value>
  </init−param>
  <init−param>
    <param−name>display−page</param−name>
    <param−value>Viewer.jsp</param−value>
  </init−param>
  <init−param>
    <param−name>edit−page</param−name>
    <param−value>Editor.jsp</param−value>
  </init−param>
  <error−handler>
    <type>com.sas.portal.portlets.displayurl.ErrorHandler</type>
  </error−handler>

Step 2: Create the Portlet Deployment Descriptor 57



  <portlet−path>/sas/portlets</portlet−path>
  <portlet−actions>

This action element specifies the action class DisplayAction. The attribute
default="true" indicates that this is the default action class, which means that the class is to
be invoked before the portlet's JSP renders.
    <portlet−action name="display" default="true" >
      <type>
        com.sas.portal.portlets.displayurl.DisplayAction
      </type>
    </portlet−action>

This action element specifies the action class EditorAction. The attribute
editor="true" indicates that this action is to be invoked when a user clicks the portlet's Edit
icon.
    <portlet−action name="editor" editor="true" >
      <type>
        com.sas.portal.portlets.displayurl.EditorAction
      </type>
    </portlet−action>

The following action elements specify the action classes that will be invoked when the user
clicks the OK button and the Cancel button on the editor display page.
    <portlet−action name="ok" default="false" >
      <type>com.sas.portal.portlets.displayurl.OKAction</type>
    </portlet−action>
    <portlet−action name="cancel" default="false" >
      <type>com.sas.portal.portlets.displayurl.CancelAction</type>
    </portlet−action>
  </portlet−actions>
</local−portlet>
</portlets>

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 2: Create the Portlet Deployment Descriptor 58



Step 3: Create the Display Pages for the Portlet and the
Editor
The DisplayURL portlet has three JSP pages:

Viewer.jsp, which is the presentation component of the portlet• 
Editor.jsp, which is the presentation component of the editor action• 
Error.jsp, which displays messages for errors that occur during the editing process• 

To see the code for these JSP pages, click on the links shown previously.

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 3: Create the Display Pages for the Portlet and the Editor 59



Viewer.jsp
The code for Viewer.jsp, which is the presentation component of the DisplayURL portlet, follows.

<!−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−>
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.portlet.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
<%@ taglib uri="http://java.sun.com/jstl/core_rt" prefix="c_rt" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt_rt" prefix="fmt_rt" %>

<%
  PortletContext context = (PortletContext) request.getAttribute(
     PortletConstants.CURRENT_PORTLET_CONTEXT );
  String url = (String) context.getAttribute("sas_DisplayURL_DisplayURL");

  if ((url == null) || (url.length() == 0))
  {
%>
<p style="text−align: center;"><fmt:message key="viewer.nourl.txt"/></p>
<%
  } else {
    try {
%>
<c_rt:import charEncoding="UTF−8" url="<%= url %>" />
<%
    } catch (Exception ex) {
%>
<p style="text−align: center;">
  <fmt_rt:message key="viewer.badurl.fmt">
    <fmt_rt:param value="<%= url %>"/>
    <fmt_rt:param value="<%= ex.getMessage() %>"/>
  </fmt_rt:message>
</p>
<%
    }
  }
%>

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Viewer.jsp 60



Editor.jsp
The code for Editor.jsp, which is the presentation component of the editor for the DisplayURL portlet, follows.

<!−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−>
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.portlet.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt"%>

<% PortletContext context = (PortletContext) request.getAttribute(
     PortletConstants.CURRENT_PORTLET_CONTEXT ); %>

<table border="0" cellpadding="2" cellspacing="0" align="center"
    width="100%">
 <tr>
  <td colspan="3"> </td>
 </tr>
 <tr>
  <td> </td>
  <td nowrap align="center"><fmt:message key="editor.task.txt"/></td>
  <td> </td>
 </tr>
 <tr>
  <td colspan="3"> </td>
 </tr>
 <tr>
  <form method="post" action="<%= context.getAttribute(
      "sas_DisplayURL_EditOkURL") %>">
  <td> </td>
  <td> <table border="0" cellpadding="0" cellspacing="0" align="center">
  <td class="celljustifyright" nowrap>
    <fmt:message key="editor.url.txt"/>
  </td>
  <td> </td>
  <td class="celljustifyleft" nowrap>
    <input type="text" name="sas_DisplayURL_DisplayURL"
       value="<%= context.getAttribute("sas_DisplayURL_DisplayURL") %>"
       size="60">
  </td>
 </tr>
 <tr>
  <td colspan="3"> </td>
 </tr>
 <tr>
  <td class="celljustifyright">
    <input class="button" type="submit" value="<fmt:message
        key="editor.action.ok.txt"/>" name="submit" >
    </form>
  </td>
  <td> </td>
  <td class="celljustifyleft">
   <form method="post" action="<%= context.getAttribute(
       "sas_DisplayURL_EditCancelURL") %>">
    <input class="button" type="submit" value="<fmt:message
        key="editor.action.cancel.txt"/>" name="cancel" >
   </form>
  </td>
 </tr>

Editor.jsp 61



</table>

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Editor.jsp 62



Error.jsp
The code for Error.jsp, which displays messages for any errors that occur during the editing process, follows.

<%−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−%>
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>
<%@ page import="com.sas.portal.portlet.PortletContext" %>
<%@ page import="com.sas.portal.portlet.PortletConstants" %>
<%@ taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt" %>

<% PortletContext context = (PortletContext)request.getAttribute(
    PortletConstants.CURRENT_PORTLET_CONTEXT ); %>

<fmt:message key="error.msg1.txt"/>
<br>
<%= context.getAttribute("Exception_message") %>

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Error.jsp 63



Step 4: Create the Action Classes
The DisplayURL portlet has the following action classes:

Initializer• 
BaseAction• 
Display• 
EditorAction• 
OkAction and CancelAction• 
ErrorHandler• 

To see the source code for these action classes, click on the links shown previously.

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 4: Create the Action Classes 64



Initializer Action
The DisplayURL portlet's Initializer action class initializes properties that are used by the other action classes
and puts the properties into a PortletContext object. The source code follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import java.rmi.RemoteException;
import java.util.Properties;

import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlet.PortletInitializerInterface;
import com.sas.portal.portlet.configuration.Attribute;
import com.sas.portal.portlet.configuration.Configuration;
import com.sas.portal.portlet.configuration.ConfigurationFactory;

/**
 * This initializes common properties by putting them into a
 * PortletContext object.
 */
public class Initializer implements PortletInitializerInterface
{
    private final String _loggingContext = this.getClass().getName();

    /* Key for the URL String in the PortletContext.*/
    public static final String DISPLAY_URL_KEY =
        "sas_DisplayURL_DisplayURL";

    /* PortletContext key for the edit screen Ok button URL */
    public static final String EDIT_OK_URL_KEY =
        "sas_DisplayURL_EditOkURL";

    /* PortletContext key for the edit screen Cancel button URL */
    public static final String EDIT_CANCEL_URL_KEY =
        "sas_DisplayURL_EditCancelURL";

    /** Key for the PortletException object in the PortletContext.*/
    public static final String PORTLET_EXCEPTION_KEY =
        "sasPortletException";

    /**
     * Puts initial properties into the PortletContext object. These 
     * come from the portlet.xml.
     * @param initProperties a Properties object
     * @param context the PortletContext for this portlet
     */
    public void initialize(Properties initProperties, 
        PortletContext context)
    {
        try {
          // get the initial url from the portlet configuration object
          Configuration config = ConfigurationFactory.getConfiguration(
              context);
          Attribute attr = config.getAttribute(

Initializer Action 65



              Initializer.DISPLAY_URL_KEY);
          String url = (attr == null) ? "" : attr.getValue();

          context.setAttribute("error−page",
              initProperties.getProperty("error−page"));
          context.setAttribute("display−page",
              initProperties.getProperty("display−page"));
          context.setAttribute("edit−page",
              initProperties.getProperty("edit−page"));
          context.setAttribute(Initializer.DISPLAY_URL_KEY, url);

          if (Logger.isDebugEnabled(_loggingContext)){
                Logger.debug("Display portlet URL: " +
                    url, _loggingContext);
          }
                } catch ( RemoteException e) {
          context.setAttribute(Initializer.PORTLET_EXCEPTION_KEY, e);
                }
    }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Initializer Action 66



Base Action
The DisplayURL portlet's BaseAction class is a superclass which is extended by the DisplayAction, EditorAction,
OkAction, and CancelAction classes. The source code is shown below.

/* Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.  All Rights Reserved. */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.sas.portal.Logger;
import com.sas.portal.container.deployment.PortletActionInfoInterface;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletActionInterface;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlets.displayurl.Initializer;

public abstract class BaseAction implements PortletActionInterface
{
    private final String _loggingContext = this.getClass().getName();

    private PortletActionInfoInterface _actionInfo = null;

    /**
     * This method must be overridden in subclasses. They must call super and 
     * supply a return value.
     * In this class, the method returns null.
     * 
     * @see com.sas.portal.portlet.PortletActionInterface#service(HttpServletRequest,
     * HttpServletResponse, PortletContext)
     */
    public String service(HttpServletRequest request,
                          HttpServletResponse response,
                          PortletContext context) throws Exception
    {
        Logger.debug("started..", _loggingContext);
        response.setContentType("text/html;charset=UTF−8");                             

        // prepare the localized resources for use by the jsp.
        try {
            NavigationUtil.prepareLocalizedResources(
                 "com.sas.portal.portlets.displayurl.Resources", request,
                  context);
        }
        catch (java.io.IOException ioe) {
            Logger.error(ioe.getMessage(), _loggingContext, ioe);
        }

        return null;
    }

    /**
     * @see com.sas.portal.portlet.PortletActionInterface#setInfo(PortletActionInfoInterface)
     */
    public final void setInfo(PortletActionInfoInterface info)
    {
        _actionInfo = info;
    }

Base Action 67



    /**
     * @see com.sas.portal.portlet.PortletActionInterface#getInfo()
     */
    public final PortletActionInfoInterface getInfo()
    {
        return _actionInfo;
    }

    /**
     * Check the PortletContext for an exception object. If present, throw it so
     * that the error handler will kick in.
     * @param context the PortletContext
     */
    protected static final void errorCheck(PortletContext context) throws Exception
    {
        Exception e = (Exception)context.getAttribute(Initializer.PORTLET_EXCEPTION_KEY); 
        if (e != null)
            throw e;
    }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Base Action 68



Display Action
The DisplayAction class is the default action class for the DisplayURL portlet. This means that the class is to be
invoked before the portlet's JSP page renders. The source code follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
//import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;

/**
 * Action class that presents the display page. It sets up the display
 * model then instructs the portlet container to present the display
 * page.
 */
public final class  DisplayAction extends BaseAction
{
//    private final String _loggingContext = this.getClass().getName();

    /**
     * Service the portlet request.
     *
     * @param request the HttpServletRequest
     * @param response the HttpServeltResponse
     * @param context the PortletContext
     * @return the URL to call
     */
    public String service(HttpServletRequest request,
                          HttpServletResponse response,
                          PortletContext context) throws Exception
    {
       super.service(request, response, context);

       // see if there is an initialization error
       errorCheck(context);
       return (String)context.getAttribute("display−page");
    }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Display Action 69



Editor Action
The DisplayURL portlet's EditorAction class is invoked when a user clicks the portlet's Edit icon. The source
code follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

//import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.portlet.NavigationUtil;

/**
 * Action class that presents the edit page. It sets up the edit model
 * then instructs the portlet container to present the edit page.
 */
public final class EditorAction extends BaseAction
{
//    private final String _loggingContext = this.getClass().getName();

    /**
     * Service the portlet request.
     *
     * @param request the HttpServletRequest
     * @param response the HttpServeltResponse
     * @param context the PortletContext
     * @return the URL to call
     */
    public String service(HttpServletRequest request,
                          HttpServletResponse response,
                          PortletContext context) throws Exception
    {
        super.service(request, response, context);

        //create the URLs for the OK and Cancel buttons.
        String url;

        url = NavigationUtil.buildBaseURL(context, request,
           "ok");
        context.setAttribute(Initializer.EDIT_OK_URL_KEY, url);

        url = NavigationUtil.buildBaseURL(context, request,
           "cancel");
        context.setAttribute(Initializer.EDIT_CANCEL_URL_KEY, url);

        // the following call resets the mode back to display for the
        // next call
        context.resetMode();

        return (String) context.getAttribute("edit−page");
    }
}

Editor Action 70



Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Editor Action 71



OK and Cancel Actions
The DisplayURL portlet's OkAction class is invoked when a user clicks the OK button on the editor display page.
The CancelAction class is invoked when a user clicks the Cancel button on the editor display page. The source
code for both classes follows.

/**Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import com.sas.portal.portlet.configuration.ConfigurationFactory;
import com.sas.portal.portlet.configuration.Configuration;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;

/**
 * Action class that processes the Ok action from the editor. It persists
 * the user−specified URL, sets up the display model, then instructs the
 * portlet container to present the display page.
 */
public final class OKAction extends BaseAction
{
   private final String _loggingContext = this.getClass().getName();

   /**
    * Service the portlet request.
    *
    * @param request the HttpServletRequest
    * @param response the HttpServeltResponse
    * @param context the PortletContext
    * @return the URL to call
    */
   public String service (HttpServletRequest request,
                          HttpServletResponse response,
                          PortletContext context) throws Exception
   {
       super.service(request, response, context);

       String url = request.getParameter(Initializer.DISPLAY_URL_KEY);
       context.setAttribute(Initializer.DISPLAY_URL_KEY, url);

        // save the URL parameter
       Configuration config = ConfigurationFactory.getConfiguration(
          context);
       config.setAttribute(Initializer.DISPLAY_URL_KEY, url);
       ConfigurationFactory.storeConfiguration(context, config);

        if (Logger.isDebugEnabled(_loggingContext)){
          Logger.debug("Display portlet URL: " + url, _loggingContext);
        }

       // back to the default, display, mode
       // context.resetMode();

       return (String)context.getAttribute("display−page");

OK and Cancel Actions 72



   }
}

/** Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 * All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
//import com.sas.portal.Logger;
import com.sas.portal.portlet.PortletContext;

/**
 * Action class that processes the Cancel action from the editor. It sets
 * up the display model then instructs the portlet container to present
 * the display page.
 */
public final class CancelAction extends BaseAction
{
//    private final String _loggingContext = this.getClass().getName();

    /**
     * Service the portlet request.
     *
     * @param request the HttpServletRequest
     * @param response the HttpServeltResponse
     * @param context the PortletContext
     * @return the URL to call
     */
    public String service(HttpServletRequest request,
                          HttpServletResponse response,
                          PortletContext context) throws Exception
    {
        super.service(request, response, context);

        // back to the default, display, mode
        // context.resetMode();
        return (String)context.getAttribute("display−page");
    }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

OK and Cancel Actions 73



Error Handler Action
The source code for the DisplayURL portlet's ErrorHandler action class follows.

/** Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513.
 *  All Rights Reserved.
 */
package com.sas.portal.portlets.displayurl;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.sas.apps.portal.PortalException;
import com.sas.portal.Logger;
import com.sas.portal.portlet.ErrorHandlerInterface;
import com.sas.portal.portlet.NavigationUtil;
import com.sas.portal.portlet.PortletContext;
import com.sas.portal.preferences.PortalPreferences;

/**
 * Error handler for this portlet. It logs the exception and returns
 * ErrorPage.jsp for the portlet to display.
 */
public class ErrorHandler implements ErrorHandlerInterface
{
  private final String _loggingContext = this.getClass().getName();

  /**
   * Returns the URL for the portlet controller to call. This is
   * the name of
   * the error page JSP.
   * @param request the HttpServletRequest
   * @param response the HttpServeltResponse
   * @param context the PortletContext
   * @param exception the exception thrown by a portlet action
   * @return the URL to call
   */
  public String service(HttpServletRequest request,
                        HttpServletResponse response,
                        PortletContext context,
                        Exception thrownException)
  {
      //prepare the localized resources for use by the jsp.
      try {
          NavigationUtil.prepareLocalizedResources(
             "com.sas.portal.portlets.displayurl.Resources",
             request, context);
      }
      catch (java.io.IOException ioe) {
          Logger.error(ioe.getMessage(), _loggingContext, ioe);
      }

      //send error to server log in default locale.
      Logger.error(thrownException.getMessage(), _loggingContext, 
          thrownException);

      //get msg in user's locale.
      String msg = null;
      try {

Error Handler Action 74



         PortalException ourException = (PortalException)
            thrownException;
         msg = ourException.getMessage(PortalPreferences.getLocale(
            context.getHttpSession()));
      }
      catch (ClassCastException cce){
         msg= "";
      }

      if (msg == null) {
         //prevent showing the word null in a JSP
         msg = "";
      }

      //make msg available for display on error jsp.
      context.setAttribute("Exception_message", msg);

      return (String)context.getAttribute("error−page");
  }
}

Sample: Portlet Template, or Editable Portlet (DisplayURL)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Error Handler Action 75



Step 5: Create the Resource Bundle
The resource bundles provide translated text to be displayed inside the DisplayURL portlet. The portlet's
BaseAction, EditorAction, and ErrorHandler classes call the
NavigationUtil.prepareLocalizedResources() method to create a JSTL localization context based on
the user's locale preference. This context enables the JSTL tags in the portlet's JSP pages to use the appropriate
resource bundle to display text.

For more information about creating resource bundles, see Creating a Localized Portlet.

Note: For information about localizing a portlet's title and description, see Creating Display Resources Files.

One resource bundle is provided with the DisplayURL portlet, as follows.

Note: If you copy and paste this code, then you must remove the line breaks in the message strings for
error.msg1.txt and viewer.nourl.txt.

# Messages for the DisplayURL portlet

# NOTE: this is the same message text as found in
#       com.sas.portal.res.Resources.properties. The localized versions
#       from there can be used here.
error.msg1.txt=A serious error occurred. Contact the Portal 
     administrator.

# {0} will be a URL. {1} will be an exception message.
viewer.badurl.fmt=Unable to display ''{0}'' because ''{1}''.
viewer.nourl.txt=No URL has been specified. Please edit the portlet to 
     set a URL.

editor.task.txt=Enter the URL of the HTML fragment to display.
editor.url.txt=URL:

# NOTE: these are the same messages as found in
#       com.sas.portal.res.Resources.properties. The localized versions
#       from there can be used here.
editor.action.cancel.txt=Cancel
editor.action.ok.txt=OK

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 5: Create the Resource Bundle 76



Step 6: Create the Display Resources File
The sample remote portlet DisplayURL uses a display resources file to provide a description to be placed in the
portlet's metadata for display to users.

You can supply multiple display resources files if you want the portal Web application to localize the portlet title and
description at the time of deployment, according to the portal Web application's default locale. For more information,
see Creating Display Resources Files.

The DisplayURL portlet has one display resources file, which is named
portletDisplayResources.properties. The contents of this file follow.

portlet.title=URL Display Portlet
portlet.description=Portlet that displays the contents of a URL

Sample: Portlet Template, or Editable Portlet (DisplayURL)

Step 6: Create the Display Resources File 77



Step 7: Create the PAR File, and Deploy and Test the
Portlet
The last step in developing the DisplayURL portlet was to archive its files into a PAR file. The PAR file includes

appropriately named and organized directories and subdirectories, as described in Step 1: Create the Directory
Structure.

• 

all of the portlet's supporting files, including the files created in Steps 2 through 6. The files must be placed in
the appropriate directories as described in Step 1: Create the Directory Structure and Creating a PAR File for
Deployment in Your Application.

• 

The JAR utility was used to compress the directories and files into an archive, and the archive was given the name
SAS_DisplayURL.par.

It is a good practice to deploy new portlets into a staging area (that is, a test installation of the portal Web application)
for verification and testing before deploying them into the production environment. For information about how to
deploy a PAR file into the portal Web application, see Portlet Deployment in the SAS Web Infrastructure Kit
Administrator's Guide.

Sample: Web Application (HelloUserWikExample)

Step 7: Create the PAR File, and Deploy and Test the Portlet 78



Sample: Web Application (HelloUserWikExample)
The HelloUserWikExample application is a Web application that displays the string Hello 'user', where user is the
name of the user who is logged on to the portal Web application, as shown in this example:

   Hello 'Portal Demo' 

The HelloUserWikExample application is

enabled by SAS Foundation Services. The application uses SAS Foundation Services to access session
information created by the portal Web application, extracts the user's name from the session information,
inserts the name in a message, and displays the message to the user.

• 

deployable as either a remote portlet or a stand−alone application. The HelloUserRemotePortlet sample
shows how this application can be deployed in a remote portlet.

If an application is called from a remote portlet, then it must generate an HTML fragment to be displayed
within the portlet borders. If an application is to be invoked as a stand−alone application, then its JSP page
must generate a complete HTML file (with starting and ending <HTML> tags.) The JSP page for the
HelloUserWikExample contains conditional code that determines whether the application request was
generated by a portlet. The JSP page then generates the appropriate type of HTML.

• 

Note: The purpose of the HelloUserWikExample application is to show how you can use the APIs to access the
shared session context. It is not intended to illustrate best programming practices.

The following steps were used to create the application:

Create a directory structure for the application.1. 
Create the Web application deployment descriptor (web.xml).2. 
Create deployment definitions and properties files for local and remote services.3. 
Create the display page (app.jsp).4. 
Create the WAR file, and deploy and test the application.5. 

Sample: Web Application (HelloUserWikExample)

Sample: Web Application (HelloUserWikExample) 79



Step 1: Create the Directory Structure
The following directory structure was used to create the HelloUserWikExample application:

This directory structure will be used in Step 5 to create a WAR file for the application. The structure includes the
following directories and subdirectories:

Directory Contents

app_work (root) This directory serves as a development area for the Web
application.

/jsp This directory contains the display page called app.jsp.

/WEB−INF This directory contains the Web application deployment descriptor
file. The name of this file must be web.xml.

/WEB−INF/conf This directory contains the services properties files, which point to
the locations of definitions for locally and remotely deployed SAS
Foundation Services.

/WEB−INF/lib This directory contains the JAR files that are used by the JSP page.
The following JAR files must be provided at a minimum:

log4j−1.2.3.jar• 
mail.jar• 
sas.core.jar• 
sas.entities.jar• 
sas.iquery.metadata.jar• 
sas.oma.joma.jar• 
sas.oma.joma.rmt.jar• 
sas.oma.omi.jar• 
sas.portal.metadata.jar• 
sas.report.repository.jar• 
sas.svc.bootstrap.jar• 
sas.svc.connection.jar• 
sas.svc.connection.platform.jar• 
sas.svc.core.jar• 
sas.svc.events.jar• 
sas.svc.publish.jar• 
sas.svc.sec.login.jar• 
sas.svc.storedprocess.jar• 
sas.svc.webdav.jar• 
sas.text.jar• 
sas.web.framework.jar• 

Sample: Web Application (HelloUserWikExample)

Step 1: Create the Directory Structure 80



Step 2: Create the Web Application Deployment
Descriptor
The Web application deployment descriptor is an XML file that describes the Web application's initialization
parameters, servlets, and other components. Here is the Web application deployment descriptor for the
HelloUserWikExample application. The boxes contain explanatory comments.

For more information about creating Web application deployment descriptors, see the documentation for your servlet
container.

<?xml version="1.0" encoding="ISO−8859−1"?>
<!DOCTYPE web−app PUBLIC "−//Sun Microsystems, Inc.//DTD Web
  Application 2.3//EN" "http://java.sun.com/dtd/web−app_2_3.dtd">
<web−app>

The servlet entry specifies the SAS Foundation Services Bootstrap servlet. This servlet provides
a convenient way to deploy local services for the Web application to use. For more information, see
com.sas.services.webapp in the Portlet API  class documentation.

The localPropsfile parameter specifies the name of the properties file that is to be used for
local services deployment, and the remotePropsFile parameter specifies the name of the
properties file that is to be used to access remote services. The referenced files must be present in
the path /WEB−INF/conf in the Web application's directory structure. For more information, see
Step 3: Create Deployment Definitions and Properties Files for Local and Remote Services.
  <!−− BEGIN BootstrapServlet −−>
  <servlet>
    <servlet−name>BootstrapServlet</servlet−name>
    <servlet−class>
      com.sas.services.webapp.BootstrapServlet
    </servlet−class>
    <init−param>
    <!−− metadata source for local deployable services −−>
      <param−name>localPropsFile</param−name>
      <param−value>
        sas_metadata_source_client_omr.properties
      </param−value>
    </init−param>
    <init−param>
    <!−− metadata source to retrieve remotely deployable services −−>
      <param−name>remotePropsFile</param−name>
      <param−value>
        sas_metadata_source_server_omr.properties
      </param−value>
    </init−param>
    <init−param>
      <param−name>loggingURL</param−name>
      <param−value>
        file:///C:\Program Files\SAS\SAS Foundation
            Services\Deployments\Portal\logging_config_idp.xml
      </param−value>
    </init−param>
    <init−param>
      <param−name>SystemPropsFile</param−name>
      <param−value>

Step 2: Create the Web Application Deployment Descriptor 81



        C:\Program Files\SAS\SAS Foundation
            Services\Deployments\Portal\system_properties.config
      </param−value>
    </init−param>
    <load−on−startup>1</load−on−startup>
  </servlet>
  <!−− END BootstrapServlet −− >
  <servlet−mapping>
    <servlet−name>BootstrapServlet</servlet−name>
    <url−pattern>/Bootstrap</url−pattern>
  </servlet−mapping>
</web−app>

Sample: Web Application (HelloUserWikExample)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 2: Create the Web Application Deployment Descriptor 82



Step 3: Create Deployment Definitions and Properties
Files for Local and Remote Services
The HelloUserWikExample application requires access to both local and remote services. The following files are
required to enable access to the services: a local services deployment definition, a local services properties file, a
remote services deployment definition, and a remote services properties file, as described below.

Local Services Deployment Definition

The HelloUserWikExample application requires a definition file for local services deployment. This file must be
installed in the SAS Foundation Services directory on the machine where the HelloUserWikExample application will
be installed.

The contents of the HelloUserWikExample application's local services deployment definition can be exactly the same
as the definition that is used by the portal Web application. The portal Web application's local deployment definition
is called sas_services_idp_local_omr.xml, and it generally can be found in the path C:/Program
Files/SAS/SASFoundationServices/Deployments/Portal/.

Follow these steps to create the local services deployment definition:

On the machine where the portal Web application is installed, copy the portal Web application's local
deployment definition file (sas_services_idp_local_omr.xml) to a separate file. Give the new file
a different name (for example, sas_services_hellouser_local_omr.xml).

a. 

On the machine where the HelloUserWikExample application will be installed:

If you are installing the HelloUserWikExample application on a different machine than the portal
Web application, and if SAS Foundation Services is not installed on this machine, then create the
following directory structure: C:/Program
Files/SAS/SASFoundationServices/Deployments/. (Note: It is not necessary to install
SAS Foundation Services on this machine.)

i. 

Create a new directory under C:/Program
Files/SAS/SASFoundationServices/Deployments/. For example:

ii. 

b. 

C:/Program
    Files/SAS/SASFoundationServices/Deployments/HelloUserWikExample/

Then place the new deployment definition file in the new directory.

Note: As a best practice, Web applications should not share the same local services deployment definition. Therefore,
you should follow these steps even if the HelloUserWikExample application will be installed on the same machine as
the portal Web application.

Local Services Properties File

The local services properties file (sas_metadata_source_client_omr.properties) tells the
HelloUserWikExample application where to find the definition file for local service deployment. This file must be
placed in the path /WEB−INF/conf in the Web application's directory structure.

To create this file, you can do the following:

Step 3: Create Deployment Definitions and Properties Files for Local and Remote Services 83



Copy the portal Web application's local services properties file
(sas_metadata_source_client_omr.properties) to a separate file with the same name.

a. 

Edit the new file to specify a URL with the actual location and file name of the local services deployment
definition that you created for the HelloUserWikExample application.

b. 

Place the new file in the path /WEB−INF/conf in the HelloUserWikExample application's directory
structure.

c. 

Here is a sample of a local services properties file:

software_component=ID Portal Local Services
deployment_group_1=BIP Local Services OMR

type=URL
url=file:///C:/Program Files/SAS/SASFoundationServices/Deployments/
    HelloUserWikExample/sas_services_hellouser_local_omr.xml

Note: The line break in the url property statement is for display purposes only. If you copy this example into your
properties file, you must put the entire statement on one line. In addition, be sure to update the URL with the actual
location and file name of the local services deployment definition that you created for the HelloUserWikExample
application.

Remote Services Deployment Definition

The Web application also requires a definition file for remote services deployment. This file must be installed in the
SAS Foundation Services directory on the machine where the HelloUserWikExample application will be installed.

If the HelloUserWikExample application will be installed on the same machine as the portal Web application, then it
can use the same remote services deployment definition (sas_services_idp_remote_omr.xml) that the
portal Web application uses. It is not necessary, nor is it recommended, to make another copy of this file for the
HelloUserWikExample application.

If the HelloUserWikExample application will be installed on a different machine from the portal Web application,
then follow these steps to create the remote services deployment definition:

On the machine where the portal Web application is installed, copy the portal Web application's remote
deployment definition file (sas_services_idp_remote_omr.xml) to a separate file with the same
name.

a. 

On the machine where the HelloUserWikExample application will be installed, place the new deployment
definition file in the directory where the new local deployment definition file is located. For example:

b. 

C:/Program
    Files/SAS/SASFoundationServices/Deployments/HelloUserWikExample/

Remote Services Properties File

The remote services properties file (sas_metadata_source_server_omr.properties) tells the
HelloUserWikExample application where to find the definition file for the remote services. The file must be placed in
the path /WEB−INF/conf in the HelloUserWikExample application's directory structure.

To create this file, you can do the following:

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 3: Create Deployment Definitions and PropertiesFiles for Local and Remote Services 84



Copy the portal Web application's remote services properties file
(sas_metadata_source_server_omr.properties) to a separate file with the same name.

a. 

If necessary, edit the new file to specify a URL with the actual location and file name of the remote services
deployment definition that you created for the HelloUserWikExample application. If these are the same as that
used by the portal Web application, then you can skip this step.

b. 

Place the new file in the path /WEB−INF/conf in the HelloUserWikExample application's directory
structure.

c. 

Here is a sample of a remote services properties file:

software_component=Remote Services
deployment_group_1=BIP Remote Services OMR

type=URL
url=file:///C:/Program Files/SAS/SASFoundationServices/Deployments/
    RemoteServices/sas_services_idp_remote_omr.xml

Note: The line break in the url property statement is for display purposes only. If you copy this example into your
properties file, you must put the entire statement on one line. In addition, be sure that the URL contains the actual
location of your remote services deployment file.

Sample: Web Application (HelloUserWikExample)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 3: Create Deployment Definitions and PropertiesFiles for Local and Remote Services 85



Step 4: Create the Display Page (JSP)
The JSP page for the HelloUserWikExample application is called app.jsp. The scriptlet code in this JSP page uses
methods from SAS Foundation Services to obtain the user's name from the portal Web application session. The user's
name is then inserted into the text on the display page.

The code for app.jsp follows. The boxes contain explanatory comments.

<%−− Copyright (c) 2003 by SAS Institute Inc., Cary, NC 27513 −−%>
<%@ page language="java" contentType= "text/html; charset=UTF−8" %>
<%@ page import="com.sas.webapp.contextsharing.WebappContextParams" %>
<%@ page import="com.sas.services.session.SessionContextInterface" %>
<%@ page import="com.sas.services.user.UserContextInterface" %>
<%@ page import="java.util.Enumeration" %>
<%@ page import="java.util.HashMap" %>

<%
try {

In the following code, a new WebappContextParams object is created to obtain the session key
from the portal Web application request and to obtain a reference to the portal Web application's
remotely deployed services.

    // Use WebappContextParams to obtain information passed from the
    // calling BIA application
    WebappContextParams params = new WebappContextParams(request, true);

    // See if we are being requested to display as a portlet

The following code determines whether a portlet ID is available. The application uses this
information to determine whether to return a complete HTML page (for display alone in a browser
window) or an HTML fragment (for display within a portlet).
    boolean displayAsPortlet = (params.getPortletid() == null) ? false :
        true;

    SessionContextInterface sharedSession = null;
        Object sessionLock = null;
        String user = null;

    // Get the name of the user from the BIA shared session context
        try {

The following code obtains access to the portal Web application's remotely deployed services. The
session is protected with a lock.
    sharedSession = params.getSessionContext();
    if (sharedSession != null) {
      sessionLock = sharedSession.lock("com.sas.HelloUserWikExample");

The following code obtains the user's name from the user context object in the remote services
session.
      UserContextInterface userContext = sharedSession.getUserContext();
      user = userContext.getName();
    } else {
      user = "unknown";

Step 4: Create the Display Page (JSP) 86



    }
 } catch (Throwable thr2) {
     thr2.printStackTrace();
 } finally {

The following code removes the lock.
     // Unlock the shared BIA session

     try {
         if ((sharedSession != null) &(sessionLock != null))
             sharedSession.unlock(sessionLock);
     } catch (Throwable thr3) {
         // Non−fatal
     }
 }

The following code determines how to display the application output. If the application was called
by a portlet, then it generates an HTML fragment for display within the portlet. If the application
was called as a stand−alone application, then it generates a complete HTML page to be displayed
alone in a browser window.
    if (displayAsPortlet == false) {
         // Called as a web application
%>

<html>
<head>
    <title>Hello User Remote Application</title>
</head>
<body>
<p>Hello '<%= user %>'.</p>
</body>
</html>

<%
    } else {
        // Called as either a web application or portlet
%>
<p>Hello '<%= user %>'.</p>
<%
    }
} catch (Throwable thr1) {
    thr1.printStackTrace();
}
%>

Sample: Web Application (HelloUserWikExample)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Step 4: Create the Display Page (JSP) 87



Step 5: Create the WAR File, and Deploy and Test the
Application
The last step in developing the HelloUserWikExample application was to archive its files into a WAR file. The WAR
file includes

appropriately named and organized directories and subdirectories, as described in Step 1: Create the Directory
Structure.

• 

all of the application's supporting files, including the files created in Steps 2 through 4 and the JAR files
required for SAS Foundation Services. The files must be placed in the appropriate directories as described in
Step 1: Create the Directory Structure.

• 

The JAR utility was used to compress the directories and files into an archive, and the archive was given the name
HelloUserWikExample.war.

Before deploying the HelloUserWikExample application in the portal Web application, you should test it using its
direct URL. You can then deploy it in either of the following ways:

as an application that is called by a remote portlet. The sample HelloUserRemotePortlet describes the steps for
implementing this application as a remote portlet.

• 

as a stand−alone application, which appears in the portal Web application to be the same as a link. For
information about how to add the metadata for a stand−alone application that is enabled by SAS Foundation
Services, see Adding Web Applications in the SAS Web Infrastructure Kit Administrator's Guide.

• 

Sample: Remote Portlet (HelloUserRemotePortlet)

Step 5: Create the WAR File, and Deploy and Test the Application 88



Sample: Remote Portlet (HelloUserRemotePortlet)
The following sample portlet, called HelloUserRemotePortlet is a remote portlet:

This portlet calls the Web application HelloUserWikExample. The HelloUserRemotePortlet application displays the
string Hello user, where user is the name of the user who is logged on to the portal Web application. For details
about the HelloUserRemotePortlet application, see Sample Web Application (HelloUserWikExample).

The following steps were used to create the HelloUserRemotePortlet. Click on each step to display details.

Create a directory structure for the portlet.1. 
Create the portlet deployment descriptor (portlet.xml).2. 
Create the display resources file.3. 
Create the Web application.4. 
Create the PAR file, and deploy and test the portlet.5. 

Sample: Remote Portlet (HelloUserRemotePortlet)

Sample: Remote Portlet (HelloUserRemotePortlet) 89



Step 1: Create the Directory Structure
The following directory structure was used to create the portlet called HelloUserRemotePortlet.

This structure includes the following directories and subdirectories:

Directory Contents

portlet_work (root)

This directory serves as a
development area for the
portlet.

Portlet deployment descriptor file portlet.xml

The name of the deployment descriptor file must be
portlet.xml.

/HelloUserRemotePortlet This is the main portlet directory. It does not contain any
files. The directory name must not have any spaces, and
it must match the name of the portlet as specified in the
name attribute of the <remote−portlet> element in
portlet.xml.

/FormExample/classes The display resources file called
portletDisplayResources.properties.

The following rules apply when you set up the directory structure:

Neither portlet names nor their paths can contain spaces.• 
The portlet identifier (which consists of the name and the path) must be unique.

Note: Developers should devise a convention to ensure unique name−spaces, similar to the conventions used
for naming Java packages. For example, the Sales division of a company named ABCD could create portlets
in the path ABCD/Sales, and the Purchasing division could create portlets in the path
ABCD/Purchasing. Then both Sales and Purchasing could have different portlets named
HelloUserRemotePortlet.

• 

Note: You must create a separate directory structure for the Web application that is called by the remote portlet, as
described in the Sample Web Application (HelloUserWikExample).Sample: Remote Portlet
(HelloUserRemotePortlet)

Step 1: Create the Directory Structure 90



Step 2: Create the Portlet Deployment Descriptor
The portlet deployment descriptor is an XML file that provides all of the information that the portal Web application
needs to deploy one or more portlets. Here is the portlet deployment descriptor for the HelloUserRemotePortlet. The
boxes contain explanatory comments. For more information, see Creating a Portlet Deployment Descriptor.

<?xml version="1.0" encoding="UTF−8"?>

The DOCTYPE statement must be present in the descriptor file in order for the portlet to run.
However, the document type definition (DTD) does not need to be accessible at the URL that the
statement specifies.

If you want to look at the portlet.dtd file, you can find it in the portal setup directory in the
path Portal\WEB−INF. For example, if you used the default install location on a Windows
system, then the DTD is located under the following path: c:\Program
Files\SAS\Web\Portal2.0.1\Portal\WEB−INF.
<DOCTYPE portlets SYSTEM "http://www.sas.com/idp/portlet.dtd">

<portlets>

The remote−portlet element assigns the name HelloUserRemotePortlet to the portlet.
The name cannot contain spaces. The portlet identifier, which consists of the portlet path (defined
in the portlet−path element) together with the portlet name, must be unique within the portal
Web application.

The "true" setting for the passContextId attribute makes the portal Web application session
information, including user identity, available to the remote portlet.
  <remote−portlet name="HelloUserRemotePortlet"
    title="HelloUserRemotePortlet" passContextId="true">
    <localized−resources locales="en" />
    <deployment scope="user" autoDeploy="true" 
      userCanCreateMore="false" />
    <portlet−path>/sas/portlets/remote</portlet−path>
    <portlet−actions>

The URL for the remote portlet's Web application, called HelloUserWikExample, is specified in
the url subelement of the portlet−action element. This subelement must contain a fully
qualified URL, including a fully qualified host domain name.

For details about the Web application, see Sample Web Application (HelloUserWikExample).
      <portlet−action name="display" default="true">
        <url>
        http://d9999.mycompany.com:8080/HelloUserWikExample/jsp/app.jsp
        </url>
      </portlet−action>
    </portlet−actions>
  </remote−portlet>
</portlets>

Sample: Remote Portlet (HelloUserRemotePortlet)

Step 2: Create the Portlet Deployment Descriptor 91



Step 3: Create the Display Resources File
The sample remote portlet HelloUserRemotePortlet uses a display resources file to provide a description to be placed
in the portlet's metadata for display to users. (If this file is not provided, the portal creates a description based on the
portlet's name.)

The contents of the file, which is named portletDisplayResources.properties, follow.

portlet.title=Hello User Remote Portlet
portlet.description=Example remote portlet

For more information, see Creating Display Resources Files.

Sample: Remote Portlet (HelloUserRemotePortlet)

Step 3: Create the Display Resources File 92



Step 4: Create the Web Application
The sample remote portlet (HelloUserRemotePortlet) calls the Web application HelloUserWikExample. This
application is enabled by SAS Foundation Services and runs outside of the portal Web application, either on the same
machine or on another machine.

If an application is called from a remote portlet, then it must generate an HTML fragment to be displayed within the
portlet borders. The JSP page for the HelloUserWikExample contains conditional code that determines whether the
application request was generated by a portlet. The JSP page then generates the appropriate type of HTML.

The steps required to create the application are described in Sample Web Application (HelloUserWikExample).

Sample: Remote Portlet (HelloUserRemotePortlet)

Step 4: Create the Web Application 93



Step 5: Create the PAR File, and Deploy and Test the
Portlet
The last step in developing the HelloUserRemotePortlet was to create the files that were used to deploy the portlet.
The portlet files were compressed into a portlet archive (PAR) file that contains

appropriately named and organized directories and subdirectories, as described in Step 1: Create the Directory
Structure.

• 

all of the supporting files, including the files created in Steps 2 through 4. The files must be placed in the
appropriate directories as described in Step 1: Create the Directory Structure and Creating a PAR File for
Deployment in Your Application.

• 

The JAR utility was used to compress the directories and files into archives, and the archives were named
HelloUserRemotePortlet.par and HelloUserWikExample.war.

Before deploying a remote portlet into the production environment, you should

deploy the associated Web application and test it using its direct URL. The steps required to create the
application are described in Sample Web Application (HelloUserWikExample).

1. 

deploy the portlet into a staging area (that is, a test installation of the portal Web application) for verification
and testing.

2. 

For information about how to deploy a PAR file into the portal Web application, see Portlet Deployment in the SAS
Web Infrastructure Kit Administrator's Guide.

Step 5: Create the PAR File, and Deploy and Test the Portlet 94



Themes
To customize the appearance of the portal Web application to meet the requirements of your organization, you can
implement one or more new themes. A theme consists of

Cascading style sheets, which determine the attributes and backgrounds for text in the portal Web
application. A cascading style sheet is a standard mechanism for defining consistent and reusable formatting
instructions for Web−based content. You can create your own customized styles as part of a new theme.

• 

Graphical elements, including images for the company logo and the banner. You can incorporate your own
customized graphics files as part of a new theme.

• 

HTML documents, which serve as page templates for the portal Web application. For best results, you
should not modify these documents when creating a new theme.

• 

A theme descriptor, which is an XML file that describes the elements of a theme. You must create a theme
descriptor for any new themes that you create.

• 

Note: The application name, "SAS Portal," which appears in the banner of the portal Web application, is not part of
the theme. However, you can change it. For details, see Changing the Application Name.

The SAS Web Infrastructure Kit is delivered with a theme called default, which is automatically invoked when a
user brings up the portal Web application. You can create as many additional themes as you want. Users who have the
appropriate permissions will then be able to invoke one of the new themes by using the Set user preferences option
on the Options menu.

To provide a starting point for defining new themes, the SAS Web Infrastructure Kit includes an archive named
example.zip, which contains all of the elements needed to create a new theme. See Defining and Deploying New
Themes for instructions on using this archive to create your own themes.

The example.zip file contains a theme descriptor called ExampleTheme.xml, which you can use as a basis for
creating your own theme descriptor. For more information about the theme descriptor's elements and attributes, see
the DTD description and the comments at the top of the ExampleTheme.xml file.

Note: For best results when creating a new theme, you should modify the files in example.zip rather than
modifying the portal Web application's default themes. This will ensure that your new theme will not be lost if a new
version of the application is installed.

Themes 95



Defining and Deploying New Themes
Use these steps to create a new theme for your portal Web application:

Extract the files from example.zip.1. 
Make desired changes to the cascading style sheets and graphics.2. 
Update and rename the theme descriptor (ExampleTheme.xml).3. 
Deploy the new theme.4. 

Note: In addition to the style sheets, the graphics, and the theme descriptor, the archive file also contains a number of
HTML documents which serve as page templates. For best results, do not modify these HTML files.

Step 1: Extract the Files from example.zip

The SAS Web Infrastructure Kit includes an archive named example.zip which contains all of the elements
needed to create a new theme. You can find this archive in the path Samples\Themes within the SAS Web
Infrastructure Kit's install location.

For example, if you used the default install location on a Windows system, then the example.zip file would be
located in the following path:

c:\Program Files\SAS\Web\Portal2.0.1\Samples\Themes

Locate this file, and extract its contents to a working directory. The following directory structure is created:

Directory Contents

(root) This directory contains the theme descriptor file
(ExampleTheme.xml).

/images This directory contains the graphics files.

/styles This directory contains the following Cascading Style Sheets:

Portal.css• 
sasStyle.css• 
sasComponents.css• 

/templates This directory contains HTML document templates.

Note: These files should not be changed.

Step 2: Make Desired Changes to the Cascading Style Sheets and
Graphics

Determine which aspects of the portal Web application's appearance you would like to change. For assistance in
identifying the specific style sheet classes that you need to modify in order to implement these changes, see Styles in
Portal.css.

Defining and Deploying New Themes 96



Make the desired changes to the style sheets and graphics files. Then assign a new name to any of the CSS files and
graphics files that you have changed.

Note: You must update the theme descriptor file (as described in Step 3) with any new file names that you have used
for CSS and graphics files. When updating the elements for graphics files, you can update only the file attributes;
the name attributes for these elements must remain the same.

Step 3: Update and Rename the Theme Descriptor
(ExampleTheme.xml)

The theme descriptor is an XML file that describes the elements of the new theme. The example.zip file contains
a theme descriptor called ExampleTheme.xml.

Open the ExampleTheme.xml in an editor, and make the following changes. For more information about the
elements and attributes, see the Element Descriptions and the comments at the top of the ExampleTheme.xml file.

In the theme element, edit the attribute values as follows:

name
Replace Example with a unique name for your theme. The name cannot contain spaces.

label
Replace An Example with a descriptive label for your theme. When users choose Set user
preferences on the Options menu in the portal Web application, this label will appear as a selection in
the Theme field.

description
Replace Example Theme for SAS applications with a free−form description.

URIPath
In the path themes/example, replace example with the name of the directory where the new
theme is to be deployed. The directory name must be the same as the theme name, as defined in the
name attribute.

1. 

In the Style elements, update the file attribute to reflect any new names that you have assigned to CSS
files. Note: Do not change the value of the media attributes. This attribute must equal SCREEN in order for
the style to be loaded.

2. 

In the Image elements, update the file attribute to reflect any new names that you have assigned to
graphics files. Note: Do not change the name attributes, since the portal Web application uses these names to
determine which graphics to display. For example, the name attribute for the logo image must retain the value
logo. However, you can change the file attribute from logo.gif to MyCompanyLogo.gif.

3. 

Make any other necessary changes to the example file. For example, if you are not going to use the directory
names images and styles, you must change the directory attribute in the Styles and Images
elements. However, it is not advisable to change these directory names.

4. 

Save the theme descriptor with a new name.5. 

Step 4: Deploy the New Theme

Use the following steps to deploy the new theme into the portal Web application:

In the path Portal\themes within the SAS Web Infrastructure Kit's install location, create a directory with
the same name that you defined in the URIPath attribute of the Theme element. For example, if you used
the default install location on a Windows system, then you would create your new directory under the

1. 

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Defining and Deploying New Themes 97



following path:

c:\Program Files\SAS\Web\Portal2.0.1\Portal\Themes
Move all of the theme elements into the new directory. Be sure to retain the directory structure that is
described above, and be sure to use the directory names that you defined in the theme descriptor.

2. 

Use the configure_wik.bat utility to create a new Portal.war file that incorporates the new theme
directory.

Note: Instead of creating a new WAR file, you can place the new theme directly into the servlet container.
However, the new theme will be destroyed if you deploy a new WAR file in the future that does not contain
the new theme.

3. 

Deploy the new WAR file by using the appropriate procedures for your servlet container.4. 

When authorized users click Change user preferences on the Options menu, they will now see the new theme as a
selection in the User Preferences dialog box.

If you want to make the new theme the default, then the administrator must log on as sasguest, click Change user
preferences on the Options menu, and then select the new theme.

Themes

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Defining and Deploying New Themes 98



Styles in Portal.css
Portal.css is a style sheet that was created specifically for the portal Web application. You can use it as is, or modify it
as needed, for any application that you develop using the SAS Web Infrastructure Kit.

The following table lists some specific classes in Portal.css, which you might want to modify when creating a new
theme. These styles will continue to evolve as the SAS Web Infrastructure Kit evolves.

Presentation Component
Affected

Class Elements Affected
Default Color

Setting

Banner apptitle Application name
(SAS Portal in the
default installation)

White

utilmenu Banner links
(Options, Search,
Log On, Log Off,
Help, etc.)

White

utilmenuBG Background for
banner links

Grayish blue
(#3872AC)

Navigation bar div.portalTabArea Area to the right of
the tabs in the
navigation bar

Dark blue
(#003399)

ltBeige Horizontal divider
between navigation
bar and page area

Light beige
(#F1EACB)

tabDivider Horizontal divider
between the banner
and the navigation
bar

Grayish blue
(#3872AC)

td.portalActiveTabHoriz
td.portalActiveTabVert

Tab background for
the active page

Light beige
(#F1EACB)

td.portalActiveTabHoriz A
td.portalActiveTabVert A

Tab text for the
active page

Grayish blue
(#3872AC)

td.portalTabHoriz
td.portalTabVert

Tab background for
inactive pages

Dark blue
(#003399)

td.portalTabHoriz A
td.portalTabVert A

Tab text for inactive
pages

White

Options menu utilmenudropdown:link Menu items Grayish blue
(#3872AC)

utilmenudropdown:visited Visited menu items Grayish blue
(#3872AC)

utilmenuTable Background White

Styles in Portal.css 99



utilmenuTable Border Grayish blue
(#3872AC)

Pages body Default for text
messages

Black

workarea Background for
pages and portlets

White

Portlets portletTableBorder Border for portlets Beige
(#E4D2BA)

portletTableHeader Background for
portlet headers

Light beige
(#F1EACB)

portletTableHeaderLeft Text for portlet
headers

Brown
(#AB8029)

treeText Item labels in
collection portlets

Blue (#0000CC)

treeDescription Item descriptions in
collection portlets

Dark
gray/brown
(#555555)

Search results searchTableBorder Search results borderBeige
(#E4D2BA)

searchTableHeader Search results
heading background

Light beige
(#F1EACB)

secondTableRow Background color for
alternate rows in
search results

Very light beige
(#F8F5E6)

Task wizards (for adding and
editing pages, adding and
editing portlets, managing
subscriptions, etc.)

Button Button text Grayish blue
(#3872AC)

Button Button border Grayish blue
(#3872AC)

TableBorder Border for tables
appearing in wizards

Gray
(#B2B2B2)

TableHeader Heading text for
tables appearing in
wizards

Black

TableHeader Heading background
for tables appearing
in wizards

Light gray
(#DDDDDD)

wizardHeader Text for wizard
headers

Brown
(#AB8029)

wizardHeader Background for
wizard headers

Light beige
(#F1EACB)

wizardTableBorder Borders for wizards Beige

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Styles in Portal.css 100



(#E4D2BA)

Viewers (for content items) actionsMenuBg Background for
toolbar

Light beige
(#F1EACB)

topRightMenuItem:link
topRightMenuItem:visited
topRightMenuItem:active

Text for links in
toolbar

Grayish blue
(#3872AC)

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Styles in Portal.css 101



ExampleTheme.xml File
The contents of the ExampleTheme.xml file, which you should use as a basis for creating your own theme
descriptor, follow.

<?xml version="1.0" encoding="UTF−8" ?>
<!DOCTYPE Themes SYSTEM "http://www.sas.com/webapp/themes.dtd">

<!−−
 Themes consist of images, templates and stylesheets. Templates are
typically HTML files. Themes must have a name, which will not be
localized. Themes must have a label for display to users.
 All file paths must be relative to the URI path of the theme. For themes
used within a web application, we recommend creating new directories
under context root/themes whose names match the theme names. Within the
theme−name directory, create subdirectories named templates, images, and
styles. Put cascading style sheets into the styles folder, image files
into images, and all template files into templates.

<Themes>
<Theme name="" // the name of the theme (without blanks). Not localized.
               //Required.
 label=""        // a label for display to users. Required.
 description=""  // a description for display to users. Optional.
 device=""  // name suitable display device, e.g. desktop browser, PDA, 
            // WAP phone. Required.
 URIPath="" //the path to the theme's directory. If it does not include 
            // a final "/", one will be appended when constructing paths 
            // to subdirectories. Required.
/>

<Images directory=""> // the name of directory where the images are
                      // located (without backslash). Required
<Image name=""    // Required.
  description=""
    altTextKey="" // Optional. Resource key for alt= text on img tag
    path=""  // Optional. Used if path to image is not URIPath + images
    appliesTo="ALL | className(s)" // indicates that ALL class will make
                                   // use of this value, or if there is
                                   // a list of classes, only apply to
                                   // those. 'ALL' is a reserved word.
                                   // Required.
   width=""  //Optional. Value for width= attr on img tag
   height="" //Optional. Value for height= attr on img tag
   file=""   // the name of image file, e.g. logo.gif Required
/>
<Styles directory="" // the name of directory where the stylesheets are
                     // located (without backslash).
<StyleSheet name=""  // descriptive name of the cascading style sheet.
  description=""     // description of the style's purpose
  media=""  // valid values are: screen|print Required.
  order="n" // for each media type, the order in which to load the style
            // sheet. Required. The value for order must be an ASCII
            // integer (no Unicode−escaped characters).
  file=""   // The file name, e.g. sasStyle.css Required.
/>
<Templates directory=""> // the name of directory where the templates 
                         // are located (without backslash). Required.
<Template name="" // name of the template. Required

ExampleTheme.xml File 102



  description=""  // description of the template's purpose
  markup=""  // markup language used in the template Required
  file=""    // name of the template file Required
/>
</Theme>
</Themes>
path=Theme.URIPath + Images.dir + asset.value   OR
path=Theme.URIPath + asset.path + asset.value

The actual path to an asset is the concatenation of the URIPath 
attribute on the Theme element, the dir attribute on the Asset type 
(style, image, or template), and, of course, the value of the asset 
itself. For example, for the logo, it would be 
themes/default/images/logo.gif

Alternatively, if an asset includes a "path=" attribute, then the
actual path to the asset is the concatenation of the URIPath attribute 
on the Theme element, the path attribute on the asset, and the value of 
the asset itself.
  −−>

<Themes>
  <Theme name="Example" label="An Example" description="Example Theme 
  for SAS applications"
    URIPath="themes/example" device="DESKTOP">
    <Styles directory="styles">
      <StyleSheet name="SAS Style" description="Default SAS style"
        order="1" media="SCREEN" file="sasStyle.css"/>
      <StyleSheet name="AppDev Studio" order="2" media="SCREEN"
        file="sasComponents.css"/>
      <StyleSheet name="Example Style" order="3" media="SCREEN"
        file="Portal.css"/>
    </Styles>
    <Images directory="images">
      <Image name="logo" description="SAS Logo"
        altTextKey="desktop.logo.txt" appliesTo="ALL" width="67"
        height="30" file="logo.gif"/>
      <Image name="banner_swirl_bg" description="SAS banner swirl
        background" altTextKey="" appliesTo="ALL" height="40"
        file="banner_swirl_bg.gif"/>
      <Image name="banner_first_bg" description="SAS banner, first
        background" altTextKey="" appliesTo="ALL" height="40"
        file="banner_first_bg.gif"/>
      <Image name="banner_top" description="SAS banner top"
        altTextKey="" appliesTo="ALL" height="5" width="100%"
        file="banner_top.gif"/>
    </Images>
    <Templates directory="templates">
      <Template name="navigation_action_menu" description="Navigation 
        Menu with actions" markup="HTML"
        file="navigation_action_menu.html"/>
      <Template name="navigation_action_nologoff_menu"
         description="Navigation Menu with actions but no logoff option"
         markup="HTML" file="navigation_action_nologoff_menu.html"/>
      <Template name="navigation_menu" description="Navigation Menu"
         markup="HTML" file="navigation_menu.html"/>
      <Template name="viewer_title"description="Viewer Title Bar"
         markup="HTML" file="viewer_title.html"/>
      <Template name="task_action" description="Task Action Menu"
         markup="HTML" file="task_action.html"/>
      <Template name="logon_action" description="Logon Action Menu"

SAS® Web Infrastructure Kit 1.0: Developer's Guide

ExampleTheme.xml File 103



         markup="HTML" file="logon_action.html"/>
      <Template name="viewer_action_menu" description="Viewer Action 
        Menu"markup="HTML" file="viewer_action_menu.html"/>
      <Template name="utilmenu" description="Options Menu" markup="HTML"
        file="utilmenu.html"/>
      <Template name="helpmenu" description="Help
        Menu" markup="HTML" file="helpmenu.html"/>
      <Template name="banner" description="Banner" markup="HTML"
         file="banner.html"/>
      <Template name="banner_product" description="Banner with product
         name" markup="HTML" file="banner_product.html"/>
      <Template name="banner_logo" description="Banner with logo"
         markup="HTML" file="banner_logo.html"/>
    </Templates>
  </Theme>
</Themes>

Themes

SAS® Web Infrastructure Kit 1.0: Developer's Guide

ExampleTheme.xml File 104



Element Descriptions for Themes DTD
Use any of the following links to view detailed descriptions of the elements in themes.dtd:

Top Elements is a list of the top−most elements of the DTD, with links to pages describing each top−most
element. From these pages, you can link to descriptions of individual child elements.

• 

All Elements is a list of all elements defined in the DTD. The links on the page provide quick access to the
description of any individual element.

• 

Document generated by dtd2html 1.5.1.

themes DTD

Element Descriptions for Themes DTD 105



Changing the Application Name
The application name, "SAS Portal," which appears in the banner of the portal Web application, is not part of the
theme. However, you can specify a different application name to appear in the banner.

Use the following steps to specify a different application name:

In the install.properties file (which is located in PortalConfigure folder of the setup
directory), add the following property:

$NAME_IN_BANNER$=Application Name

where Application Name is the name that you want to display in the banner.

1. 

Use the configure_wik.bat utility to create a new Portal.WAR file that incorporates the new application
name.

2. 

Deploy the new WAR file by using the appropriate procedures for your servlet container.3. 

Note: If you do not want to create a new WAR file, then you can edit the NameInBanner= parameter of the
Portal.config file to specify the new name. The Portal.config file is located in the Portal/WEB−INF/
directory of your servlet container.

If you use this method, then you should also add the $NAME_IN_BANNER$= parameter to the
install.properties file. Otherwise, the new application name will be destroyed if you run the
configure_wik script again in the future.

Changing the Application Name 106



Resources
This section provides information about the application programming interfaces (APIs) that are provided with the SAS
Web Infrastructure Kit. The following topics are discussed:

the Portlet API, which gives you access to classes that provide the portal Web application's navigation and
request processing functions.

• 

SAS Foundation Services, which is a set of infrastructure and extension services that support the development
of integrated, scalable, and secure Java−based applications. The SAS Web Infrastructure Kit includes the SAS
Foundation Services Facade API, which is a set of convenience classes that developers can use to obtain
references to the most commonly used foundation services.

• 

Links to the detailed class documentation are also provided.

Resources 107



Using the Portlet API
The Portlet API provides access to classes that provide the portal Web application's navigation and request processing
functions. For detailed information about the API, see the  class documentation.

The following classes are of particular usefulness in creating custom portlets:

com.sas.portal.portlet.DefaultPortletAction
You can extend this class in order to create your own portlet actions. For more information, see Creating a
Portlet Action Class.

com.sas.portal.portlet.ErrorHandlerInterface
You can use this interface to handle errors that your portlet encounters. For more information, see Error
Handling Actions.

com.sas.portal.portlet.HTMLPortletAction
You can extend this class in order to create your own portlet actions. For more information, see Creating a
Portlet Action Class. Possible uses include

correctly displaying non−Latin1 character sets when a portlet is displayed in preview mode. For an
example of this use, see Step 4: Create the Action Class in the Sample Localized Display Portlet
(Welcome Portlet).

◊ 

preparing URLs for actions within an interactive form JSP, and to populate a JavaBean with
parameters from a JSP form. For an example of this use, see Step 4: Create the Action Class in the
Sample Interactive Form Portlet (FormExample).

◊ 

com.sas.portal.portlet.PortletContextInterface
You can use this interface to obtain the user ID of the person who is logged on to the portal Web application.
Use the getSessionContext() method to retrieve the session context, use the getUserContext()
method to retrieve the user context from the session context, and then use the getPerson() method to
obtain the user ID from the user context.

com.sas.portal.portlet.NavigationUtil
You can use this class to

create URLs for buttons on your JSP pages (for example, OK and Cancel buttons). For an example of
this use, see Creating a Portlet Template.

◊ 

obtain a portlet's resource bundles in order to create a localization context for your portlet's JSP page.
For an example of this use, see Creating a Localized Portlet.

◊ 

com.sas.portal.portlet.PortletActionInterface
You can use this interface to develop an action class for your portlet. For more information, see Creating a
Portlet Action, and Step 4: Create the Action Class in the Sample Localized Display Portlet (Welcome Portlet)
.

com.sas.portal.portlet.PortletInitializerInterface
You can use this interface to develop an initializer class, which runs before your portlet is displayed for the
first time on a portal page. Possible uses include

reading initial parameters that are specified in your portlet's deployment descriptor file
(portlet.xml)

◊ 

connecting to an external resource such as a database.◊ 
For more information, see Creating an Initializer Action.

com.sas.portal.portlet.PostProcessorInterface
You can use this interface to develop a postprocessor class that runs when your portlet is no longer on display.
Possible uses include

Using the Portlet API 108



freeing resources that were used in the portlet initializer.◊ 
removing HttpSession attributes that were set in the portlet initializer or portlet action. This is
especially important to consider since multiple copies of your portlet could exist on other portal pages
or even on the same page.

◊ 

For more information, see Creating a Postprocessor Action.

For detailed information, see the  class documentation.

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Using the Portlet API 109



Using SAS Foundation Services With the Portal
SAS Foundation Services is a set of infrastructure and extension services that support the development of integrated,
scalable, and secure applications that are developed using Java. The design model for SAS Foundation Services
supports both local and remote resource deployment and promotes resource sharing among applications. Sharing can
occur for a specific session, for a specific user, or globally, as appropriate. At the same time, the model controls access
to protected resources based on privileged−user status and group membership.

For a list and description of each service, refer to SAS Foundation Services in the SAS Integration Technologies
Developer's Guide.

The SAS Web Infrastructure Kit includes the SAS Foundation Services Facade API, which is a set of convenience
classes that developers can use to obtain references to the most commonly used foundation services. The foundation
services facade should provide all of the necessary functionality to integrate your applications with the portal Web
application. The foundation services facade is part of the Portlet API. For detailed information about the facade
classes, select com.sas.services.webapp in the Portlet API  class documentation.

You can also choose to use the SAS Foundation Services classes directly.

Using Locally Deployed SAS Foundation Services

When SAS Foundation Services is deployed locally, the core local services stack is used, as follows:

com.sas.services.security.AuthenticationService1. 
com.sas.services.user.UserService2. 
com.sas.services.logging.LoggingService3. 
com.sas.services.information.InformationService4. 
com.sas.services.session.SessionService5. 

Using Remotely Deployed SAS Foundation Services

In the portal Web application architecture, an application called SAS Services (SASServices) is used to remotely
deploy SAS Foundation Services. This application enables secure information sharing among applications. Through
SAS Services, you can implement remotely deployed content viewers, remote portlets, and stand−alone Web
applications that are called by the portal Web application and invoked with the portal Web application user's
credentials. The user does not need to log on again, and user and session information can be shared as needed.

The SAS Services application makes the following stack available to applications that are enabled by SAS Foundation
Services:

com.sas.services.security.AuthenticationService1. 
com.sas.services.user.UserService2. 
com.sas.services.logging.LoggingService3. 
com.sas.services.information.InformationService4. 
com.sas.services.session.SessionService5. 

The SAS Services application must be up and running on a machine that is accessible to the remote Web application.
In addition, the remote Web application must include a properties file that points to the definition of the remote
services.

Using SAS Foundation Services With the Portal 110



The portal Web application provides the SAS Services application with session context information for each
authenticated user who is logged on. If the portal Web application passes a unique session ID to a remote Web
application, then the remote Web application can obtain the appropriate user's session context information from the
SAS Services session. The remote Web application should use the following steps to accomplish this:

retrieve the session ID from the portal Web application request and use it to obtain a reference to the SAS
Services session. This is done by creating a new WebappContextParams object, as follows:

WebappContextParams params = new WebappContextParams(request);

• 

use the SessionContextInterface to get the remote session, as follows:

sharedSession = params.getSessionContext();

• 

protect the session with a lock object, as follows:

sessionLock = SharedSession.lock("com.sas.MySessionName");

• 

call methods from the WebappContextParams class to retrieve data, as in this example:

UserContextInterface userContext = sharedSession.getUserContext();

• 

unlock the session, as follows:

sharedSession.unlock(sessionLock);

• 

For an illustration of the use of SAS Foundation Services to access a SAS Services session, see the Sample Web
Application (HelloUserWikExample).

SAS® Web Infrastructure Kit 1.0: Developer's Guide

Using SAS Foundation Services With the Portal 111


	Table of Contents
	SAS® Web Infrastructure Kit 1.0: Developer's Guide
	Developing Custom Portlets
	Integrating Web Applications With the Portal
	Tasks
	Creating a Portlet Deployment Descriptor
	Example Deployment Descriptor for a Local Portlet
	Example Deployment Descriptor for a Remote Portlet
	Detailed Element Descriptions for Portlet Deployment Descriptor DTD
	Creating Display Resources Files
	Developing the Presentation JSP
	Creating Action Classes
	Creating an Initializer Action Class
	Creating a Portlet Action Class
	Creating a Postprocessing Action Class
	Creating an Error Handling Action
	Creating a PAR File for Deployment in Your Application
	Use Cases
	Creating a Simple Display Portlet
	Creating a Localized Portlet
	Creating a Portlet Template (Editable Portlet)
	Creating a Remote Portlet
	Samples
	Sample: Localized Display Portlet (Welcome Portlet)
	Step 1: Create the Directory Structure
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Page
	Step 4: Create the Action Class
	Step 5: Create the Resource Bundles
	Step 6: Create Translated Titles and Descriptions
	Step 7: Create the PAR File, and Deploy and Test the Portlet
	Sample: Interactive Form Portlet (FormExample)
	Step 1: Create the Directory Structure
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Page
	Step 4: Create the Action Class
	Step 5: Create the JavaBean
	Step 6: Create the PAR File, and Deploy and Test the Portlet
	Sample: Portlet Template, or Editable Portlet (DisplayURL)
	Step 1: Create the Directory Structure
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Pages for the Portlet and the Editor
	Viewer.jsp
	Editor.jsp
	Error.jsp
	Step 4: Create the Action Classes
	Initializer Action
	Base Action
	Display Action
	Editor Action
	OK and Cancel Actions
	Error Handler Action
	Step 5: Create the Resource Bundle
	Step 6: Create the Display Resources File
	Step 7: Create the PAR File, and Deploy and Test the Portlet
	Sample: Web Application (HelloUserWikExample)
	Step 1: Create the Directory Structure
	Step 2: Create the Web Application Deployment Descriptor
	Step 3: Create Deployment Definitions and Properties Files for Local and Remote Services
	Step 4: Create the Display Page (JSP)
	Step 5: Create the WAR File, and Deploy and Test the Application
	Sample: Remote Portlet (HelloUserRemotePortlet)
	Step 1: Create the Directory Structure
	Step 2: Create the Portlet Deployment Descriptor
	Step 3: Create the Display Resources File
	Step 4: Create the Web Application
	Step 5: Create the PAR File, and Deploy and Test the Portlet
	Themes
	Defining and Deploying New Themes
	Styles in Portal.css
	ExampleTheme.xml File
	Element Descriptions for Themes DTD
	Changing the Application Name
	Resources
	Using the Portlet API
	Using SAS Foundation Services With the Portal

