The Y%MktLab Macro

Introduction

The %MktLab autocall macro processes an experimental design (usually created by the %MktEx macro) and
assigns the final variable names and levels.

%MktLab Macro Syntax

%MktLab(< optional arguments >)

Optional Arguments

CFILL=character-string
specifies the fill value in the KEY= data set for character variables. For more information about fill
values, see the NFILL= argument. By default, CFILL="".

DATA=SAS-data-set
specifies the input data set that contains the experimental design (usually created by the %MktEx
macro). By default, DATA=Randomized. The factor levels in the DATA= data set must be consecutive
integers, beginning with 1.

DOLIST=do-list
specifies the new values by using a do-list syntax (nto m <by p>); for example, DOLIST=1 to 10 or
DOLIST=0 to 9. You specify the levels for the largest number of levels for asymmetric designs (not
all factors have the same levels). For example, with 2-level and 3-level factors and DOLIST= 0 to 2,
the 2-level factors are assigned levels O and 1, and the 3-level factors are assigned levels 0, 1, and 2.
Do not specify both the VALUES= and DOLIST= arguments. By default, when the KEY=, VALUES=,
and DOLIST= arguments are not all specified, the default value list comes from DOLIST=1 to 100.

INT=variable-list
specifies the name of an intercept variable (column of ones) to be added to the OUT= data set. You can
also specify a variable list instead of a variable name if you want to make a list of variables that have
values that are all equal to 1. This can be useful for creating flag variables for generic choice models
when the design is to be used as a candidate set for the %ChoicEff macro.

KEY=SAS-data-set
specifies the input data set that contains the key to recoding the design. This data set is created for you
when you specify the VALUES= or DOLIST= argument. When the KEY=, VALUES=, and DOLIST=
arguments are not all specified, the default value list comes from DOLIST=1 to 100.

2 4+

LABELS=macro-name
specifies the name of a macro that provides labels, formats, or other information to the KEY= data set.
You specify just the macro name without a percent sign (%) in the LABELS= argument.

It is easier to specify the STATEMENTS= argument for a simple format specification. For more
complicated specifications, you can use LABELS=. The following statements demonstrate how you
might use this argument:

$mktex (3 ** 4, n=18, seed=205)

$macro labs;

label x1 = 'Sploosh' x2 = 'Plumbob'
x3 = 'Platter' x4 = 'Moosey';
format x1-x4 dollar5.2;
$mend;

$mktlab (data=randomized, VALUES=1.49 1.99 2.49, LABELS=labs)

proc print label;
run;

The first part of the design is as follows:

Obs Sploosh Plumbob Platter Moosey

1 $2.49 $2.49 $2.49 $1.49
2 $2.49 $2.49 $1.99 $1.99
3 $1.49 $1.49 $1.49 $1.49
4 $1.99 $1.99 $2.49 $2.49

NFILL=number
specifies the fill value in the KEY= data set for numeric variables. For example, when the maximum
number of levels is three, the last value in the KEY= data set for numeric 2-level factors should match
the value that is specified in the NFILL= argument, which by default is ordinary missing. If the macro
tries to access one of these values, it displays a warning. If you want ordinary missing (.) to be a
legitimate level, specify a different NFILL= argument value and use it for the extra places in the KEY=
data set.

OPTIONS=0ptions-list
specifies binary options. By default, none of these options are specified. You can specify the following
values:

NOPRINT
suppresses the display of the variable mappings.

Optional Arguments 4 3

OUT=SAS-data-set
specifies the output data set that contains the final, recoded design. By default, OUT=Final.

PREFIX=variable-prefix
specifies a prefix for naming variables when the VALUES= argument is specified. For example,
PREFIX=Var creates the variables Var1, Var2, and so on. By default, the variables are X1, X2, and so
on. This argument is ignored when the VARS= argument is specified.

STATEMENTS=SAS-code
is an alternative to the LABELS= argument that you can use to add extra statements to the KEY= data
set. For a simple format specification, it is easier to use the STATEMENTS= argument. For more
complicated specifications, use the LABELS= argument. The following statements demonstrate how
you might use this argument:

$mktex (3 ** 4, n=18, seed=205)

$mktlab (data=randomized, VALUES=1.49 1.99 2.49,

vars=Sploosh Plumbob Platter Moosey,

STATEMENTS=format Sploosh Plumbob Platter Moosey dollar5.2)
proc print data=final (obs=4);
run;

Figure 1 shows the first four observations of the design.

Figure 1 First Four Observations of Final Data Set

Obs Sploosh Plumbob Platter Moosey
1 $2.49 $1.49 $249 $1.49
2 $249 $1.49 $1.49 $2.49
3 $149 $1.99 $249 $1.99
4 $1.99 $2.49 $199 $1.49

VALUES=value-list

specifies the new values for all the variables. If all the variables are to have the same value, it is easier
to specify the VALUES= or DOLIST= argument than the KEY= argument. When you specify the
VALUES= argument, the KEY= data set is created for you. Specify a list of levels, separated by
blanks. If your levels contain blanks, separate them with two blanks. You specify the levels for the
largest number of levels for asymmetric designs (not all factors have the same levels). For example,
for 2-level and 3-level factors and VALUES=a b c, the 2-level factors are assigned levels a’ and 'b’,
and the 3-level factors are assigned levels “a’, 'b’, and ' ¢’. Do not specify both the VALUES= and
DOLIST= arguments. By default, when the KEY=, VALUES=, and DOLIST= arguments are not all
specified, the default value list comes from DOLIST=1 to 100.

VARS=variable-list
specifies a list of variable names when the VALUES= or DOLIST= argument is specified. If the
VARS= argument is not specified along with the VALUES= argument, then the PREFIX= argument is
used.

44+

Help Option

You can specify either of the following to display the option names and simple examples of the macro syntax:

$mktlab (help)
$mktlab (?)

%MktLab Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all the notes,
submit the following statement before running the macro:

%$let mktopts = notes;

To see the macro version, submit the following statement before running the macro:

%$let mktopts = version;

Example 1: Adding an Intercept and Relabeling the Levels to a
Design

Suppose you used the %MktEx macro to create a design that has eleven 2-level factors (with default levels of
1 and 2). The following steps create and display the design:

$mktex (n=12, OPTIONS=nosort)

proc print noobs;
run;

Figure 2 shows the design.
Figure 2 Experimental Design with Eleven 2-Level Factors

x9 x10 x11
2 2

x

N = N NN = 4 0 N =2 4 A
X

= N N N =2 =2 2 NN =2 =2 N NN
x

N NN =2 =2 =2 NN = =2 N = N
x

NN = 3 a2 2 N2 N NR
x

N = = 2 N =2 =2 N = N NNDNM;
X

- =2 a2 N =2 =2 NN = NDNDNDNoe

X/ X

7 x8
2 2
11
2 1
2 2
2 2
1 2
2 1
1 2
11
2 1
1 2
11

N = a2 N = N NN 2 a4
O O N 2 NN N 2 O 4a N
ON 2 N NN 2 O O N =2 N

Example 1: Adding an Intercept and Relabeling the Levels to a Design 4 5

You can use either the %MktEx macro or the %MktLab macro to assign levels of —1 and 1 and add an
intercept. You do it directly with the %MktEx macro by specifying LEVELS=I INT. The value of I specifies
centered integer levels, and INT adds the intercept. The following statements illustrate this method:
$mktex (n=12, OPTIONS=nosort, levels=i int)
However, if you want to change the factor names, or if you require a more complicated relabeling of the
levels, you can use the %MktLab macro. The following statements demonstrate this method:
$mktex (n=12, OPTIONS=nosort)
$mktlab (data=design, VALUES=1] -1, int=HadO, prefix=Had)
proc print noobs;
run;
The %MktLab macro assigns levels of —1 and 1, adds an intercept named HadO, and changes the variable

name prefixes from X to Had. This creates the Hadamard matrix shown in Figure 3.

Figure 3 A Hadamard Matrix

Had0 Had1 Had2 Had3 Had4 Had5 Had6 Had7 Had8 Had9 Had10 Had11
L L L e e -1 -1
1 - 1T a1 a1 A 1 1 1 -1 1

- a4 a4 4O 4O 4O a a4
—_
—_
—_
]
—_
—_
—_
]
—_
—_
]
—_
]
—_
]
—_

Alternatively, you can use the following KEY= data set to do the same thing:

data key;
array Had[1ll];
input Hadl @@;
do i = 2 to 11; Had[i] = Hadl; end;
drop i;
datalines;
1 -1

4

proc print data=key;
run;

Figure 4 shows the Key data set.

6 +

Figure 4 Key Data Set

Obs Had1 Had2 Had3 Had4 Had5 Hadé Had7 Had8 Had9 Had10 Had11
1 1 1 1 1 1 1 1 1 1 1 1
2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

The following statements use this data set to make the final design:
$mktlab (data=design, KEY=key, int=HadO)
proc print data=Final;
run;

The KEY= argument specifies the data set that contains all the variables that you want in the design and
all their levels. This information is applied to the design. The DATA= argument specifies the data set that
contains the design. If you do not specify the DATA= argument, the %MktLab macro uses the OUTR= data
set name from the %MktEx macro, which is named Randomized by default. The %MktLab macro saves the
recoded design in an output data set that is named Final by default.

Figure 5 shows that the Hadamard matrix from this operation is exactly the same as the previous one.

Figure 5 Key Data Set

Obs Had0 Had1 Had2 Had3 Had4 Had5 Had6é Had7 Had8 Had9 Had10 Had11
1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

0 0o N O UV A WN

-
o

-
-
- 4. 4O 4O a4 a4 A g a

_
_
_
'
—_
_
_
'
—_
_
'
—_
'
—_
'
—_

-
N

Example 2: Renaming Variables and Labeling Factor Levels
This example considers consumer food products. The following statements read a possible design:

data randomized;
input x1-x8 @@;

datalines;
421112222112131334221323432132234121
111124121211121233212222222314211222
322131211412231213221311321221233411
311341222121232123222121331342221312
242231123122321233112311442122131111

Example 2: Renaming Variables and Labeling Factor Levels 4 7

3212431233221221211313111123

4

Designs that you create by using the %MktEx macro always have factor names X1, X2, and so on, and the
levels are consecutive integers that begin with 1 (1, 2 for 2-level factors; 1, 2, 3 for 3-level factors; and so on).
The %MktLab macro provides a convenient way to change the names and levels to more meaningful values.
The data set Key contains the variable names and levels that you ultimately want. The following statements
create the Key data set:

data key;
missing N;
input Client ClientLineExtension ClientMicro $ ShelfTalker $
Regional Private PrivateMicro $ NationallLabel;
format _numeric_ dollar5.2;
datalines;

1.29 1.39 micro Yes 1.99 1.49 micro 1.99
1.69 1.89 stove No 2.49 2.29 stove 2.39
2.09 2.39 . . N N . N

N N

’

The variable Client with 4 levels is made from X1, the variable ClientLineExtension with 4 levels is made
from X2, and the variable ClientMicro with 2 levels is made from X3. The N (for “not available”) is treated
as a special missing value. The Key data set has four rows because the maximum number of levels is four.
Factors with fewer than 4 levels are filled in with ordinary missing values.

Now you can use the %MktLab macro to recode the design. This macro takes the default
DATA=RANDOMIZED data set from the %MktEx macro and uses the rules in the KEY=Key data
set to create the information in the OUT=Final data set, as follows:

$mktlab (data=randomized, KEY=key)

proc sort data=final out=final;
by shelftalker;
run;

proc print data=final,;
by shelftalker;
run;

Figure 6 shows the recoded design.

8 +

Obs

W 0 N O U1 A WIN =

O N G
W N =2 O

Obs
14
15
16
17
18
19
20
21
22
23
24
25
26

The %MktLab macro creates the OUT= data set by repeatedly reading the KEY= data set, one data item at a
time, using the information in the DATA= data set to determine which levels to read from the KEY= data set.
In this example, for the first observation, X1 =4, so the fourth value of the first KEY= variable is read; then
X2 =2, so the second value of the second KEY= variable is read; then X3 = 1, so the first value of the third
KEY= variable is read; and so on; then X8 = 2, so the second value of the eighth KEY= variable is read; then

Figure 6 Final Data Set

Client ClientLineExtension

$1.69
$2.09
$1.69
$1.29
$1.69
$1.29
$1.29
$2.09

N

N
$1.69
$2.09

$1.39
N
N
$1.89
$1.89

$2.39
$1.89
$1.39
$1.89

$1.39
$2.39

Client ClientLineExtension

N
N
N
$1.29
$2.09
$2.09
$1.69
$1.69
$2.09
N
$1.29
$1.29
$1.29

$1.89
$2.39
$1.39

N
$1.89

N
$2.39
$1.39
$2.39

N
$1.39
$1.89
$2.39

ShelfTalker=No

ClientMicro Regional Private

micro
stove
micro
micro
stove
micro
stove
micro
stove
stove
stove
stove

micro

$1.99
$1.99
$1.99
N
$2.49
$2.49
$1.99
$2.49
$2.49
$1.99
N
N
N

ShelfTalker=Yes

N
N
$2.29

$2.29

$1.49

$1.49

$1.49
$2.29

ClientMicro Regional Private

micro
stove
stove
stove
stove
micro
stove
stove
micro
stove
micro
stove
micro

$1.99
N
$1.99
$1.99
N
N
$2.49
N
$2.49
$2.49
N
$2.49
$1.99

$2.29
$2.29
$1.49
$2.29
$1.49
$1.49

N

N

N
$2.29
$2.29
$1.49
$1.49

the first observation is output. This continues for all observations.

PrivateMicro NationalLabel

micro
stove
micro
stove
stove
micro
micro
stove
stove
micro
micro
micro

stove

N
N
$1.99
$1.99

$2.39
$1.99

$1.99
$2.39
$2.39
$2.39
$2.39

PrivateMicro NationalLabel

stove
stove
micro
stove
stove
micro
stove
micro
micro
micro
micro
micro
stove

$2.39
N
$1.99
$2.39
$1.99
N
$2.39
N
$1.99
N
$2.39
N
N

Example 3: Relabeling an Orthogonal Array

This example shows how to use the %MktLab macro to relabel an orthogonal array. The following statements
create the L3¢ orthogonal array (312211 in 36 rows); change the names of the 2-level factors to Two1-Two11
and assign them values the —1, 1; and change the names of the 3-level factors to Thr1—Thr12 and assign them

the values -1, 0, 1:

Example 3: Relabeling an Orthogonal Array 4 9

$mktex (n=36, seed=420)

data key;
array x[23] twol-twoll thrl-thrl2;
input twol thrl;

do i = 2 to 11; x[i] = twol; end;
do i = 13 to 23; x[i] = thrl; end;
drop i;
datalines;
-1 -1
1 0
1

$mktlab (data=randomized, KEY=key)

proc print data=key noobs;
var two:;
run;

proc print data=key noobs;
var thr:;
run;

proc print data=final (obs=5) noobs;
var two:;
run;

proc print data=final (obs=5) noobs;

var thr:;
run;

Figure 7 and Figure 8 show the Key data set.

Figure 7 Key Data Set: Two Variables

two1l two2 two3 two4 two5 two6 two7 two8 two9 two10 twol1

Figure 8 Key Data Set: Thr Variables

thr1 thr2 thr3 thr4 thr5 thr6 thr7 thr8 thr9 thr10 thr11 thr12

Figure 9 and Figure 10 show the Final data set.

10 +

Figure 9 Final Data Set: Two Variables

two1l two2 two3 two4 two5 two6 two7 two8 two9 two10 two1l1
-1 -1 1 1 1 1 1 1 1 1 -1
1 1 1 1 -1 1 1 -1 -1 1 1
-1 -1 -1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 1 1 1 -1 -1 -1 1
-1 1 -1 -1 -1 -1 1 1 1 1 1

Figure 10 Final Data Set: Thr Variables

thr1 thr2 thr3 thr4 thr5 thr6 thr7 thr8 thr9 thr10 thr11 thri2
0 0 0 o -1 - 0 0 -1 0 0 -1
1A 1 1 0 0 1 0 -1 -1

-1 1 0 0 0 1 0 1 1 -1

0 -1 -1
-1 0 -1

- O O =
iy
o
'
-
o
iy
'
-
'
-
O =2 = 4

4 0 1 0 -1 1 1

Example 4: Relabeling a Blocked Design

This example creates a design and blocks it. It shows that it is OK if not all the variables in the input design
are used. The variables Block, Run, and X4 are just copied from the input to the output. The following

statements create the design and block it:
$mktex (n=18, seed=396)

$mktblock (data=design, nblocks=2, factors=xl-x4, seed=292)

The %MktEx macro saves the design in the output data set Design, and the %MktBlock macro saves the
blocked design in the output data set Blocked.

The following DATA step creates the Key data set:

data key;
input Brand $ Price Size;
format price dollar5.2;
datalines;
Acme 1.49 6
Apex 1.79 8
1.99 12

Now you use the %9MktLab macro and the Blocked and Key data sets to recode the design:
$mktlab (data=blocked, KEY=key)

proc print;
run;

Example 4: Relabeling a Blocked Design 4 11

Figure 10 shows the results.

12 4+

Figure 11 Recoded Blocked Design

Obs Brand Price Size Block Run x4
Acme $1.49 12 1 1
Acme $1.79 6
Acme $1.79 8
Acme $1.99
Apex $1.49
Apex $1.49
Apex $1.79
Apex $1.99
Apex $1.99
Acme $1.49
Acme $1.49
Acme $1.79
Acme $1.99
Acme $1.99
Apex $1.49
Apex $1.79
Apex $1.79
Apex $1.99

(o]

S g S W G 3
O U1 A W N = O OO0 NO UVIEAE WN=
- - - -

-
~N

-
© N OO NN O ON OO N

© 00 N O U1 A WIN = © 00 NO U A WN
N = W N W WN= 23 2O N2 Ww =2 NN WwN

N N N N DNNDNNN=S 2 a4 a9 a a a

ey
=]

Example 5: Using the LABELS= Argument

This example demonstrates how to use the %MktLab macro and the LABELS= argument for a vacation choice
design. You usually use the LABELS= argument with the VALUES= argument rather than constructing the
KEY= data set yourself, but you can use it either way. The following statements create the design:

$mktex (3 ** 15, n=36, seed=17, maxtime=0)

$mktblock (data=randomized, nblocks=2, factors=x1-x15, seed=448)

Next you write a macro that creates the labels:

$macro lab;

label X1 = 'Hawaii, Accommodations'
X2 = 'Alaska, Accommodations'
X3 = 'Mexico, Accommodations'
X4 = 'California, Accommodations'
X5 = 'Maine, Accommodations'
X6 = 'Hawaii, Scenery'
X7 = 'Alaska, Scenery'
X8 = 'Mexico, Scenery'
X9 = 'California, Scenery'
X10 = 'Maine, Scenery'
X1l = 'Hawaii, Price'
X12 = 'Alaska, Price'
X13 = 'Mexico, Price'

X14 = 'California, Price'

X15 =

'Maine,

Example 5: Using the LABELS= Argument 4 13

Price';

format x11-x15 dollar5.;

$mend;

Then you create the Key data set:

data key;
length x1-x5 $ 16 x6-x10 $ 8 x11-x15 8;
input x1 & $ x6 $ x11;
x2 = x1; x3 = x1; x4 = x1; x5 = x1;
x7 = x6; x8 = x6; x9 = x6; x10 = x6;
x12 = x11; x13 = x11; x14 = x11; x15 = x11;
datalines;

Cabin Mountains 999

Bed & Breakfast Lake 1249

Beach 1499

Hotel

’

Finally, you invoke the %MktLab macro, and you specify the LABELS= argument and supply the name of

the macro (without the % sign) that defines the labels.

$mktlab (data=blocked, KEY=key,

You can use PROC CONTENTS as follows to see how the labels have been applied to the design:

proc contents p;
ods select position;
run;

LABELS=1lab)

Figure 12 shows the variable name, label, and format information.

W 0 N O Ul A W IN = H

N N U G §
N oo unn A W N =2 O

Figure 12 Variables in Creation Order
The CONTENTS Procedure

Variables in Creation Order

Variable Type Len Format Label

x1 Char 16 Hawaii, Accommodations
x2 Char 16 Alaska, Accommodations
x3 Char 16 Mexico, Accommodations
x4 Char 16 California, Accommodations
x5 Char 16 Maine, Accommodations
x6 Char 8 Hawaii, Scenery

x7 Char 8 Alaska, Scenery

x8 Char 8 Mexico, Scenery

x9 Char 8 California, Scenery

x10 Char 8 Maine, Scenery

x11 Num 8 DOLLARS. Hawaii, Price

x12 Num 8 DOLLARS. Alaska, Price

x13 Num 8 DOLLARS. Mexico, Price

x14 Num 8 DOLLARS. California, Price

x15 Num 8 DOLLARS. Maine, Price

Block Num 8

Run Num 8

