Revised and Enhanced from SAS Global Forum Paper 323-2009

Modifying ODS Statistical Graphics Templates in SAS® 9.2
Warren F. Kuhfeld, SAS Institute Inc., Cary, NC

Abstract

With the release of SAS 9.2, over sixty statistical procedures use ODS Statistical Graphics to produce graphs as
automatically as they produce tables. This paper reviews the basics of ODS Statistical Graphics and focuses on
programming techniques for modifying the default graphs. Each graph is controlled by a template, which is a SAS
program written in the Graph Template Language (GTL). This powerful language specifies graph layouts (lattices,
overlays), types (scatter plots, histograms), titles, footnotes, insets, colors, symbols, lines, and other graph elements.
SAS provides the default templates for graphs, so you do not need to know any details about templates to create
statistical graphics. However, with some understanding of the GTL, you can modify the default templates to permanently
change how certain graphs are created. Alternatively, you can make immediate and ad hoc changes to specific graphs
by using the point-and-click ODS Graphics Editor. This paper presents examples to help you navigate the complexity of
the default templates and safely customize elements such as titles, axis labels, colors, lines, markers, ticks, grids, axes,
reference lines, and legends.

Introduction

Effective graphics are indispensable for modern statistical analysis. They reveal patterns, differences, and uncertainty
that are not readily apparent in tabular output. Graphics provoke questions that stimulate deeper investigation, and
they add visual clarity and rich content to reports and presentations. With the release of SAS 9.2, over sixty statistical
procedures produce graphs when ODS Graphics is enabled with the following statement:

ods graphics on;

A few samples of graphs that are automatically produced appear on the next two pages. Each graph has a template,
which is a SAS program that provides instructions for creating the graph. SAS provides a template for each graph it
creates, so you do not need to know anything about templates to create statistical graphics. However, with just a little
knowledge of the graph template language (GTL), you can modify templates to change how your graphs are created.
For example, you can change titles, axes, colors, symbols, lines, and other graph elements. Figure 2 displays a scree
plot from the FACTOR procedure. Displaying and modifying its template is simple. Figure 3 shows how the plot looks
after you modify the template to replace the title “Scree Plot” with “Eigenvalue (1) Plot”, the X axis label “Factor” with
“Factor Number”, and the Y axis label “Eigenvalue” with “A”. The modification process is explained in detail in the section
“Changing Titles and Axis Labels” on page 7.

This paper begins by reviewing some basic principles of ODS and ODS Graphics. Next, it shows you several templates
that are used by SAS/STAT® procedures. The earlier templates were chosen because they are among the simplest
templates in SAS/STAT, and they illustrate basic principles that can be applied to more complex templates. The remainder
of the paper shows examples of modifying more complicated templates. More information can be found in Chapter 21,
“Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

ODS and ODS Graphics Background Material

This section presents some background material that you need to know before you change templates.

Templates, Libraries, and Item Stores

This section uses the KDE (kernel density estimation) procedure to illustrate properties of templates and show where
compiled templates are stored. The output from a typical SAS procedure includes a series of tables and graphs. You
can use the ODS TRACE statement to list the names and labels of the tables and graphs along with their templates as
follows:

ods graphics on;
ods trace on;

proc kde data=sashelp.class;
bivar height weight / plots=scatter;
run;

Distribution of Residuals for Weight

30 Narmal'
25 / — =]
Pﬁ\
o 20 i
% 15 .
“ 10 }f \
5 \
/ &
D L T _'. T T T T =
-40 -32 -24 16 -8 0 8 16 24 32 40

Residual

a8

o8

o4

‘Survival Probability

oz

1 m
I
8
Treatment 10X ——— F Paebo
Fit Plot for SO4
[
N *
v O
sEN T o Y
£ . .
. .
* o * %
y e % . *
40N - ’:‘
S.e * ¢ A
L4}
E . 0]
=] .
5 O T .
BN L
.
'y
L]
1}
30M -
T T T
120W 100w 20w
Longitude

Coefficient Progression for logSalary

Farbpctied Slap

Distribution of Conditional Residuals for y

il HH: it
N

PRI EE LR L LGB ReD

Person
StemLength Comparisons for Type
~
hY
~
\n\ \J\ Wabash
~ \\
Y s, Hnox
Y
~
_\ Ctigim
“
~
“
1 Clarion
“
\ Weebnier
\ \\k
M\
Y Compst
Obdedll », Knox S Wabash
28 30 32 34 ﬁ
Differences for alpha=0.05

——— Mot significant Significant

Checking Functional Fonm for Time
Oibserved Fath and Frst 20 Simulsted Paths

Pr > Maxfbs'Val 01830
-] 11000 Simulationt)

] L] 20 E] &0

o8
\HE
w
02
Component Scores Matrix
1 2 3 4 5
ity 5 | oot ™ ::;fﬁ”“
_ . AP | i, | fa
L " 8 # 0 o % o8 » %ea
O . N " %
= = = a
o L L] L
o . ® @
L # = . ® 8@
- o °
2 o o
o a 2 ®) & B & 4
o " gal® ® D-‘.
o "o A whela® BT,
& - e
a ° gy o
o a0 g = ag f . s g
£ s r
® @ 1 . L ?f;'?
o # oo
LT " . - 3") 5 I
o ® =y . * s %
o = = =
ﬁ'% eﬁﬂ n'ﬂ “\I -
® H
-8 v oy N I ,&."{ @i, et e
g o L c:
o L] &
T o 2 - 2
() @ = - e 8
Y .. ® LI o B

Component Scores
2 -
i
=] g
:’ | SEBET oy
§ 5 iy ﬁq{ .t?‘?:_'hm
1017y o ™ i
2
4
- =2 -] 2
Companert 2 (13.64%)
[Hagnostics for bnbarcept
]

1

2000 A000 8000 000 18000 12000
Iberstion
10
os E
[L T I T ———— N
H8 5
10 —'/
o L] o] 3 A £ i 2 3 4
Lag [[Ee
Fit Diagnostics for Weight
20 o, 2 = 2=
10- 14 “e 14 0° °
o
0 0 } %, o 1:‘:
-] o
=10 00 o <1 e°° [I P
20 2 o 2%
60 100 140 80 100 140 0.05 0.15 0.25
Predicted Value Predicted Value Leverage
2 1. bl / o 020
10- 1zu— .
2 0 1un % 015-
3 0 E 0.10 -
® - 0.0s -
=20 0,00 -
T T T T T T T L
2401 2 aomu 140 0 5 10 1520
Quantile Predicted Value Observation
g- Fit-Mea Residua
20 - o Observations 19
15 / Parameters 2
10 - Error DF 17
- Py MSE 126,03
o | SLLLLL R-Square 07705
a2 8 18 . 1"_”': | AdiR-Square 0757
Residual Proportion Less

A portion of the trace output, which appears in the SAS log, is as follows:

Name: Controls

Template: Stat .KDE.Controls

Path: KDE.Bivarl.Height_Weight.Controls
Name: ScatterPlot

Label: Scatter Plot

Template: Stat .KDE.Graphics.ScatterPlot

Path: KDE.Bivarl.Height_Weight.ScatterPlot

A typical graph template name has the form product.procedure . Graphics . name. You can list the source statements for
any template by using the TEMPLATE procedure as follows:

proc template;
source Stat.KDE.Graphics.ScatterPlot;
run;

The template source statements are as follows:

define statgraph Stat.KDE.Graphics.ScatterPlot;
dynamic _VARINAME _VARILABEL _VAR2NAME _VAR2LABEL;
BeginGraph;
EntryTitle "Distribution of " _VARINAME " by " _VAR2NAME;
layout Overlay / xaxisopts=(offsetmin=0.05 offsetmax=0.05)
yaxisopts=(offsetmin=0.05 offsetmax=0.05);
ScatterPlot x=X y=Y / markerattrs=GRAPHDATADEFAULT,;
EndLayout;
EndGraph;
end;

The statements and options in this template are discussed in the next section.

You can modify a template by editing the statements, adding a PROC TEMPLATE statement, and submitting the template
source to SAS. The compiled templates are stored in a special SAS file called an item store. The default templates that
SAS provides are stored in the Sashelp library and the Tmplmst item store. By default, if you submit a template, it is
stored in the Sasuser library and the Templat item store. A template stored in this item store persists until you delete the
template, the item store, or the entire library.

By default, ODS first searches Sasuser.Templat for templates, and then it searches Sashelp.TmpImst if it does not find
the requested template in Sasuser.Templat. You can modify the path and insert a Work item store in front of the default
path in either of the following equivalent ways:

ods path work.templat (update) sasuser.templat (update) sashelp.tmplmst (read);
ods path (prepend) work.templat (update);

You can see the list of template item stores by submitting the following statement:

ods path show;

The results are as follows:
Current ODS PATH list is:
1. WORK.TEMPLAT (UPDATE)

2. SASUSER.TEMPLAT (UPDATE)
3. SASHELP.TMPLMST (READ)

With this path, any template that you submit is stored in Work.Templat, which is deleted at the end of your SAS session.
You can see a list of all of the templates that you have modified as follows:

proc template;
list / store=work.templat;
list / store=sasuser.templat;
run;

The following statements illustrate how you can specify a permanent item store for your use and for the use of others:

libname mytpl 'C:\MyTemplateLibrary';
ods path (prepend) mytpl.templat (update) ;

Now, when you run PROC TEMPLATE, SAS creates an item store in the directory you specified in the LIBNAME
statement. The following statements illustrate how you can list the templates in your item store:

proc template;
list / store=mytpl.templat;
run;

You can restore the default template path in either of the following equivalent ways:

ods path sasuser.templat (update) sashelp.tmplmst (read);
ods path reset;

You can delete any template that you modified (so that ODS finds the default template that SAS supplied) by specifying it
in a DELETE statement, as in the following example:

proc template;
delete Stat.KDE.Graphics.ScatterPlot;
run;

The Sashelp library is always read-only, so you can safely submit the preceding step even if the template you specify does
not exist in Work.Templat or Sasuser.Templat. You can submit the following statements to delete all of the customized
templates in Sasuser. Templat so that ODS uses only the templates supplied by SAS:

ods path sashelp.tmplmst (read);

proc datasets library=sasuser;
delete templat (memtype=itemstor);

run; quit;

ods path reset;

Before you can delete the item store, you must first remove it from the path. You can optionally restore the path to the
default setting when you are finished. It is good practice to store temporary template modifications in Work.Templat
so that they are not unexpectedly used in a later SAS session. Alternatively, you can store them in Sasuser.Templat
and explicitly delete them when you are done with them. You can find more information about item stores in the
documentation section “The Default Template Stores and the Template Search Path” (Chapter 21, SAS/STAT User’s
Guide).

Data Objects

SAS procedures produce data objects. A data object is a rectangular arrangement of the values (data, statistics, and so
on) that are needed to produce a table or a graph. ODS applies a template to the information in a SAS data object to
produce a graph. You can output the underlying data object to a SAS data set by using the ODS OUTPUT statement,
and you can use the CONTENTS and PRINT procedures to display the results:

proc kde data=sashelp.class;
ods output ScatterPlot=myscatter;
bivar height weight / plots=scatter;
run;

proc contents p;
ods select position;
run;

proc print data=myscatter (obs=3);
run;

The results are displayed in Figure 1.

Figure 1 Contents of a Data Object

The CONTENTS Procedure
Variables in Creation Order

Variable Type Len Label

1 VarNames Char 17

2 X Num 8 Height

3 Y Num 8 Weight

Obs VarNames X Y

1 Height and Weight 69.0 112.5
2 Height and Weight 56.5 84.0
3 Height and Weight 65.3 98.0

The column names, column labels, and values in the data object provide the variable names, variable labels, and values
in the SAS data set.

Styles

ODS styles control the colors and general appearance of all graphs and tables. SAS provides several styles that are
recommended for use with statistical graphics. A style is specified in a destination statement as follows:

ods listing style=statistical;

The STATISTICAL style is the default style in SAS/STAT documentation and in this paper. The default style that you
see when you run SAS depends on the ODS destination: the default style for the LISTING destination is LISTING, the
default style for the HTML destination is DEFAULT, and the default style for the RTF destination is RTF. You can see the
source statements for these style definitions by submitting the following step:

proc template;
source styles.default;
source styles.statistical;
source styles.listing;
source styles.rtf;

run;

This step produces a great deal of output, so the full results are not shown. However, a small portion of the DEFAULT
style is displayed next:

'gedata'’ = ¢x000000

'gdata' = cxB9CFE7
'gconramp3cend' = cxFF0000
'gconramp3cneutral' = cxFFOOFF
'gconramp3cstart' = cx0000FF

class GraphDataDefault /
endcolor = GraphColors ('gramp3cend')
neutralcolor = GraphColors('gramp3cneutral')
startcolor = GraphColors('gramp3cstart')
markersize = 7px
markersymbol = "circle"
linethickness = lpx
linestyle = 1
contrastcolor = GraphColors('gcdata')
color = GraphColors('gdata');

This part of the style definition defines the GraphpatabDefault style element and some of the colors that it uses. This
style element defines the default marker, marker size, line style, line thickness, marker and line colors, and other colors.

The marker or symbol size is 7 pixels, the marker is a circle, lines are 1 pixel thick, the line style is 1 (solid), the color is
light blue, and the contrast color is black. Colors apply to filled areas, and contrast colors apply to markers and lines.

Figure 2 Default Scree Plot Figure 3 Scree Plot with Modified Title and Axis Labels
Scree Plot Eigenvalue (A) Plot
6 6
2 4 4
©
= <
()
R=)
]
2 2
0 0
2 4 6 8 10 1 2 3 4 5 6 7 8 9 10
Factor Factor Number

A color ramp is used to display a third variable in a scatter plot via color, and the colors range from blue to magenta to
red. A value cxrrggbb specifies colors in terms of their red, green, and blue components in hexadecimal where rr ranges
from 00 (0 = black) to FF (255 = red), gg ranges from 00 (0 = black) to FF (255 = green), and bb ranges from 00 (0 =
black) to FF (255 = blue). You can change styles, create new styles from scratch, and create new styles based on old
styles, all by creating or editing a style template. See the documentation section “Styles” (Chapter 21, SAS/STAT User’s
Guide) for more about styles.

SAS/STAT Graph Templates and the Basics of the GTL

This section examines some templates, shows what they have in common and what is different, and explains some
common GTL statements and options. The templates that are discussed in this section are chosen because they are
small, and they provide complementary insights into template modification. Most templates are more complicated. The
rest of this paper assumes that the following statements from the preceding sections are in effect:

ods path (prepend) work.templat (update);
ods graphics on;
ods trace on;

Changing Titles and Axis Labels
The following step runs PROC FACTOR and produces the eigenvalue (or scree) plot displayed in Figure 2:

proc factor data=sashelp.cars plots (unpack)=scree;
run;

The PLOTS(UNPACK)=SCREE option produces the scree plot by itself—“unpacked” from its usual location as part of a
two-panel display with the variance-explained plot.

The trace output for the scree plot is as follows:

Name: ScreePlot

Label: Scree Plot

Template: Stat.Factor.Graphics.ScreePlotl

Path: Factor.InitialSolution.ScreeAndVarExp.ScreePlot

7

The following statements display the graph template for the scree plot:

proc template;
source Stat.Factor.Graphics.ScreePlotl;
run;

The template source statements are as follows:

define statgraph Stat.Factor.Graphics.ScreePlotl;
notes "Scree Plot for Extracted Eigenvalues";
BeginGraph / designwidth=DefaultDesignHeight;
Entrytitle "Scree Plot" / border=false;
layout overlay / yaxisopts=(label="Eigenvalue" gridDisplay=auto_on)
xaxisopts=(label="Factor" linearopts=(integer=true));
seriesplot y=EIGENVALUE x=NUMBER / display=ALL;
endlayout;
EndGraph;
end;

This template has the following components:

e The graph template definition begins with a DEFINE statement of the form: define statgraph template-name; .
An END statement ends the template definition.

e The NOTES statement provides a description or label for the template.

e A block that begins with the BEGINGRAPH statement and ends with the ENDGRAPH statement. Here, the
BEGINGRAPH statement has an option that specifies that the outer box which contains the graph should be a
square whose width is equal to the default graph height.

e The EntryTitle statement provides the graph title, in this case “Scree Plot”. The BORDER=FALSE option specifies
that the title is displayed without a border. In fact, this is the default behavior, so the option is unnecessary. However,
it is not unusual to see default specifications in the templates.

e A layout (in this case a LAYOUT OVERLAY statement) is at the heart of the graph template. It ends with an
ENDLAYOUT statement, and it is often specified with options. One or more LAYOUT and ENDLAYOUT statement
pairs are required. The OVERLAY layout is the most common layout in SAS/STAT templates. Other common layout
types are discussed later. This layout provides the label “Eigenvalue” for the vertical or Y axis, provides the label
“Factor” for the horizontal or X axis, specifies that grid lines should be produced for the Y axis when the output style
favors grids, and specifies that the X axis ticks must be integers. The LINEAROPTS= option is used for options
specific to standard axes that depict a linear scaling (as opposed to LOGOPTS=, which is used for log-scale axes).

e One or more statements inside the layout provide the details about what to graph. In this case, the graph is a
series plot, produced with the SERIESPLOT statement, which provides a piecewise linear (“connect the dots”) plot.
The Y axis column in the ODS data object is named EigenValue, and the X axis column in the ODS data object is
named Number (the factor number). The standard series plot display is a series of lines, but the DISPLAY=ALL
specification additionally displays the markers (in this case circles) for the data values.

Notice that the title and the axis labels are all specified directly as literal character strings in this template. You can
change any of them and submit the results to SAS. From then on, until you change or delete your custom template in
Work.Templat or until you end your SAS session, you will see your customization whenever you run PROC FACTOR.

The following example adds a PROC TEMPLATE statement and a RUN statement, changes the title and axis labels,
specifies explicit tick values, and removes the grid and the unnecessary BORDER= option:

proc template;
define statgraph Stat.Factor.Graphics.ScreePlotl;
notes "Scree Plot for Extracted Eigenvalues";
BeginGraph / designwidth=DefaultDesignHeight;
Entrytitle "Eigenvalue ((*ESCx){Unicode Lambda}) Plot";
layout overlay / yaxisopts=(label=" (*ESCx) {Unicode Lambda}")
xaxisopts=(label="Factor Number"
linearopts=(tickvaluelist=(1 2 3 4 5 6 7 8 9 10)));
seriesplot y=EIGENVALUE x=NUMBER / display=ALL;
endlayout;
EndGraph;
end;
run;

Figure 4 Default Box Plots Figure 5 Examining Dynamic Variables

Distribution of Residuals for Height Distribution of Residuals for Height
exists? 1 _yvar: Residual

exists? 0 _shortylabel:
: T

SR,

®
3
2 X
3 3 0 <o \%
o 8
h T “ s
- i T
-10 -10
F M F M
Sex Sex

Both the title and the Y axis now contain the Greek letter A, which is specified as an escape sequence followed by a
Unicode specification. The tick value list is specified in full because the GTL does not accept standard SAS shorthand
lists. The only output from this step is the following log note:

NOTE: STATGRAPH 'Stat.Factor.Graphics.ScreePlotl' has been saved to: WORK.TEMPLAT

The following step uses the new template to create a scree plot and produces Figure 3:

proc factor data=sashelp.cars plots (unpack)=scree;
run;

The following step restores the default template:

proc template;
delete Stat.Factor.Graphics.ScreePlotl;
run;

The only output from this step is the following log note:

NOTE: 'Stat.Factor.Graphics.ScreePlotl' has been deleted from: WORK.TEMPLAT

Changing Titles and Axis Labels Set by Dynamic Variables

In the previous example, the title and both axis labels are specified directly as literal strings in the template. In this

example, the procedure provides the title and axis labels at run time. The following step uses the GLIMMIX procedure to
create the box plot in Figure 4:

ods graphics on;

proc glimmix data=sashelp.class plots=boxplot;
class sex;
model height = sex;

run;

The trace output for the box plot is as follows:

Name: BoxPlot

Label: Residuals by Sex

Template: Stat .Glimmix.Graphics.BoxPlot
Path: Glimmix.Boxplots.BoxPlot

The following statements display the graph template for the box plot:

proc template;
source Stat.Glimmix.Graphics.BoxPlot;
run;

The template source statements are as follows:

define statgraph Stat.Glimmix.Graphics.BoxPlot;
dynamic _TITLE _YVAR _SHORTYLABEL;
BeginGraph;
entrytitle _TITLE;
layout overlay / yaxisopts=(gridDisplay=auto_on shortlabel=_SHORTYLABEL)
xaxisopts=(discreteopts=(tickvaluefitpolicy=rotatethin));
boxplot y=_YVAR x=LEVEL / labelfar=on datalabel=OUTLABEL
primary=true freq=FREQ;
endlayout;
EndGraph;
end;

The procedure uses dynamic variables to provide text strings and option values to the template. In this case, the dynamic
variables are a title, a variable name for the Y axis, and a short variable label for the Y axis. Note that dynamic variables
cannot provide any arbitrary syntax. For example, they can provide title text and values of options, but not option names,
statement names, layout names, and so on.

Axes can have labels and optionally short labels. The label is displayed if there is sufficient space. Otherwise, the short
label is used instead. Axis labels (and short labels) can be specified in the template with a literal string, in the template
through a dynamic variable, or implicitly. The axis label comes from the first source that provides a value: the LABEL=
option in the template (or the SHORTLABEL-= option), the data object column label, or the data object column name.

As a SAS user, you cannot peek into the SAS procedure code to see how the dynamic variables, column names, and
column labels are set. However, you can do a bit of detective work to learn about these things. The following steps
illustrate one approach:

proc template;
define statgraph Stat.Glimmix.Graphics.BoxPlot;
dynamic _TITLE _YVAR _SHORTYLABEL;

BeginGraph;
entrytitle _TITLE;
entrytitle "exists? " eval (exists(_yvar)) " _yvar: " _yvar;
entrytitle "exists? " eval (exists(_shortylabel))

" _shortylabel: " _shortylabel;

layout overlay / yaxisopts=(gridDisplay=auto_on shortlabel=_ SHORTYLABEL)
xaxisopts=(discreteopts=(tickvaluefitpolicy=rotatethin));
boxplot y=_YVAR x=LEVEL / labelfar=on datalabel=OUTLABEL

primary=true freq=FREQ;
endlayout;
EndGraph;
end;

proc glimmix data=sashelp.class plots=boxplot;
class sex;
ods output boxplot=bp;
model height = sex;

run;

proc contents p;
ods select position;
run;

The graph is displayed in Figure 5, and the data object contents are displayed in Figure 6. The first title is unmodified
and simply displays the value of the _Title dynamic variable. Following that, this template is temporarily modified by
adding two new EntryTitle statements to report on both the existence and the value of two of the dynamic variables. The
expression eval (exists (dynamic-variable)) resolves to 1 (for true) when the dynamic variable is set by the procedure
and 0 (for false) when it is not set. It is not unusual for a procedure to conditionally set dynamic variables. A specification
of option=dynamic is ignored when the dynamic variable does not exist. After the existence information is displayed, the
value (if any) is displayed.

10

Figure 6 Contents of a Data Object

The CONTENTS Procedure

Variables in Creation Order
Variable Type Len Format Label
1 BOX__YVAR X LEVEL_DATALABEL O__ Y Num 8 Residual
2 BOX__YVAR X LEVEL_DATALABEL_O_ST Char 10
3 BOX__YVAR X_LEVEL DATALABEL O_ X Char 1 Sex
4 BOX__YVAR_X_ LEVEL_ DATALABEL_O_DL Num 8 BESTS. Index
5 Residual Num 8
6 Level Char 1 Sex
7 OutLabel Num 8 BESTS. Index

Figure 5 shows that the Y axis column is Residual and the short Y axis label is undefined. The PROC CONTENTS
information confirms that the data object has a column called Residual for the Y axis and a column called Level with a
label of “Sex” for the X axis. The Y axis column name and the X axis column label become the axis labels. The contents
information also displays other columns in the data object.

You have a number of options for modifying templates beyond simply adding or replacing text. For example, you can use
the dynamic variables that are provided in creative ways. For example, you could use the title as a label for the Y axis
as follows: yaxisopts=(label=_title . . .). This next example will instead replace the X axis label and add a
footnote (horizontally aligned on the left using a font that is appropriate for footnotes or second title lines), both through
macro variables, as follows:

proc template;
define statgraph Stat.Glimmix.Graphics.BoxPlot;
dynamic _TITLE _YVAR _SHORTYLABEL;
mvar datetag xlabel;
BeginGraph;
entrytitle _TITLE;
entryfootnote halign=left textattrs=graphvaluetext datetag;
layout overlay / yaxisopts=(gridDisplay=auto_on shortlabel=_SHORTYLABEL)
xaxisopts=(label=xlabel
discreteopts=(tickvaluefitpolicy=rotatethin));
boxplot y=_YVAR x=LEVEL / labelfar=on datalabel=OUTLABEL
primary=true freq=FREQ;
endlayout;
EndGraph;
end;
run;

%let DateTag Acme 01Apr2008;
%$let xlabel = Gender;

proc glimmix data=sashelp.class plots=boxplot;
class sex;
ods output boxplot=bp;
model height = sex;

run;

The new graph is displayed in Figure 7.

In this example, there is a new footnote, which comes from the value of the macro variable DateTag. DateTag is named
in the MVAR (macro variable) statement. When the MVAR statement is used, the template is compiled and the value
of the macro variable is substituted when the template is used by the procedure. This approach lets you modify and
compile the template once and then use it repeatedly with different values of the macro variable without ever having to
recompile the template. You usually use this approach when you make persistent changes in Sasuser.Templat or some
other permanent item store. An alternate approach is to use the following statement without using an MVAR statement:

entryfootnote "&datetag";

"Data objects come in many varied forms. You should not expect them to be pretty or well organized for display or subsequent processing. Although
you can process them in any way you choose, they are designed for input to one or more templates and very little else. On some occasions, extra columns
or extra dynamic variables might be created but not used. These represent cases where the procedure writer recognized possibilities for future processing
and tried to facilitate them. They might be helpful when they occur, but most data objects or templates do not have such information. This data object has a
number of manufactured and verbose names. You often see names like these when the values that are plotted are statistics of some sort or are computed
by ODS Graphics. 11

Figure 7 Modified Box Plots Figure 8 Footnote Added with a Macro

Distribution of Residuals for Height Distribution of Residuals for Height

; T | ; T |
© ©
3 0 o A% 3 0 o A%
3 3
14 14

N l T N l T

-10 -10
F M F M
Gender Sex

Acme 01Apr2008 Acme 01Apr2008

In this approach, the template is compiled and the value of the macro variable is substituted at compile time. The value

cannot change in this approach unless you recompile the template. In this case, the approach does not matter because
the template is compiled and immediately used.

The X axis label is set to “Gender” using the macro variable xlabel. The X axis change is ad hoc, so changes such as this
are usually made temporarily.

The following step restores the default template:

proc template;

delete Stat.Glimmix.Graphics.BoxPlot;
run;

If your only goal is to add or change a footnote or title, there is an easier, alternative mechanism. SAS provides a new
autocall macro, ModTmp1t, that you can use for this purpose. This macro is used in the following example:

title;

footnote 'halign=left textattrs=graphvaluetext "Acme 0lApr2008"';

$modtmplt (template=Stat.Glimmix.Graphics.BoxPlot, steps=t,
options=titles noquotes)

footnote;

proc glimmix data=sashelp.class plots=boxplot;
class sex;
ods output boxplot=bp;
model height = sex;

run;

$modtmplt (template=Stat.Glimmix.Graphics.BoxPlot, steps=d)

The TITLE statement clears the default title of “The SAS System”. The FOOTNOTE statement provides the footnote
along with options to place the footnote on the left using the font that is used for values. The ModTmp1t macro modifies
the box plot template. Only one macro step is run: the template modification step (STEPS=T). OPTIONS=TITLES
adds SAS system titles and footnotes (those specified in TITLE and FOOTNOTE statements) to the existing graph
titles and footnotes. OPTIONS=NOQUOTES moves the footnote from the FOOTNOTE statement to the EntryFootNote
statement but without the outer quotes. You must specify this option if you want to specify EntryTitle or EntryFootNote
options in your TITLE or FOOTNOTE statement. See the option “NOQUOTES” on page 33 for more information about
this option. The next FOOTNOTE statement clears the footnote so that it affects only the box plot template and does
not otherwise affect the analysis. PROC GLIMMIX makes the plot. The final call to the macro deletes the modified

template (STEPS=D). The results are displayed in Figure 8. For further discussion of the ModTmp1t macro, see the
section “ModTmplt Macro” on page 31.

12

Figure 9 Transposed Scatter Plot with Labels Figure 10 Scatterplot with Numerous Modifications

Distribution of Class Weight by Class Height

x
70 = o
* _--" *

£ 65 x X .- * £
o x ¥ 5]
% 60 ’*, - x ;
« -
© R

55 e

*
50
Height
60 80 100 120 140 Distribution of Height by Weight
Class Weight with a Cubic Fit Function

Modifying Colors, Lines, Markers, Axes, and Reference Lines
The following template source appeared in a previous section:

define statgraph Stat.KDE.Graphics.ScatterPlot;
dynamic _VARINAME _VARILABEL _VAR2NAME _VAR2LABEL;
BeginGraph;
EntryTitle "Distribution of " _VARINAME " by " _VAR2NAME;
layout Overlay / xaxisopts=(offsetmin=0.05 offsetmax=0.05)
yaxisopts=(offsetmin=0.05 offsetmax=0.05);
ScatterPlot x=X y=Y / markerattrs=GRAPHDATADEFAULT;
EndLayout;
EndGraph;
end;

Here, the entry title is a mix of constant text and dynamic variables that provide variable names. The procedure writer
has provided you with additional dynamic variables that provide the variable labels. This template also has offset options
specified. These options are frequently used in scatter plots and other graphs. They add a small amount of white space
to the left or bottom (OFFSETMIN=) and to the right or top (OFFSETMAX=) of the specified axis. The SCATTERPLOT
statement has a MARKERATTRS=GRAPHDATADEFAULT specification, which references a style element. In addition,
this style element can be specified with lines to control line color and thickness.

The following statements switch the Y and X axis variables, use variable labels instead of variable names in the title,
change the marker characteristics, add a nonlinear penalized B-spline fit function, and add grids:

proc template;
define statgraph Stat.KDE.Graphics.ScatterPlot;
dynamic _VARINAME _VARILABEL _VAR2NAME _VAR2LABEL;
BeginGraph;
EntryTitle "Distribution of " _VAR2LABEL " by " _VARILABEL;
layout Overlay /
xaxisopts=(offsetmin=0.05 offsetmax=0.05 griddisplay=on)
yaxisopts=(offsetmin=0.05 offsetmax=0.05 griddisplay=on);
pbsplineplot x=y y=x / lineattrs=(color=red pattern=2 thickness=1);
ScatterPlot x=y y=x / markerattrs=(color=green size=5px
symbol=starfilled weight=bold);
EndLayout;
EndGraph;
end;
run;

proc kde data=sashelp.class;
label height = 'Class Height' weight = 'Class Weight';
bivar height weight / plots=scatter;

run;

The results are displayed in Figure 9.

13

Note that the addition of the variable labels in the PROC KDE step also changes the axis labels because no axis labels
are explicitly specified in the template. The PBSPLINEPLOT statement includes the LINEATTRS= option which specifies
the color (red), pattern (2, dashed), and thickness (1 pixel) of the fit function. The SCATTERPLQOT statement includes
the MARKERATTRS= option which specifies the color (green), size (5 pixels), symbol (a filled star), and weight (bold) of
the marker or symbol.

The starting point for the next step is the original PROC KDE scatter plot template, rather than the modified template.
The goal in this example is to produce the scatter plot displayed in Figure 10 with axes passing through the center of the
data. The following steps make a highly modified scatter plot:

proc template;
define statgraph Stat.KDE.Graphics.ScatterPlot;
dynamic _VARINAME _VARILABEL _VAR2NAME _VAR2LABEL;
BeginGraph;
EntryFootNote "Distribution of " _VARINAME " by " _VAR2NAME,;
EntryFootNote "with a Cubic Fit Function";
layout Overlay / walldisplay=none
xaxisopts=(display=(label))
yaxisopts=(display=(label));
referenceline y=eval (mean(y));
referenceline x=eval (mean(x));
ScatterPlot x=X y=Y / markerattrs=GRAPHDATADEFAULT;
regressionplot x=x y=y / degree=3;
EndLayout;
EndGraph;
end;
run;

proc kde data=sashelp.class;
bivar height weight / plots=scatter;
run;

The template is modified by adding an MVAR statement to use the mean height and mean weight. Specifically, a
reference line is displayed at the mean for each axis. The title is changed to a footnote, and a second footnote is added.
The LAYOUT OVERLAY statement now has a WALLDISPLAY=NONE option to suppress the axes, and only the labels
are displayed on each axis. A cubic-polynomial fit function is also added. The results are displayed in Figure 10.

The LAYOUT OVERLAY block has four statements in it. The statements are executed in the order in which they appear
in the LAYOUT OVERLAY. Reference lines are displayed first. Therefore any point or function that coincides with the
reference line is displayed on top of the reference line. Similarly, the fit function is displayed rather than the points in the
places where they coincide. You can vary the order of the statements if you prefer some other effect. The plot has no
axes, no ticks, no tick labels, and no wall. (The wall is the area inside the plot axes, which can be a different color from
the background color outside of the axes.) Instead, the plot simply has reference lines at the means and axis labels.
Many variations can be tried. In the interest of space, several variations are discussed but their results are not shown.

The following statement displays a left axis and a bottom axis (but no top axis or right axis), and the color outside the
axes matches the color inside:

layout Overlay / walldisplay=none;

The following statement displays all four axes, and the color outside the axes matches the color inside:

layout Overlay / walldisplay=(outline);

The following statement suppresses all axis information (the axes, the ticks, the tick labels, the axis labels, and the wall):

layout Overlay / walldisplay=none
xaxisopts=(display=none) yaxisopts=(display=none);

14

Repositioning Legends
This section creates a plot with a legend. The following step runs the GLM procedure and produces a residual histogram:

proc glm plots=diagnostics (unpack) data=sashelp.class;
model weight = height;
ods output residualhistogram=hr;

run;

proc contents p;

ods select position;
run;

This type of graph (shown in Figure 12) is used in many procedures.

The trace output for the residual histogram is as follows:

Name: ResidualHistogram

Label: Residual Histogram

Template: Stat .GLM.Graphics.ResidualHistogram

Path: GLM.ANOVA.Weight .DiagnosticPlots.ResidualHistogram

The following statements display the graph template for the residual histogram:

proc template;
source Stat.GLM.Graphics.ResidualHistogram;
run;

The template source statements are as follows:

define statgraph Stat.GLM.Graphics.ResidualHistogram;
notes "Residual Histogram with Overlayed Normal and Kernel";
dynamic Residual _DEPNAME;
BeginGraph;
entrytitle "Distribution of Residuals" " for " _DEPNAME;
layout overlay / xaxisopts=(label="Residual")
yaxisopts=(label="Percent");
histogram RESIDUAL / primary=true;
densityplot RESIDUAL / name="Normal" legendlabel="Normal"
lineattrs=GRAPHFIT;
densityplot RESIDUAL / kernel () name="Kernel" legendlabel="Kernel"
lineattrs=GRAPHFIT2;
discretelegend "Normal" "Kernel" / across=1 location=inside
autoalign=(topright topleft top);
endlayout;
EndGraph;
end;

This graph template consists of a histogram of residuals. On top of the histogram is a normal density plot, and on top of
both is a kernel density plot. Additionally, a legend is positioned inside the graph. The preferred position is in the top
right, but ODS Graphics automatically repositions the legend in the top left or top center if there are conflicts between
the legend and the histogram or functions in the top right.

The EntryTitle statement specifies the title, which consists of literal text and a dynamic variable that contains the
dependent variable name. The LAYOUT OVERLAY statement specifies the labels for both axes. Since the labels never
vary in this template, they are specified directly in the template. The HISTOGRAM statement creates a histogram from
the data object column named Residual. It is the primary statement in the overlay. The data columns from the primary
statement determine the default axis types and default axis labels. By default, the first graph statement is the primary
statement. Hence, in this case the PRIMARY= option is not needed. However, in many other cases it is needed. You
must specify PRIMARY=TRUE when you want a statement other than the first to control the axes. The color, width, and
line style for the normal density plot comes from the GRAPHFIT style element (blue and solid in this style), and for the
kernel density plot comes from the GRAPHFIT2 style element (red and dashed in this style). All graphs are based on the
same data object column, Residual, and the kernel density plot uses default options for finding the kernel density.

The contents of the data object are displayed in Figure 11. From the original input variable Residual, six other variables
are created by the HISTOGRAM and the two DENSITYPLOT statements. The X and Y axis variables for the density
plot are BIN_RESIDUAL___ X and BIN_RESIDUAL___Y; for the normal density plot they are NORMAL_RESIDUAL___ X and

15

NORMAL_RESIDUAL___Y; and for the kernel density plot they are KERNEL_RESIDUAL___ X and KERNEL_RESIDUAL___Y.
If you display the output data set created from this data object, you will see that the variables do not have the same
number of nonmissing values. Some, such as the histogram values, have many fewer than the others. In this case, the
computed density values have many more values than the raw residuals. Data objects are often constructed from pieces
of very different sizes.

Figure 11 Contents of the Data Object

The CONTENTS Procedure

Variables in Creation Order
Variable Type Len Label
1 Dependent Char 8
2 BIN RESIDUAL X Num 8 Residual
3 BIN_RESIDUAL Y Num 8 Percent
4 NORMAL_RESIDUAL X Num 8 Residual
5 NORMAL_RESIDUAL Y Num 8 Percent
6 KERNEL_RESIDUAL X Num 8 Residual
7 KERNEL RESIDUAL Y Num 8 Percent
8 Residual Num 8

All of the remaining options concern the legend. The discrete legend is produced by the DISCRETELEGEND statement.
In contrast, a continuous legend is used to produce a color “thermometer” legend when point or surface colors vary
continuously as a function of a third variable. The legend is constructed from the statements named “Normal” and “Kernel”
by the NAME= option in each of the two DENSITYPLOT statements. The labels for these two legend components come
from the LEGENDLABEL= options. The legend has only one component in each row due to the ACROSS=1 option.

The following steps modify the graph by moving the legend outside the graph and by removing the ACROSS= option,
which for this graph produces a legend with one row and two entries:

proc template;
define statgraph Stat.GLM.Graphics.ResidualHistogram;
notes "Residual Histogram with Overlayed Normal and Kernel";
dynamic Residual _DEPNAME;
BeginGraph;
entrytitle "Distribution of Residuals" " for " _DEPNAME,;
layout overlay / xaxisopts=(label="Residual")
yaxisopts=(label="Percent");
histogram RESIDUAL / primary=true;
densityplot RESIDUAL / name="Normal"
legendlabel="Normal" lineattrs=GRAPHFIT;
densityplot RESIDUAL / kernel ()
name="Kernel" legendlabel="Kernel" lineattrs=GRAPHFIT2;
discretelegend "Normal" "Kernel";
endlayout;
EndGraph;
end;
run;

proc glm plots=diagnostics (unpack) data=sashelp.class;

model weight = height;
run;

The results are displayed in Figure 13.

Understanding the Lattice Layout and Panels

The examples so far have been simple in that they produce a graph with one panel. The templates so far consist of a
single LAYOUT OVERLAY with one or more plotting statements inside. However, many graphs consist of two or more
panels within a single display. For example, the scree plot displayed in Figure 2 is, by default, part of a two-panel display.
It is produced when you run PROC FACTOR without the UNPACK option as follows:

proc factor data=sashelp.cars plots=scree;
run;

16

Figure 12 Default Residual Histogram Figure 13 Residual Histogram with Repositioned Legend

Distribution of Residuals for Weight Distribution of Residuals for Weight
30 N 30
ormal
25 / — — — Kernel 25
2 // 4 K\ — . 20
§ 15 y/ g 15
) \ o
o 10
10 ,/ — \\
5
5 / \
A N\ °

-40 -32 -24 -16 -8 0 8 16 24 32 40

-40 -32 -24 -16 -8 0 8 16 24 32 40 Residual

Residual = Normal =— — = Kernel

The graph is displayed in Figure 14.

The trace output (not shown) shows that the template is called stat .Factor.Graphics.ScreePlot2. A slight simplifica-
tion of the template source statements is as follows:

define statgraph Stat.Factor.Graphics.ScreePlot2;
notes "Scree and Proportion Variance Explained Plots";
BeginGraph / DesignHeight=360px;
layout lattice / rows=1l columns=2 columngutter=30;
layout overlay / yaxisopts=(label="Eigenvalue" gridDisplay=auto_on)
xaxisopts=(label="Factor" linearopts=(integer=true));
entry "Scree Plot" / textattrs=GRAPHLABELTEXT location=outside;
seriesplot y=EIGENVALUE x=NUMBER / display=ALL;
endlayout;
layout overlay / yaxisopts=(label="Proportion" gridDisplay=auto_on)
xaxisopts=(label="Factor" linearopts=(integer=true));
entry "Variance Explained" / textattrs=GRAPHLABELTEXT
location=outside;
seriesplot y=PROPORTION x=NUMBER / display=ALL legendlabel=
"Proportion" name="Proportion";
seriesplot y=CUMULATIVE x=NUMBER / lineattrs=GRAPHDATADEFAULT (
pattern=dot) display=ALL LegendLabel="Cumulative" name=
"Cumulative" primary=true;
DiscretelLegend "Cumulative" "Proportion" / across=1 border=1l;
endlayout;
endlayout;
EndGraph;
end;

The template begins with a BEGINGRAPH statement. Most templates do not contain a specific numerical size for the
overall graph area. This template does, so that the two resulting plots are approximately square. At the default size, the
plots are tall and thin. Note that size is a “design height” rather than a hardcoded size. The graph is designed at a height
of 360 pixels, but it can be stretched or shrunk to other sizes while preserving the aspect ratio.

The next layer is a LAYOUT LATTICE that creates a display with one row and two columns. Row and column gutters are
frequently specified in lattice layouts. The COLUMNGUTTER=30 specification ensures that there are 30 pixels between
the two columns of graphs. (By default, the plots are closer than that.) Inside of the lattice layout are two LAYOUT
OVERLAY blocks, one for each graph. Each individual LAYOUT OVERLAY block is designed in much the same way it
would be designed if it were in a one-panel display. However, in practice it is not unusual for an “unpacked graph” (a
graph produced in a single panel) to be different from the same graph packed into a display with other graphs.

17

Figure 14 Graph with Two Panels

Scree Plot Variance Explained
5 1.0 "o-"o,“o”o»».o--o-..o---o
08 °
[} [
=}
5 4 2 06
2 o
o Q
o) e 04
w o o
0.2
0 0.0
2 4 6 8 10 2 4 6 8 10
Factor Factor

..... O----- Cumulative
—©6—— Proportion

In some cases, the unpacked plot might have additional graph elements due to the increased room in the unpacked plot.
One difference in the paneled plot is the title. In this case, the goal is to have two titles, one for each plot with no overall
title. Hence, there is no EntryTitle statement. Instead, there are two ENTRY statements, which place the title outside
(and above) each plot by using the GRAPHLABELTEXT style element. By default, without this style specification, the
text would be smaller and would not look like other titles. The LOCATION=OUTSIDE option is an example of one of the
undocumented options that appear in some templates.

The last SERIESPLOT statement specifies the option: 1ineattrs=GRAPHDATADEFAULT (pattern=dot). The properties
of the line produced by this statement are controlled by the GRAPHDATADEFAULT style element. However, one aspect
of the style (namely the line pattern) is overridden and a dotted line is used instead. PATTERN= is one of the options in
the LINEATTRS= option, rather than the name of a style element (which is Markersymbol). Since GRAPHDATADEFAULT
is the default style for the first series plot in the second overlay layout, the specification in the second series plot
ensures that the two series have identical styles (except for one aspect) so that they can be distinguished in the legend.
Most SAS/STAT templates do not hardcode graph elements such as this (the dotted line); usually they strictly use
style elements. However, on occasion you will see explicit specifications. For example, the LOESS and TRANSREG
procedures use the specification Markerattrs=GraphDatal (symbol=star size=15) to mark the minimum of a function
that is being optimized. This specification produces a large star. Numerical sizes like SIZE=15 are design sizes; they
can be stretched or shrunk to other sizes while preserving the aspect ratio.

You can do many things to modify this template. You can change the titles, axis labels, colors, markers, and so on. All of
these are illustrated in other parts of this paper. You can switch the order of the layouts and put the variance-explained
plot first; you can provide an overall title; and so on. However, rather than perform familiar or obvious changes, the
rest of the paper concentrates on understanding other aspects of the GTL and the complicated templates that you
might encounter. For further discussion of complicated templates, see the section “Appendix |: Template Complexity” on
page 38.

Understanding Conditional Template Logic

This example assumes that you know how to run the procedure and find the name of the template. It concentrates
on explaining the layout of a template with conditional logic and nested IF statements. You might need to understand
conditional template logic when you determine which part of a template to modify. The survival estimate plot from the
LIFETEST procedure has a long and complicated template, stat . Lifetest .Graphics.ProductLimitSurvival, which
includes nested IF statements. A very small part of this template is as follows:

18

define statgraph Stat.Lifetest.Graphics.ProductLimitSurvival;
dynamic . . .;
BeginGraph;
if (NSTRATA=1)
if (EXISTS (STRATUMID))

entrytitle "Product-Limit Survival Estimate" " for " STRATUMID;
else

entrytitle "Product-Limit Survival Estimate";
endif;

if (PLOTATRISK)
entrytitle "with Number of Subjects at Risk" / textattrs=
GRAPHVALUETEXT;

endif;

layout overlay . . .;

endlayout;
else
entrytitle "Product-Limit Survival Estimates";
if (EXISTS (SECONDTITLE))
entrytitle SECONDTITLE / textattrs=GRAPHVALUETEXT,;
endif;
layout overlay . . .;

endlayout;
endif;
EndGraph;
end;

This layout is confusing even when displayed like this with most details removed. In its original form at 145 lines, it
is even more confusing. To understand the layout of this template, you must carefully evaluate the IF, ELSE, ENDIF,
structure. The following step shows the structure manually re-indented, with additional details removed and additional
white space added:

define statgraph Stat.Lifetest.Graphics.ProductLimitSurvival;
dynamic . . .;
BeginGraph;
if (NSTRATA=1)
if (EXISTS(STRATUMID)) entrytitle . . .;
else entrytitle . . .;
endif;

if (PLOTATRISK) entrytitle . . .;
endif;

layout overlay ...;
endl;yéué;

else
entrytitle . . .;

if (EXISTS (SECONDTITLE)) entrytitle . . .;
endif;

layout overlay . . .;
endlayout;
endif;
EndGraph;

end;

The IF and ELSE statements do not perform as do the similarly named statements in the DATA step. There are no DO
and END statements. When the first IF condition is true, the statements under the first IF statement are executed until
control reaches the ELSE statement at the same indentation level. The statements in the ELSE block include everything

19

below the ELSE and through the ENDIF at the same level. Inside the first IF block, a title is provided if a condition is true.
Otherwise a different title is provided, and that block ends with the first ENDIF statement.

If there is one stratum (NSTRATA=1), then the graph consists of one of two conditional titles followed by a conditional
second title followed by a graph defined in a layout. With more than one stratum, the graph consists of an unconditional
title, a conditional second title, and a graph defined in a different layout. Sometimes the easiest way to understand a
template structure is to do precisely what is done here: copy the template and remove details until you are left with an
outline of the overall structure. Then use that knowledge to go back and evaluate and modify the full template.

The following provides a similar manual re-edit and pruning, this time concentrating on the titles:

define statgraph Stat.Lifetest.Graphics.ProductLimitSurvival;
dynamic . . .;
BeginGraph;
if (NSTRATA=1)
if (EXISTS (STRATUMID))
entrytitle "Product-Limit Survival Estimate" " for " STRATUMID;
else
entrytitle "Product-Limit Survival Estimate";
endif;
if (PLOTATRISK)
entrytitle "with Number of Subjects at Risk" / textattrs=GRAPHVALUETEXT;
endif;
else
entrytitle "Product-Limit Survival Estimates";
if (EXISTS (SECONDTITLE))
entrytitle SECONDTITLE / textattrs=GRAPHVALUETEXT;
endif;
endif;
EndGraph;
end;

You can see that titles can come from literal strings, dynamic variables, or both. If you are unclear about which title
appears in the output, you can temporarily change the titles by adding some text to clearly show which is which. The
following statements show how:

entrytitle " (1) Product-Limit Survival Estimate" " for " STRATUMID;
entrytitle " (2) Product-Limit Survival Estimate";

entrytitle " (3) with Number of Subjects at Risk" / textattrs=GRAPHVALUETEXT;
entrytitle " (4) Product-Limit Survival Estimates";

entrytitle " (5)" SECONDTITLE / textattrs=GRAPHVALUETEXT;

If you submit the full template with titles like these, you can clearly see whether a title is used and where it is used. You
can apply the same technique to axis labels, legend labels, and any other text in the template. Then you can remove the
identification numbers, modify the text of interest, and submit the modified template. For example, you might wish to
change the first, second, and fourth title to “Kaplan-Meier Plot”. Note that it is not always sufficient to find and change
the first entry title in a template.

In a previous example, an ENTRY statement specified the style element GRAPHLABELTEXT so that the entry text would
look like a title. In this template, an EntryTitle statement specifies the style element GRAPHVALUETEXT so that second
titles are subordinate (less bold or smaller according to the style) to the first title lines.

IF, ELSE, and ENDIF statements cannot be used in arbitrary ways. The GTL code that is conditional must be complete.
For example, the following statements produce an error:

if (exists (SQUAREPLOT)) /* Wrong! x/
layout overlayequated / equatetype=square; /* Wrong! */
else /* Wrong! x/
layout overlay; /* Wrong! */
endif; /* Wrong! x/
scatterplot x=XVAR y=YVAR; /* Wrong! x/
endlayout; /* Wrong! */

20

Figure 15 Diagnostics Panel for the REG Procedure

Fit Diagnostics for Weight

20 o 2 - 25
T 10 °0 % o & 4 °©o0 ° o g 4o °
=) [e] % [e] % 60
S o g S o & q S o0-g°%
] o o © n ° o~ ©] 00 °
x -10 x -1 ° x -1 °
o (o] oo [e] ® (o]
20 ° 2 2
60 100 140 60 100 140 0.05 0.15 0.25
Predicted Value Predicted Value Leverage
2 oy 140 o ° - 0.25
g 10 £ 120 0,480 » 0-20
e =) & £ 0.15
5 0 @ 100 o o X
@ ; ooo le) 0.10
-10 80 g O
o & 50 0.05
20 ° 6 0.00
2 -1 0 1 2 60 100 140 0 5 10 1520
Quantile Predicted Value Observation
30 Fit-Mea Residua
= 25 40
c 20 3 Observations 19
[0} 20
o 15 f Parameters 2
$ 10 0 y Error DF 17
5 -20 MSE 126.03
0 -40 - o R-Square 0.7705
Adj R-S 0.757
32 -8 16 0 10 1] R-sSquare
Residual Proportion Less

The following statements are correct:

if (exists (SQUAREPLOT))
layout overlayequated / equatetype=square;
scatterplot x=XVAR y=YVAR;
endlayout;
else
layout overlay;
scatterplot x=XVAR y=YVAR;
endlayout;
endif;

The incorrect example attempts to conditionally execute a complete statement, but only complete layouts (not merely
complete layout statements) can be conditionally executed. Also note that IF conditions determine what is rendered in
the plot rather than what is computed for the data object. For example, the following step attempts to compute a LOESS
fit whether or not the LOESSPLOT dynamic variable is defined:

if (exists (LOESSPLOT))
loessplot y=LOESS x=X;
endif;

Since the LOESS fit is computationally expensive, procedure writers use a different approach to conditionally compute
results only when needed. If either LOESS or X is a dynamic variable that is not defined to a data object column name,
then the computation is not performed.

Working with Templates for Paneled Displays

This example discusses how to understand the overall structure of a paneled display with many graphs and how to
isolate individual graphs that you might want to modify. The following step fits a regression model and displays a set of
model fit diagnostics:

proc reg data=sashelp.class;
model weight = height;
run; quit;

The diagnostics panel is displayed in Figure 15.

21

The rendered version of the diagnostics panel template, stat .Reg.Graphics.DiagnosticsPanel, has 271 lines. A very
small portion of it is as follows:

define statgraph Stat.Reg.Graphics.DiagnosticsPanel;
notes "Diagnostics Panel";
dynamic . . .;
BeginGraph / designheight=defaultDesignWidth;
entrytitle . . .;
layout lattice / columns=3 rowgutter=10 columngutter=10
shrinkfonts=true rows=3;

layout overlay . . . scatterplot . . . endlayout;

layout overlay . . . scatterplot . . . endlayout;

layout overlay . . . scatterplot . . . endlayout;

layout overlay . . . scatterplot . . . endlayout;

layout overlayequated . . . scatterplot . . . endlayout;

layout overlay . . . needleplot . . . endlayout;

layout overlay . . . histogram . . . densityplot . . . endlayout;

layout lattice / columns=2 rows=1 rowdatarange=unionall columngutter=0;

layout overlay . . . scatterplot . . . endlayout;

layout overlay . . . scatterplot . . . endlayout;
endlayout;

layout overlay;
layout gridded / columns=_NSTATSCOLS valign=center border=TRUE
BackgroundColor=GraphWalls:Color Opaque=true;
entry halign=left "Observations" / valign=top;
entry halign=right eval (PUT(_NOBS,BEST6.)) / valign=top;

endLayout;
endif;

endlayout;
EndGraph;
end;

The paneled display is large and square (although greatly reduced from the default size for this paper) and is designed
with a height equal to the default width. It has a single overall title for the display. It consists of a 3 x 3 lattice of nine
entries. The first eight panels are graphs, and the last is a table of statistics. The graphs that are defined in the overlay
layouts fill in the display in order from left to right and from top to bottom. The first four graphs are ordinary scatter plots;
the fifth is an equated scatter plot where both axes are equated to represent the same data range; the sixth is a needle
plot; the seventh is an overlay of a histogram and a density plot; the eighth is another lattice, this one consisting of two
scatter plots; and the ninth and final panel in the outer lattice is a grid that contains statistic names and their values. The
outermost lattice specifies the SHRINKFONTS=TRUE option. This option is commonly specified in outer lattices and
specifies that fonts can be scaled down when the graph is reduced in size. Without this option, the text is typically too
large in reduced versions of displays such as Figure 15.

Even when the overall template is huge, you can often find and isolate small template components that are easily
understood. For example, the first plot, which displays residuals and predicted values, is created from the following
layout:

layout overlay / xaxisopts=(shortlabel='Predicted');
referenceline y=0;
scatterplot y=RESIDUAL x=PREDICTEDVALUE / primary=true datalabel=
_OUTLEVLABEL rolename=(_tipl=OBSERVATION _idl=ID1l _id2=ID2 _id3=
ID3 _id4=ID4 _id5=ID5) tip=(y x _tipl _idl _id2 _id3 _id4 _id5);
endlayout;

The DATALABEL-= option provides labels for the markers when the dynamic variable _OutLevLabel exists. The ROLE-
NAME-= and TIP= options create tooltips in HTML. Tooltips are text boxes that appear in HTML output when your mouse
pointer hovers over a part of the plot. Tips are produced for the Y axis column, the X axis column, and additional columns
_tip1 and _id1 through _id5. The columns x and y have predefined roles as axis variables. In contrast, the other tips are

22

provided for columns that are identified through the ROLENAME-= option. You must provide role names for columns that
do not have automatic roles (such as the axis columns) and use the role names rather than the column names in the
TIP= option. You can modify the tooltips by adding, deleting, or changing columns named in these lists. These options
usually appear in templates for graphs that display data or computed values with a one-to-one correspondence with
the data (for example, independent variable, dependent variable, predicted values, residuals, leverage, and variables
specified in the procedure’s ID statement).

Part of the gridded layout that composes the ninth panel is as follows (after some manual indentation adjustments):

if (_SHOWNOBS”=0)

entry halign=left "Observations" / valign=top;

entry halign=right eval (PUT(_NOBS,BEST6.)) / valign=top;
endif;
if (_SHOWTOTFREQ”*=0)

entry halign=left "Total Frequency" / valign=top;

entry halign=right eval (PUT(_TOTFREQ,BEST6.)) / valign=top;
endif;
if (_SHOWNPARM*=0)

entry halign=left "Parameters" / valign=top;

entry halign=right eval (PUT(_NPARM,BEST6.)) / valign=top;
endif;

Do not rely on the indentation provided by PROC TEMPLATE and the SOURCE statement to see the structure of a
template. Re-indent the template yourself to make it clearer. Each statistic is added to the display conditional on a
dynamic variable. First, a label is displayed on the left followed by a value on the right. In a table such as this, you could
change the labels, change the formats, remove statistics, or reorder them.

The layout for the fourth graph, the normal quantile plot of the residuals, which is displayed in the second row and first
column of the panel, is as follows:

layout overlay / yaxisopts=(label="Residual" shortlabel="Resid")
xaxisopts=(label="Quantile");
lineparm slope=eval (STDDEV (RESIDUAL)) y=eval (MEAN(RESIDUAL)) x=0
/ extend=true lineattrs=GRAPHREFERENCE;
scatterplot y=eval (SORT (DROPMISSING (RESIDUAL))) x=eval (
PROBIT ((NUMERATE (SORT (DROPMISSING (RESIDUAL))) -0.375)/
(0.25 + N(RESIDUAL)))) / markerattrs=GRAPHDATADEFAULT
primary=true rolename=(s=eval (SORT (DROPMISSING (RESIDUAL)))
ng=eval (PROBIT ((NUMERATE (SORT (DROPMISSING (RESIDUAL)))
-0.375)/(0.25 + N(RESIDUAL))))) tiplabel=(ng="Quantile" s="Residual")
tip=(nq s);
endlayout;

Again, this code has been manually reformatted. The PROC TEMPLATE SOURCE statement struggles with complicated
code like this. Besides having indentation problems, it sometimes breaks lines in the middle of names. These problems
must be fixed manually before the generated code can be compiled again by PROC TEMPLATE.

This template differs from others shown previously due to the heavy reliance on expression evaluation. The GTL provides
a series of functions that can be used to make plots. The LINEPARM statement produces a diagonal reference line
whose slope is the standard deviation of the residuals. A line is determined given a slope and a point. The Y= option
provides the Y coordinate of a point, which is the mean of the residuals. The X= option provides the X coordinate of that
same point, which is 0. When X=0, then Y= provides the intercept. The scatter plot consists of the sorted residuals
(ignoring missing values) on the Y axis and normal quantiles on the X axis. These quantities are also provided as tooltips.
Functions and expressions must always be wrapped in the EVAL function.

Style Modifications

ODS styles control the colors and general appearance of all graphs and tables. This section provides a series of
examples of modifying ODS styles. Styles are composed of style elements that control specific aspects of graphs (for
example, the font of a title, the color of a reference line, the style of a regression fit line, and so on). One particular set of
style elements allows you to modify how groups of observations are distinguished in a graph. These are the Graphpatan
style elements (Graphpatal through Graphpatal2). In most cases, it is easiest to modify these elements through the
Modstyle SAS autocall macro instead of directly modifying a style. The first examples illustrate using this macro. The
macro is documented later in this paper and in the macro header. Also see the documentation section “Some Common

23

Style Elements” (Chapter 21, SAS/STAT User’s Guide).

Figure 16 STATISTICAL Style Figure 17 A Color-Based Style
Linear Regression Fit for Weight Linear Regression Fit for Weight
With Fit and 95% Confidence and Prediction Limits by Sex With Fit and 95% Confidence and Prediction Limits by Sex
175 175
150 150
- 125 - 125
S S

g 100 g 100
75 75
50 50
25 25

50 55 60 65 70 50 55 60 65 70

Height Height
—e—F —+—M —e—F —e—M

An All-Color Style

Many styles are designed to make color plots in which you can distinguish lines, functions, and groups of observations
even when you send the plot to a black-and-white printer. Hence, lines and markers differ not only in color but also in
pattern and the symbol. You can use the Modsty1le autocall macro to create a new style (for example, STATCOLOR) by
modifying a parent style and reordering the colors, line patterns, and marker symbols in the Graphpatan style elements.

When you only specify a parent style and a new style name, and you use the defaults for all other options, the Modstyle
macro creates a new style that uses only color to distinguish the groups. Lines and markers in subsequent groups match
the lines and markers in the first group. The following example creates a plot with two groups, first with the STATISTICAL
style, and then with a color-only style created by the default use of the Modstyle macro:

proc transreg data=sashelp.class;

model identity(weight) = class(sex / zero=none) | identity (height);
run;

$modstyle (parent=statistical, name=StatColor)
ods listing style=StatColor;

proc transreg data=sashelp.class;

model identity(weight) = class(sex / zero=none) | identity (height);
run;

The graph using the STATISTICAL style is displayed in Figure 16, and the graph using the new style is displayed in
Figure 17. In both plots, the females are represented by blue circles and a blue solid line. In the first plot, the males are

represented by red pluses and a red dashed line, whereas in the second plot, the males and female groups differ only by
color.

An Ad Hoc Style Modification for Groups

Styles are general; they are not made for specific types of data that have common color associations such as blue with

male. The following step modifies the line styles, markers, and colors of the STATISTICAL style and creates a new style
where the points for males are displayed in blue:

$modstyle (parent=statistical, name=GenderStyle, type=CLM,

colors=red blue, fillcolors=red blue,
markers=plus circle, linestyles=solid solid)

24

Figure 18 Gender Style Figure 19 An Ad Hoc Style

Linear Regression Fit for Weight Linear Regression Fit for Weight
With Fit and 95% Confidence and Prediction Limits by Sex With Fit and 95% Confidence and Prediction Limits by Sex
175 175
150 150 *
~ 125 ~ 125
5 5
= 75 = 75
50 50
25 25
50 55 60 65 70 50 55 60 65 70
Height Height
—+—F —e—M ——F == %-= M

The colors for the first group (females, since ‘F’ comes before ‘M’) are set to red, and the colors for the second group are
set to blue. The COLORS= option controls the line and marker colors, and the FILLCOLORS= option controls the colors
for the confidence limits. The actual colors for the prediction and confidence limits are lighter due to the application of
transparency. The marker for females is a plus, and the marker for males is a circle. The line style for both groups is
a solid line. The TYPE=CLM option specifies that colors (C), lines (L), and markers (M) all vary simultaneously. The
following step uses the new style and creates Figure 18:

ods listing style=GenderStyle;

proc transreg data=sashelp.class;

model identity(weight) = class(sex / zero=none) | identity (height);
run;

The following step modifies the line styles, markers, and colors of the STATISTICAL style, creates a new style, and uses
it to create Figure 19:

$modstyle (parent=statistical, name=GenderStyle, type=CLM,

colors=GraphColors ("gcdatal") GraphColors ("gcdata2")
green cx543005 cx9D3CDB cx7F8ELF cx2597FA cxB26084
cxD17800 cx47A82A cxB38EF3 cxF9DA04 magenta,

fillcolors=colors,

linestyles=Solid ShortDash MediumDash LongDash MediumDashShortDash
DashDashDot DashDotDot Dash LongDashShortDash Dot
ThinDot ShortDashDot MediumDashDotDot,

markers=ArrowDown Asterisk Circle CircleFilled Diamond
DiamondFilled GreaterThan Hash HomeDown Ibeam Plus
Square SquareFilled Star StarFilled Tack Tilde
Triangle TriangleFilled Union X Y Z)

ods listing style=GenderStyle;

proc transreg data=sashelp.class;

model identity(weight) = class(sex / zero=none) | identity (height);
run;

More style elements are changed than are displayed by the graph. However, the Modstyle macro options in this example
illustrate some of the flexibility that you have for changing the craphpatan elements. You can specify colors by name or
by exrrggbb value, or you can use the colors that are predefined with the style. You can specify FILLCOLORS=COLORS

when you want the fill colors to match what you specified for the COLORS= option. A number of different line styles and
markers are available for you to use.

25

Figure 20 Survival Plot Figure 21 Modified Survival Plot

Kaplan-Meier Plot
With Number of Subjects at Risk

Kaplan-Meier Plot
With Number of Subjects at Risk

- + Censored + Censored
g 08 — 3 08
£ T M e — - £
S 04 H—++ S 04
17} — 4 —t++— —— —+—+—+ 17}
0.0 0.0

1| 38 16 11 2 1 0 1| 38 16 11 2 1 0

2| 45 13 10 7 6 1 2| 45 13 10 7 6 1

3| 54 36 27 18 6 2 3| 54 36 27 18 6 2

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Disease Free Time Disease Free Time
Group Group
1: ALL — — — 2: AML-High Risk — 1:ALL

2: AML-High Risk
— - — 3: AML-Low Risk

— 3: AML-Low Risk

Color Changes in a Survival Plot
The section “Understanding Conditional Template Logic” on page 18 discussed changing the title of the survival estimate
plot to “Kaplan-Meier Plot” by changing three EntryTitle statements. This section assumes that change has been made.

The following example uses PROC LIFETEST to produce a survival plot with the number of subjects at risk and multiple
comparisons of survival curves:

proc format;

value risk 1='ALL' 2='AML-Low Risk' 3='AML-High Risk';
run;

data BMT;

input Group T Status @Q;

format Group risk.;

label T='Disease Free Time';

datalines;
2081 0 1 1602 0 1 1496 0 1 1462 0 1 1433 0
1377 01 1330 01 996 01 226 0 1 1199 O

[N

. more lines
3 1131 3 3631

proc lifetest data=BMT plots=survival (atrisk=0 to 2500 by 500);
time T * Status(0);

strata Group / test=logrank adjust=sidak;
run;

The results are displayed in Figure 20.

The following steps use the Modstyle macro to change the colors of the survival curves to pure shades of blue, red, and
green and to re-create the plot:

$modstyle (parent=statistical, name=SurvivalStyle,
colors=blue red green)

ods listing style=SurvivalStyle;
proc lifetest data=BMT plots=survival (atrisk=0 to 2500 by 500);

time T * Status(0);

strata Group / test=logrank adjust=sidak;
run;

The results are displayed in Figure 21.

For further discussion of the Modstyle macro, see the section “ModStyle Macro” on page 29.

26

Direct Style Modifications
This example directly modifies a style template. First, use PROC TEMPLATE to display the style that you want to change:

proc template;
source styles.statistical;
run;

The first two lines of the results are as follows:

define style Styles.Statistical;
parent = styles.default;

The STATISTICAL style inherits many of its elements from the DEFAULT style. The preceding lines are followed by many
lines that specify differences between the parent DEFAULT style and the STATISTICAL style. To see more fully how the
STATISTICAL style is defined, you also need to look at its parent, as follows:

proc template;
source styles.default;
run;

A small part of the results are as follows:

class GraphColors
'gedata' = cx000000
'gdata' = cxB9CFE7

'gcdatal' = cx2A25D9
'gdatal' = cx7C95CA;

class GraphDataDefault /
endcolor = GraphColors ('gramp3cend')
neutralcolor = GraphColors('gramp3cneutral')
startcolor = GraphColors('gramp3cstart')
markersize = 7px
markersymbol = "circle"
linethickness = lpx
linestyle =1
contrastcolor = GraphColors('gcdata')
color = GraphColors('gdata');

class GraphDatal /
markersymbol = "circle"
linestyle =1
contrastcolor = GraphColors('gcdatal')
color = GraphColors('gdatal');

class GraphData2 /
markersymbol = "plus"
linestyle = 4
contrastcolor = GraphColors('gcdata2')
color = GraphColors('gdata2');

The style elements displayed in the preceding results are not specified directly in the STATISTICAL style, so they
come from the parent DEFAULT style. The GraphpatabDefault class defines the default marker, marker size, line style,
line thickness, marker and line colors, and other colors. The Graphpatal and Graphbata2 classes define the default
appearance of the first two groups. You can convert the hexadecimal colors to decimal as follows:

data x;
input cx $2. (Red Green Blue) (hex2.);
datalines;

cx2A25D9

cx7C95CA

’

proc print;
run;

27

The results are displayed in Figure 22. (Alternatively, you can convert decimal to hex by using PROC PRINT and the
statement: format red green blue hex2.;)

Figure 22 Colors from the Style

Obs cx Red Green Blue
1 cx 42 37 217
2 cx 124 149 202

You can see that both colors are dominated by the blue component. The first value (the color that is applied to filled
areas) is a purer shade of blue; the contrast color (which is applied to markers and lines) has greater contributions from
the other colors.

You can make a new style that changes aspects of style elements. For example, the following statements change the
GraphDataDefault Style element:

proc template;
define style Styles.MyStyle;
parent = Styles.statistical;
class GraphDataDefault /
endcolor = GraphColors ('gramp3cend')
neutralcolor = GraphColors ('gramp3cneutral')
startcolor = GraphColors('gramp3cstart')
markersize = 7px
markersymbol = "square"
linethickness = lpx
linestyle =1
contrastcolor = blue
color = cyan;
end;
run;

The following steps use the old and new style with the LISTING destination:

ods listing style=statistical;

proc transreg data=sashelp.class;
model identity(weight) = pbspline (height);
run;

ods listing style=MyStyle;
proc transreg data=sashelp.class;

model identity(weight) = pbspline (height);
run;

The results are displayed in Figure 23 and Figure 24. You can see in the plot that the style affects the first group of
observations, the females. Although you can make any style changes that you want, be aware that ad hoc changes such
as these might not go well with the other colors and elements in the style.

28

Figure 23 Default GraphDataDefault Figure 24 Modified GraphDataDefault

Penalized B-Spline Fit for Weight Penalized B-Spline Fit for Weight
150 150
5 5
© 100 © 100
2 2
50 50
50 55 60 65 70 50 55 60 65 70
Height Height
Fit Fit
O 95% Confidence Limits O 95% Confidence Limits
————— 95% Prediction Limits - - - - - 95% Prediction Limits

ModStyle Macro

The Modstyle macro was written by Robert E. Derr at SAS to provide easy ways to customize the style elements
(craphpatal—GraphDatan) that control how groups of observations are distinguished. The Modstyle macro has the
following options:

COLORS=color-list
specifies a space-delimited list of colors for markers and lines. If you do not specify this option, then the colors
from the parent style are used. You can specify the colors using any SAS color notation such as exrrggbb.

COLORS=GRAYS generates seven distinguishable grayscale colors from blackest to whitest. The colors should
be mixed up to be more easily distinguished when you need fewer colors, but you can do that with your own
COLORS= list. The HLS (hue/light/saturation) coding generates colors by setting hue and saturation to 0 and
incrementing the lightness for each gray. You can also use the keywords BLUES, PURPLES, MAGENTAS, REDS,
ORANGES, YELLOWS, GREENS, and CYANS to generate seven colors with a fixed hue and a saturation of AA
(hex).

COLORS=SHADES INT generates seven colors as described previously, except that you specify an integer
0 < INT < 360. See SAS/GRAPH: Reference. The available hues include: GRAY, GREY, BLUE=0, PURPLE=30,
MAGENTA=60, RED=120, ORANGE=150, YELLOW=180, GREEN=240, and CYAN=300.

DISPLAY=n

specifies whether to display the generated template. By default, the template is not displayed. Specify DISPLAY=1
to display the generated template.

FILLCOLORS=color-list

specifies a space-delimited list of colors for bands and fills. If you do not specify this option, then the colors from
the parent style are used.

Fill colors from the parent style are designed to work well with the colors from the parent style. If you specify a
COLORS= list, then you might want to redefine the FILLCOLORS-= list as well. You need to have at least as
many fill colors as you have colors (any extra fill colors are ignored). Two shortcuts are available: FILLCOL-
ORS=COLORS uses the COLORS= colors for the fills (your confidence bands should have transparency for this
to be useful) and FILLCOLORS=LIGHTCOLORS modifies the lightness associated with each color generated by
COLORS=SHADES (this is allowed only with COLORS=SHADES).

LINESTYLES=/ine-style-list
specifies a space-delimited list of line style numbers. The default is:

LineStyles=Solid MediumDash MediumDashShortDash LongDash DashDashDot LongDashShortDash
DashDotDot Dash ShortDashDot MediumDashDotDot ShortDash

29

Line style numbers can range from 1 to 46. Some line styles have names associated with them. You can specify
either the name or the number for the following number/name pairs: 1 Solid, 2 ShortDash, 4 MediumDash, 5
LongDash, 8 MediumDashShortDash, 14 DashDashDot, 15 DashDotDot, 20 Dash, 26 LongDashShortDash, 34
Dot, 35 ThinDot, 41 ShortDashDot, 42 MediumDashDotDot.

MARKERS=marker-list
specifies a space-delimited list of marker symbols. By default, Markers=Circle Plus X Triangle Square
Asterisk Diamond. The available marker symbols are listed in SAS/GRAPH: Graph Template Language Refer-
ence. Two shortcuts are available: MARKERS=FILLED is an alias for the specification Markers=CircleFilled
TriangleFilled SquareFilled DiamondFilled StarFilled HomeDownFilled, and MARKERS=EMPTY is an
alias for the SpecmcaﬁorlMarkers=Circle Triangle Square Diamond Star HomeDown.

NAME-=style-name
specifies the name of the new style that you are creating. This name is used when you specify the style in an
ODS destination statement (for example, ODS HTML STYLE=style-name). The default is NAME=NEWSTYLE.

NUMBEROFGROUPS=n
specifies n, the number of Graphpatan style elements to create. The Graphpatal—GraphDatan style elements
contain n combinations of colors, markers, and line styles. By default, 32 combinations are created.

PARENT=style-name
specifies the parent style. The new style inherits most of its attributes from the parent style. The default is
PARENT=DEFAULT (which is the default style for HTML).

TYPE=type-specification
specifies how your new style cycles through colors, markers, and line styles. The default is TYPE=LMbyC.

These first three methods work well with all plots, because cycling line styles and markers together ensures that
both scatterplot markers and series plot lines are distinguishable:

CLM
cycles through colors, line styles, and markers simultaneously. The first group uses the first color, line style,
and marker; the second group uses the second color, line style, and marker; and so on. This is the method
used by the ODS Graphics styles.
LMbyC

fixes line style and marker, cycles through colors, and then moves to the next line style and marker. This is
the default and creates a style where the first groups are distinguished entirely by color.

CbyLM
fixes color, cycles through line style and marker, and then moves to the next color. This option uses the
smaller of the number of line styles or the number of markers when cycling within a color.

The following two methods might not work well with all plots:

CbyLbyM
fixes color and line style, then cycles through markers, increments line style, and then cycles through
markers. After all line styles have been used, then this option moves to the next color and continues.

LbyMbyC
fixes line style and marker, then cycles through colors, increments marker, and then cycles through colors.
After all markers have been used, then this option moves to the next line style and continues. This is
closest to the legacy SAS/GRAPH method.

The following steps show more examples of how this macro is used:

* First few groups are distinguished by line style,
but later by changing color;

$modstyle (name=NewStatStyle, parent=Statistical,
type=CbyLbyM, markers=circle)

30

* Grayscale with non-transparent confidence bands;

$modstyle (name=NewStatStyle, parent=Statistical, type=LMbyC,
colors=grays, fillcolors=lightcolors)

* Blue filled circles;

$modstyle (name=NewStatStyle, parent=Statistical, type=LMbyC,
colors=shades 0, markers=circlefilled)

$modstyle (name=NewStatStyle, parent=Statistical, type=LMbyC,
colors=shades blue, markers=circlefilled)

$modstyle (name=NewStatStyle, parent=Statistical, type=LMbyC,
colors=blues, markers=circlefilled)

You can use the following artificial data and test program to illustrate the effects of using the Modstyle macro:

data x;
do y = 40 to 1 by -1;
group = 'Group' || put(41l -y, 2. -L);
do x = 0 to 10 by 5;
if x = 10 then do; z = 11; 1 group; end;
else do; z=.; 1="119"; end;
output;
end;
end;
run;

ods listing style=NewStatStyle;

proc sgplot data=x;
title 'Colors, Markers, Lines Patterns for Groups';
series y=y x=x / group=group markers;
scatter y=y x=z / group=group markerchar=1l;

run;

ModTmplt Macro

You can use the ModTmp1t macro to insert BY line information, titles, and footnotes in ODS Graphics. You can also use it
to remove titles and perform other template modifications. When you want to display BY line information in your graphs,
you use the ModTmplt macro to both modify the template and run the procedure. In that case, the ModTmp1t macro
requires you to construct a SAS macro called MyGraph that contains the SAS procedure that needs to be run. This code
must be in a macro so that the ModTmp1t macro can call it. The following example illustrates this usage of the macro:

proc sort data=sashelp.class out=class;
by sex;
run;

$macro mygraph;
proc transreg data=_bydata;

model identity(weight) = identity (height);
$mend;

$modtmplt (by=sex, data=class, template=Stat.Transreg.Graphics)

Notice that the BY and RUN statements are not specified in the MmyGraph macro. Also notice that you must use
DATA=__BYDATA with the procedure call in the MyGraph macro and specify the real input data set in the DATA= option of
the ModTmp1t macro.

The ModTmp1t macro outputs the specified template or templates to a file, adds either an EntryTitle or EntryFootNote
statement that adds the BY line information, and then runs the Mmycraph macro once for each BY group. In the end, it
deletes the modified template. Use the STEPS= option if you do not want to have all of these steps performed.

31

Figure 25 First BY Group Figure 26 Second BY Group

Spline Fit By Sex Spline Fit By Sex

140

120 150
= 100 =
o o
() ()
z % < 100

60

40

50
50 55 60 65 60 65 70
Height Height

Sex=F Sex=M

In contrast, if you only want to add system titles to the graph, run the macro only to modify the template by specifying the
STEPS=T option. Then run your procedure in the normal way. You can optionally run the macro again to delete the
modified template by specifying the STEPS=D option. The following example uses OPTIONS=REPLACE to replace the
default graph titles with the system title:

title 'Spline Fit By Sex';
$modtmplt (template=Stat.transreg, options=replace, steps=t)

proc transreg data=sashelp.class;

model ide(weight) = class(sex / zero=none) | spline (height);
run;

$modtmplt (template=Stat.transreg, steps=d)

The results of this step are not shown; however, see page 12 for a similar example. The following example both replaces
the title and adds BY line information as a footnote:

ods graphics on / maxlegendarea=0;
title 'Spline Fit By Sex';

proc sort data=sashelp.class out=class;
by sex;
run;

$macro mygraph;

proc transreg data=__bydata;
model identity(weight) = identity(height);
ods select fitplot;

$mend;

$modtmplt (by=sex, data=class, options=replace, template=Stat.Transreg.Graphics)

ods graphics on;

This example also uses the option MAXLEGENDAREA=0 to suppress the legend. The results are displayed in Figure 25
and Figure 26.
The ModTmplt macro has the following options:

BY=by-variable-list
specifies the list of BY variables. Also see BYLIST=. When graphs are produced (by default or when the STEPS=

value contains ‘G’), you must specify the BY= option. Otherwise, when you are only modifying the template, you
do not need to specify the BY= option.

32

BYLIST=by-statement-list
specifies the full syntax of the BY statement. You can specify a full BY statement syntax including the DESCEND-
ING or NOTSORTED options. If only BY variables are needed, specify only BY=. If you also need options, then
specify the BY variables in the BY= option and the full syntax in the BYLIST= option (for example, specify BY=A B
and BYLIST=A DESCENDING B).

DATA=SAS-data-set
specifies the input SAS data set. If you do not specify the DATA= option, the macro uses the most recently created
SAS data set.

FILE=filename
specifies the file in which to store the original templates. This is a temporary file. You can specify either a quoted
file name or the name from a FILENAME statement that you provide before you call the macro. The default is
"template.txt".

OPTIONS=options
specifies one or more of the following options (case is ignored):

LOG
displays a note in the SAS log when each BY group has finished.

FIRST
adds the EntryTitle or EntryFootNote statements as the first titles or footnotes. By default, the statements
are added after the last titles or footnotes. Most graph templates provided by SAS do not use footnotes; so
this option usually affects only entry titles.

NOQUOTES
specifies that the values of the system titles and footnotes are to be moved to the EntryTitle or EntryFoot-
Note statements without the outer quotation marks. With OPTIONS=NOQUOTES, you can specify options
in the titles or footnotes in addition to the text. However, you must ensure that you quote the text that
provides the actual title or footnote.

The following is an example of an ordinary footnote:

footnote "My Footer";

With this FOOTNOTE statement and without OPTIONS=NOQUOTES, the macro creates the following
EntryFootNote statement:

entryfootnote "My Footer";

The following footnotes are used with OPTIONS=NOQUOTES:

footnote 'halign=left "My Footer"';
footnote2 '"My Second Footer"';

With these FOOTNOTE statements and OPTIONS=NOQUOTES, the macro creates the following Entry-
FootNote statements:

entryfootnote halign=left "My Footer";
entryfootnote "My Second Footer";

REPLACE
replaces the unconditionally added entry titles and entry footnotes in the templates (those that are not
part of IF or ELSE statements) with the system titles and footnotes. The system titles and footnotes are
those that are specified in the TITLE or FOOTNOTE statements. You can instead use the TITLES=SAS-
data-set option to specify titles and footnotes with a data set. If OPTIONS=REPLACE is specified, then
OPTIONS=TITLES is ignored.

SOURCE
displays the generated source code. By default, the template source code is not displayed.

TITLES
displays the system titles and footnotes with the graphs. The system titles and footnotes are those that
are specified in the TITLE or FOOTNOTE statements. You can instead use the TITLES=SAS-data-set
option to specify titles and footnotes with a data set. If you also specify OPTIONS=FIRST, the system titles

33

and footnotes are inserted before the previously existing entry titles and entry footnotes in the templates.
Otherwise, they are inserted at the end.

You can specify OPTIONS=TITLES or OPTIONS=REPLACE, or insert BY lines, or do both. If you do both, and you
do not like where the BY line is inserted relative to your titles and footnotes, just specify OPTIONS=NOQUOTES
and _ByLine0 to place the BY line wherever you choose. The following TITLE statements illustrate:

titlel '"My First Title"';
title2 '_bylineO';
title3 '"My Last Title"';

Also, you can embed BY information in a title or a footnote, again with OPTIONS=NOQUOTES. For example:

title '"Spline Fit By Sex, " _byline0O';

When _ByLine0 is specified in any of the titles or footnotes, then the usual BY line is not added.
The following example removes all titles and footnotes:

footnote;
title;
$modtmplt (options=replace, template=Stat.Transreg.Graphics, steps=t)

STATEMENT=entry-statement-fragment
specifies the statement that contains the BY line that gets added to the template along with any statement options.
The default is statement=EntryFootNote halign=left TextAttrs=GraphValueText. Other examples include:

Statement=EntryTitle
Statement=EntryFootNote halign=left TextAttrs=GraphLabelText

STEPS=steps
specifies the macro steps to run. Case and white space are ignored. the macro modifies the templates (when ‘T’
is specified), produces the graphs for each BY group (when ‘G’ is specified), and deletes the modified templates
(when ‘D’ is specified). The default is STEPS=TGD. You can instead have it perform a subset of these three tasks
by specifying a subset of terms in the STEPS= option.

When you use the ModTmp1t macro to add BY lines, you usually do not need to delete the templates before you
run your procedure again in the normal way. The template modification inserts the BY line through a macro
variable and an MVAR statement. When the macro variable _ByLine0 is undefined, the EntryTitle or EntryFootNote
statement drops out as if it were not there at all.

STMTOPTS1= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>
STMTOPTS2= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>
STMTOPTS3= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>
STMTOPTS4= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>
STMTOPTS5= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>
STMTOPTS6= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>
STMTOPTS7= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>
STMTOPTS8= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>
STMTOPTS9= n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>

STMTOPTS10=n ADD | REPLACE | DELETE | BEFORE | AFTER statement-name < options>

These ten options add or replace options in up to 10 selected statements. The following example produces

Figure 27:
$modtmplt (template=Stat.glm.graphics.residualhistogram, steps=t,
stmtoptsl=. add discretelegend autoalign=(topleft),
stmtopts2=1 add densityplot legendlabel='Normal Density',
stmtopts3=2 add densityplot legendlabel="'Kernel Density',
stmtopts4=1 add overlay yaxisopts=(griddisplay=on)

yaxisopts=(label='Normal and Kernel Density'))

34

Figure 27 Modified Residual Histogram Figure 28 Footnote, No Legend

Normal and Kernel Density

Distribution of Residuals for Weight Distribution of Residuals for Weight

30 Normal Density 30

— — — Kernel Densityy

25 25
L =~
1 — 20
20 // N £
15 o 15
/) g
/ \ 10
10 |, — \\
5
5 / N\
/ \
0 = 40 -32 -24 16 -8 0 8 16 24 32 40
40 -32 -24 16 -8 0 8 16 24 32 40 Residual
Residual Normal Kernel

proc glm plots=diagnostics (unpack) data=sashelp.class;
model weight = height;
run;

$modtmplt (template=Stat.glm.graphics.residualhistogram, steps=d)

These options require you to specify a series of values. The first value is the statement number (or missing
to modify options on all statements that match the statement name). The second value is: ADD, REPLACE,
DELETE, BEFORE, or AFTER. When the second value is ADD or REPLACE, it controls whether you add new
options or replace existing options. Alternatively, the second value can be BEFORE or AFTER to add a new
statement before or after the named statement. When the value is DELETE, the corresponding statement is
deleted. The third value is a statement name. All remaining options are options for the statement named by the
third value (with ADD and REPLACE) or for a new statement (with BEFORE and AFTER). In the STMTOPTS1=
example, an option is added to all DiscreteLegend statements. In the STMTOPTS2= example, an option is added
to the first DensityPlot statement. In the STMTOPTS4= example, an option is added to the LAYOUT OVERLAY
statement. In most cases, the statement name is the first name that begins the statement. The LAYOUT statement
is an exception. In the case of layouts, specify the second name (OVERLAY, GRIDDED, LATTICE, and so on)
for the third value. Note that a statement such as i£ (expression) EntryTitle...; is an IF statement not an
EntryTitle statement.

If an option is specified multiple times on a GTL statement, the last specification overrides previous specifications.
Hence, you do not need to know and respecify all of the options. You can just add an option to the end, and it
overrides the previous value. You can use these options only to modify statements that contain a slash, and only
to modify the options that come after the slash. Note that in STMTOPTS4=, the YAXISOPTS= option is specified
twice. It could have been equivalently specified once as follows:

yaxisopts=(griddisplay=on label='Normal and Kernel Density'))

The actual specification adds the GRIDDISPLAY=ON to the Y axis options (which by default has only a label
specification). The old label is unchanged until the LABEL= option in the second YAXISOPTS= specification
overrides it. In other words, YAXISOPTS=(GRIDDISPLAY=0ON) augments the old YAXISOPTS= option; it does
not replace it.

The following steps delete the legend and instead provide a footnote and produce Figure 28:

$modtmplt (template=Stat.glm.graphics.residualhistogram, steps=t,
stmtoptsl=. delete discretelegend,
stmtopts2=1 after begingraph entryfootnote
textattrs=GraphLabelText (color=cx445694) 'Normal '
textattrs=GraphLabelText (color=cxA23A2E) 'Kernel')

proc glm plots=diagnostics (unpack) data=sashelp.class;
model weight = height;

run;

$modtmplt (template=Stat.glm.graphics.residualhistogram, steps=d)

35

Figure 29 First BY Group Figure 30 Second BY Group

Spline Fit By Sex, Sex=F Spline Fit By Sex, Sex=M
140
120 150
. 100 -
< <
o o
() ()
z ® < 100
60
40
50
50 55 60 65 60 65 70
Height Height

TEMPLATE=SAS-template
specifies the name of the template to modify. You can specify just the first few levels to modify a series of

templates. For example, to modify all of PROC REG’s graph templates, specify Template=stat.Reg.Graphics
This option is required.

TITLES=SAS-data-set
specifies a data set that contains titles or footnotes or both. By default, when the system titles or footnotes are
used (when OPTIONS=TITLES or OPTIONS=REPLACE is specified), PROC SQL is used to determine the titles
and footnotes. You can instead create this data set yourself so that you can set the graph titles independently
from the system titles and footnotes. The data set must contain two variables: Type (Type="T" for titles and Type='F’
for footnotes), and Text, which contains the titles and footnotes. Other variables are ignored. Specify the titles and
footnotes in the order in which you want them to appear.

TITLEOPTS=entry-statement-options
specifies the options for system titles and footnotes. For example, you can specify the HALIGN= and TEXTATTRS=

options as in the STATEMENT= option. By default, no title options are used. With OPTIONS=NOQUOQOTES, you
can specify options individually.

The following example illustrates the use of the OPTIONS=REPLACE, OPTIONS=NOQUOTES, and TITLES= options:

ods graphics on / maxlegendarea=0;
title 'Regression Analysis';

data title;

type = 'T';

text = '"Spline Fit By Sex, " _byline0';
run;

proc sort data=sashelp.class out=class;
by sex;
run;

$macro mygraph;

proc transreg data=__bydata;
model identity(weight) = identity (height);
ods select fitplot;

$mend;

$modtmplt (by=sex, data=class, options=replace noquotes, titles=title,
template=Stat.Transreg.Graphics)

ods graphics on;

36

The results are displayed in Figure 29 and Figure 30. Note that the listing, HTML, and other output have the title
“Regression Analysis”. The graph titles come from the TITLES=title data set.

The following statements modify the PROC FACTOR scree plot template and produce the same graph that is displayed
in Figure 3:

$modtmplt (template=Stat.Factor.Graphics.ScreePlotl, steps=t,
stmtoptsl=. replace overlay
yaxisopts=(label=" (¥ESCx) {Unicode Lambda}")
xaxisopts=(label="Factor Number"
linearopts=(tickvaluelist=(1 2 3 4 5 6 7 8 9 10))),
stmtopts2=. replace
entrytitle 'Eigenvalue ((*ESCx) {Unicode Lambda}) Plot')

proc factor data=sashelp.cars plots (unpack)=scree;
run;

$modtmplt (template=Stat.Factor.Graphics.ScreePlotl, steps=d)

The following statements modify the PROC GLIMMIX box plot template and produce the same graph that is displayed in
Figure 7:
%$let DateTag = Acme 01Apr2008;

$modtmplt (template=Stat.Glimmix.Graphics.BoxPlot, steps=t,
stmtoptsl=. before begingraph mvar datetag,
stmtopts2=. before endgraph entryfootnote halign=left datetag)

proc glimmix data=sashelp.class plots=boxplot;
class sex;
model height = sex;

run;

$modtmplt (template=Stat.Glimmix.Graphics.BoxPlot, steps=d)

The following statements modify the PROC KDE scatter plot template and produce the same graph that is displayed in
Figure 9:

$modtmplt (template=Stat .KDE.Graphics.ScatterPlot, steps=t,

stmtoptsl=1 replace entrytitle "Distribution of " _VAR2LABEL
" by " _VARLLABEL,

stmtopts2=1 replace overlay
xaxisopts=(offsetmin=0.05 offsetmax=0.05 griddisplay=on)
yaxisopts=(offsetmin=0.05 offsetmax=0.05 griddisplay=on),

stmtopts3=1 after overlay pbsplineplot x=y y=x /
lineattrs=(color=red pattern=2 thickness=1),

stmtopts4=1 delete scatterplot,

stmtopts5=1 before endlayout scatterplot
x=y y=x / markerattrs=(color=green size=5px

symbol=starfilled weight=bold))

proc kde data=sashelp.class;
label height = 'Class Height' weight = 'Class Weight';
bivar height weight / plots=scatter;

run;

$modtmplt (template=Stat .KDE.Graphics.ScatterPlot, steps=d)

The following statements modify the PROC GLM residual histogram template and produce the same graph that is
displayed in Figure 13:
$modtmplt (template=Stat.GLM.Graphics.ResidualHistogram, steps=t,
stmtoptsl=. replace discretelegend)

proc glm plots=diagnostics (unpack) data=sashelp.class;
model weight = height;
ods output residualhistogram=hr;

run;

$modtmplt (template=Stat.GLM.Graphics.ResidualHistogram, steps=d)

37

There is one limitation of the ModTmp1t macro. You cannot use it with BY processing and the ODS Document and then
replay the graphs. This is because the value of the macro variable that contains the BY group information does not
persist for replay.

Conclusions

The GTL is a powerful language for producing modern statistical graphics. SAS provides the default templates for graphs,
so you do not need to know any details about templates to create statistical graphics. However, with some understanding
of the GTL, you can modify the default templates to permanently change graphs. Although the templates are often large
and complicated, with a little knowledge you can easily isolate and modify the relevant parts without understanding the
myriad of surrounding details.

Recommended Reading

For a parallel introduction to the GTL and the statistical graphics procedures see:
http://support.sas.com/publishing/authors/kuhfeld.html.

More information about ODS, ODS Graphics, the GTL, and SAS/STAT software is available on the Web at:
http://support.sas.com/documentation/,
http://support.sas.com/documentation/onlinedoc/base/index.html,
http://support.sas.com/documentation/onlinedoc/graph/index.html,

and http://support.sas.com/documentation/onlinedoc/stat/index.html.

To learn more about ODS, see Chapter 20, “Using the Output Delivery System” (SAS/STAT User's Guide).
To learn more about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

For introductory information about ODS Graphics, see the documentation section “A Primer on ODS Statistical Graphics”
(Chapter 21, SAS/STAT User’s Guide).

For complete ODS documentation, see the SAS Output Delivery System: User’s Guide.

For complete GTL documentation, see the SAS/GRAPH: Graph Template Language User’s Guide and SAS/GRAPH:
Graph Template Language Reference.

For complete documentation about the Graphics Editor, see the Getting Started with the SAS/GRAPH Statistical Graphics
Editor.

For information about the statistical graphics procedures, see the SAS/GRAPH: Statistical Graphics Procedures Guide.

The ModTmplt macro is available from http://support.sas.com/kb/37/503.html and the Modstyle macro is
available from http://support.sas.com/kb/37/508.html.

Contact Information

Warren F. Kuhfeld

SAS Institute Inc.

S3018 SAS Campus Drive
Cary, NC, 27513

(919) 531-7922
Warren.Kuhfeld@sas.com

Appendix I: Template Complexity

Many graphs produced by ODS Graphics are complicated. They might have multiple panels, multiple graph elements,
tables of statistics, legends, and so on. Complicated graphs require complicated programs. The aphorism “the devil is
in the details” is indeed true for graph templates. Some have incredible levels of detail so that they can be used in a
number of different situations and handle many options. Before ODS Graphics, you had to write your own programs to
produce graphs. You might have needed hundreds or even thousands of lines of code to make a complicated graph,
particularly if you were using the annotate facility. Now, this work is done by SAS procedure writers who use the GTL.

The GTL is a powerful language with many statements and options, and often many different ways to accomplish the
same thing. Different procedure writers sometimes found different ways to do the same thing. Templates are constructed
in many different ways. Some are constructed with SAS macros, so sometimes options appear because they are needed

38

http://support.sas.com/publishing/authors/kuhfeld.html
http://support.sas.com/documentation/
http://support.sas.com/documentation/onlinedoc/base/index.html
http://support.sas.com/documentation/onlinedoc/graph/index.html
http://support.sas.com/documentation/onlinedoc/stat/index.html
http://support.sas.com/kb/37/503.html
http://support.sas.com/kb/37/508.html

in other uses of the macro. The template that you see often bears very little resemblance to the template that the
developer wrote. The template you see has been compiled by PROC TEMPLATE, digested, and then output in a different
format. The template that you see might be very large, complex, and verbose. The template that the developer created
is usually more parsimonious and structured. When you look at a template, do not expect that you will be able to find
some justification for every statement and every option if you only search hard enough. Nor should you expect to find
documentation for every option. Some options are deliberately undocumented because they might change in future
releases.

Some templates are complex. Others are very complex. Some are much more complex than they need to be for your
particular application. However, you do not have to understand most of that complexity. All you have to do is isolate the
parts that you want to change, and change those parts while ignoring the surrounding complexity.

Templates are not intended to be like the polished sample code that SAS generally provides. Templates were developed
with the goal of producing outstanding graphs, not outstanding templates. Do not expect to see perfect beauty, elegance,
consistency, or the most parsimonious use of the language. Do not expect everything to be obvious. Instead, expect to
see a powerful program that produces outstanding graphics. Expect the template to be complicated, but much simpler
than your old graphics programs.

Appendix II: Displaying Simple Templates

Sometimes when you are working on a template, it is helpful to look at and search other templates to see how the
statements and options are used elsewhere. The following program creates a file templates.sas with all of the SAS/STAT
graphics templates, and displays them in the SAS log in sorted order with the smallest (and hence usually simplest)
templates first:

proc template;
source / where=(type='Statgraph') file="templates.sas";
run;

data x;

n=_n_;

infile "templates.sas" lrecl=204 pad;

input line $200.;

1l = lowcase(line);

if (index(l, 'define') and index(l, 'statgraph')) or index(l, 'endgraph');
run;

data z(keep=line dif);

set x;

nl = n;

if index (1, 'define') then do;
i=_n +1;

set x(keep=n) point=i;
dif = n - nl;
line = scan(line, 3, ' ;');
if lowcase(line) =: 'stat.' then output;
end;
run;

proc sort;
by dif;

run;

data _null_;

set z;

if n = 1 then call execute('proc template;');

call execute('source ' || trim(line) || ';");
run;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

| would like to thank Jeff Cartier, Bob Derr, Anne Jones, Bari Lawhorn, and Bob Rodriguez for helpful comments on
earlier drafts of this paper. | would also like to thank Gerardo Hurtado for testing the ModTmp1t macro.

39

