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Abstract

Heralded by a new release-numbering scheme, SAS/STAT 12.1 comes loaded with new statistical capabilities. New
development areas include model selection for quantile regression, quantile regression for censored data, and multi-
variate adaptive regression splines. Epidemiologists will like the STDRATE procedure for computing direct and indirect
standardized rates and risks for study populations. The FMM procedure becomes production and includes new features
such as additional distributions. Other notable enhancements include modeling missing covariates with the MCMC pro-
cedure and fitting Bayesian frailty models with PROC PHREG. This paper reviews highlights from earlier releases and
describes highlights of SAS/STAT 12.1, slated for release during 2012.

More Frequent Releases of SAS/STAT Software

In previous years, SAS/STAT software was updated only when Base SAS® software was released, but SAS/STAT is
now released independently of the ‘mother ship’ along with other SAS analytical products. This means that these
products can be released to customers when enhancements are ready, and the goal is to update SAS/STAT every 12
to 18 months. To mark this newfound independence, the release numbering scheme for SAS analytical products is
changing with the next release; they will be numbered ‘12.1. This numbering scheme will be maintained when new
versions of Base SAS and SAS/STAT ship at the same time. For example, when Base SAS 9.4 is released, SAS/STAT
13.1 will be released.

To keep informed about SAS/STAT releases, see support.sas.com/stat/ for product news and see support.
sas.com/statistics/ for in-depth information and a link to the e-newsletter.

Overview of Recent and Future Updates

SAS/STAT 9.22 made available a full complement of postfitting capabilities in many linear modeling procedures. This
release also introduced the PLM procedure, which enables you to take stored model information and use it to perform
additional inference and scoring without refitting the original model. The SURVEYPHREG procedure provides survival
analysis, in the form of Cox proportional hazards regression, for sample survey data. More powerful and customizable
structural equation modeling, first implemented with the experimental TCALIS procedure in SAS/STAT 9.2, was rolled
into the CALIS procedure. Other enhancements included exact Poisson regression, zero-inflated negative binomial
models, model-averaging, and improvements to the spatial analysis procedures. See Stokes, Rodriguez, and Cohen
(2010) for more information.

SAS/STAT 9.3 became available in 2011, and it introduced the experimental FMM procedure, which fits statistical
models to data where the distribution of the response is a finite mixture of univariate distributions. The MI procedure
added the FCS statement, which specifies a multivariate imputation by fully conditional specification (FCS) methods.
The NLIN procedure was updated with features for diagnosing the nonlinear model fit. The SURVEYPHREG procedure
became production and now handles time-dependent covariates. The MCMC procedure added a RANDOM statement,
which simplifies the specification of hierarchical random-effects models and significantly reduces simulation time while
improving convergence. See Stokes, Chen, and So (2011) for more information.

The upcoming 12.1 release of SAS/STAT emphasizes modern regression methods. The new QUANTSELECT proce-
dure for quantile regression model selection works similarly to the GLMSELECT procedure, and the new QUANTLIFE
procedure performs quantile regression for censored data. The new ADAPTIVEREG procedure provides flexible re-
gression model for high-dimensional data. In addition, epidemiologists will benefit from the new STDRATE procedure,
which computes direct and indirect standardized rates and risks for study populations. The FMM procedure for finite
mixture models becomes production, and Bayesian analysis capabilities are also updated.

This paper reviews the highlights of the new release and illustrates them with practical examples. It draws heavily from
the documentation. See sas.com/statistics/papers/ for any update of this paper at release time.

New STDRATE Procedure

Epidemiologists constantly deal with confounders that can bias a measure of the association between an exposure and
an event outcome. If confounding is not taken into account, the overall event rate estimated might not be meaningful
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so you employ stratification to control potential confounding. You first subdivide a population into constituent subpop-
ulations according to certain criteria for confounding variables, such as age and gender. Then, you estimate the effect
of the exposure within each stratum and you combine the stratum-specific effect estimates into an overall estimate that
is presumably free of bias.

The STDRATE procedure computes direct and indirect standardized rates and risks for study populations. Direct stan-
dardization computes the weighted average of stratum-specific estimates in the study population, using weights such as
population-time from a standard or reference population. For two study populations with the same reference population,
the procedure compares directly standardized rates or risks. In addition, the procedure also computes Mantel-Haenszel
effect estimates, such as the rate difference, from two study populations without a reference population.

Indirect standardization computes the weighted average of stratum-specific estimates in the reference population, using
weights from the study population. The ratio of the overall rate or risk in the study population and the corresponding
weighted estimate in the reference population, which is also the ratio of the observed number of events and the expected
number of events in the study population, is the standardized morbidity or mortality ratio (SMR). The SMR compares
rates or risks in the study and reference populations. The indirect standardized rate estimate is the product of the SMR
and the crude rate estimate for the reference population.

The following example illustrates the use of the STDRATE procedure to compute standardized mortality ratios to com-
pare the death rates of skin cancer between Florida and the United States as a whole. Indirect standardization is
used.

The FLORIDA_43 data set contains stratum-specific mortality information for skin cancer during 2000 from the Depart-
ment of Health in Florida. The variable AGE is the grouping variable that determines the strata for the standardization;
variables EVENT and PYEAR represent the number of events and total person-years, respectively. The COMMA11.
format is used to input numbers that contain commas.

data Florida_C43;
input Age $1-5 Event PYear commall.;
datalines;

00-04 0 953,785
05-14 0 1,997,935
15-24 4 1,885,014
25-34 14 1,957,573
35-44 43 2,356,649
45-54 72 2,088,000
55-64 70 1,548,371
65-74 126 1,447,432
75-84 136 1,087,524
85+ 73 335,944

’

The US_C43 data set contains comparable mortality information for the United States for the year 2000 (from the
Centers for Disease Control and Prevention, 2002; U.S. Bureau of Census 2011). The same variables are created as
in the previous DATA step.

data US_C43;
input Age $ 1-5 Event comma7. PYear commal2.;

datalines;
00-04 0 19,175,798
05-14 1 41,077,577

15-24 41 39,183,891
25-34 186 39,892,024
35-44 626 45,148,527
45-54 1,199 37,677,952
55-64 1,303 24,274,684
65-74 1,637 18,390,986
75-84 1,624 12,361,180
85+ 803 4,239,587

’

The following statements invoke the STDRATE procedure and request indirect standardization to compare the mortality
rates between Florida and the United States. The DATA= option specifies the study data set, and the REFDATA= option
specifies the reference data set. You request indirect standardization with the METHOD=INDIRECT option. Specifying
STAT=RATE requests the rate as the frequency measure for standardization, and specifying MULT=100000 (default)
displays the deaths per 100,000 person-years in the results. The PLOTS=ALL option requests a plot of the resulting
standardized mortality rates.
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ods graphics on;
proc stdrate data=Florida_C43 refdata=US_C43
method=indirect
stat=rate (mult=100000)
plots=all
’
population event=Event total=PYear;
reference event=Event total=PYear;
strata Age / info(cl=none) smr;
run;
ods graphics off;

The EVENT= and TOTAL= options in the POPULATION statement specify variables for the number of events and
person-years in the study population, and the same options specify these variables in the REFERENCE statement.
You list the stratification variable AGE in the STRATA statement. The INFO option requests stratum-specific statistics
such as rates, and the SMR option requests stratum-specific SMR estimates.

Figure 1 contains the standardization information.

Figure 1 Standardization Information

The STDRATE Procedure

Standardization Information

Data Set WORK.FLORIDA C43
Reference Data Set WORK.US_C43
Method Indirect Standardization
Statistic Rate
Number of Strata 10
Rate Multiplier 100000

Figure 2 contains the strata information and the expected number of events at each stratum. Crude rates per 100,000
person-years are displayed. The “Expected Events” column displays the expected number of events when the stratum-
specific rates in the reference data set are applied to the corresponding person-years in the study data set.

Figure 2 Strata Information

Strata Information (Indirect Standardization)
Rate Multiplier = 100000
—-——-Stratum--—- Observed ----Population-Time--- -Crude Rate-
Index Age Events Value Proportion Estimate
1 00-04 0 953785 0.0609 0
2 05-14 0 1997935 0.1276 0
3 15-24 4 1885014 0.1204 0.2122
4 25-34 14 1957573 0.125 0.715171
5 35-44 43 2356649 0.1505 1.824625
6 45-54 72 2088000 0.1333 3.448276
7 55-64 70 1548371 0.0989 4.52088
8 65-74 126 1447432 0.0924 8.705072
9 75-84 136 1087524 0.0695 12.50547
10 85+ 73 335944 0.0215 21.72981
Strata Information (Indirect Standardization)
Rate Multiplier = 100000
—————— Reference Population—--——--—

—-——Population-Time—-—— Crude Expected

Index Value Proportion Rate Events

1 19175798 0.0681 0 0

2 41077577 0.146 0.002434 0.048638

3 39183891 0.1392 0.104635 1.972381

4 39892024 0.1418 0.466259 9.127353

5 45148527 0.1604 1.386535 32.67576

6 37677952 0.1339 3.182232 66.44501

7 24274684 0.0863 5.367732 83.11241

8 18390986 0.0654 8.9011 128.8374

9 12361180 0.0439 13.1379 142.8779

10 4239587 0.0151 18.94052 63.62955
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Figure 3 and Figure 4 display the strata distribution plot and the strata rate plot.

Figure 3 Strata Distribution Plot

Strata Distribution Plot

Figure 4 Strata Rate Plot

Strata Rate Plot with 95% Normal Confidence

Population Limits
B85+ — =iy Reference |
| 75-84 —{—
65-74 -i _l ' ’ "
55-64 -} Ly & 55-64
© 4554 - =3
I < 35-44 -
< 3544 P
2534 | 15-24- @
15-24 - 00-04 g O Population
05-14 — | O Reference
| T T T T T
| Iy
s | 0 5 10 15 20 25
T T T T 1 Crude Rate (Multiplier = 100000)
0.00 0.05 010 0.15 0.20 - -
Crude Estimate:
Proportion Population Reference

The distribution plot displays the strata proportions listed in Figure 2. It shows that the study population has higher
proportions in older age groups and lower proportions in younger age groups than the reference population The strata
rate plot displays stratum-specific rate estimates in the study and reference populations. It also displays the confidence
limits for the rates in the study population and the overall crude rates for the two populations (the two vertical lines).

Figure 5 displays the SMR for each stratum. Since the MULT=100000 suboption was specified, the events per 100,000

person-years are displayed.

Figure 5 Strata SMR Information

Strata SMR Information
Rate Multiplier = 100000
Reference
———-Stratum--—- Observed Population- Crude Expected
Index Age Events Time Rate Events
1 00-04 0 953785 0 0
2 05-14 0 1997935 0.002434 0.048638
3 15-24 4 1885014 0.104635 1.972381
4 25-34 14 1957573 0.466259 9.127353
5 35-44 43 2356649 1.386535 32.67576
6 45-54 72 2088000 3.182232 66.44501
7 55-64 70 1548371 5.367732 83.11241
8 65-74 126 1447432 8.9011 128.8374
9 75-84 136 1087524 13.1379 142.8779
10 85+ 73 335944 18.94052 63.62955
Strata SMR Information
Rate Multiplier = 100000
SMR:
Standard 95% Normal
Index Estimate Error Confidence Limits
1 .
2 0 . . .
3 2.028005 1.014003 0.040597 4.015414
4 1.533851 0.409939 0.730386 2.337317
5 1.31596 0.200682 0.922631 1.70929
6 1.083603 0.127704 0.833308 1.333898
7 0.842233 0.100666 0.644931 1.039535
8 0.977977 0.087125 0.807215 1.148739
9 0.951862 0.081621 0.791887 1.111837
10 1.147266 0.134277 0.884087 1.410444

Figure 6 displays these results graphically.
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Figure 6 Strata SMR Plot

Strata SMR Plot with 95% Normal Confidence Limits
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Figure 7 displays the overall SMR estimate, its confidence limits, and a test for the null hypothesis that the overall SMR
equals 1.

Figure 7 Standardized Morbidity/Mortality Ratio

Standardized Morbidity/Mortality Ratio

SMR-
—————— Events—————- 95% Normal
Observed Expected Estimate Confidence Limits

538 528.7263 1.01754 0.931557 1.103522

Standardized Morbidity/Mortality Ratio

Test of SMR=1

Standard
Test Estimate Error zZ Pr > |Z|
SMR-1 0.01754 0.043869 0.40 0.6893

The 95% normal confidence limits contain 1, so the null hypothesis cannot be rejected.

Figure 8 contains the indirect standardized rate and related statistics.

Figure 8 Standardized Rate Estimates

Standardized Rate Estimates (Indirect Standardization)
Rate Multiplier = 100000

Reference
Observed Population- Crude Crude Expected
Events Time Rate Rate Events SMR
538 15658227 3.435893 2.636608 528.7263 1.01754

Standardized Rate Estimates (Indirect Standardization)
Rate Multiplier = 100000

Standard 95% Normal
Estimate Error Confidence Limits

2.682853 0.115666 2.456152 2.909554
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The table shows that, although the crude rate in the state of Florida, 3.4359, is 30% higher than the crude rate in the
US, 2.6366, the resulting standardized rate of 2.6829 is much closer to the crude rate in the US.

New QUANTSELECT Procedure

Ordinary least squares regression models the relationship between the conditional mean of a response variable with
one or more covariates. Quantile regression extends that regression model to the relationship between the conditional
quantiles of a response variable with one or more covariates. It is especially useful with data that are heterogeneous
such that the tails and central location of the conditional distributions vary differently with the covariates. Quantile
regression makes no distributional assumptions about the error term, and so it offers model robustness. It is a semi-
parametric method that can provide a more complete picture of your data based on these conditional distributions.
Linear programming algorithms are used to produce the quantile regression estimates. See Koenker (2005) for further
detail.

The QUANTREG procedure provides quantile regression in SAS/STAT software. Beginning with SAS/STAT 12.1, you
can also perform model selection for quantile regression with the new QUANTSELECT procedure. This procedure pro-
vides capabilities similar to those offered by the GLMSELECT procedure, which provides model selection for univariate
linear models. The experimental QUANTSELECT procedure includes:

o forward, backward, stepwise, and LASSO selection methods

variable selection criteria: AlIC, SBC, AICC, and so on

variable selection for both quantiles and the quantile process

the EFFECT statement for constructed model effects (splines)

PROC QUANTSELECT is multithreaded so that it can take advantage of multiple processors. It is very efficient and can
handle hundreds of variables and thousands of observations. After you have selected a model with the QUANTSELECT
procedure, you can proceed to use the QUANTREG procedure for final model analysis.

The following example illustrates the use of the QUANTSELECT procedure with baseball data from players in the 1986
season; information is available for a number of measures, and the goal is to predict player salary. You can request
model selection for any number of quantiles, and if you do so, you will find that different models are selected. If you are
interested only in the model for those players making the most money, you can base the model on the 90th quantile,
which is the analysis performed here.

The following statements input the baseball data:

data baseball;
length name $ 18;
length team $ 12;
input name $ 1-18 nAtBat nHits nHome nRuns nRBI nBB
yrMajor crAtBat crHits crHome crRuns crRbi crBB
league $ division § team $ position $ nOuts nAssts
nError salary;

datalines;

Allanson, Andy 293 66 1 30 29 14
1 293 66 1 30 29 14

American East Cleveland C 446 33 20 .

Ashby, Alan 315 81 7 24 38 39

14 3449 835 69 321 414 375
National West Houston C 632 43 10 475

The following statements invoke the QUANTSELECT procedure. The variable SALARY is the response variable, and a
number of baseball variables are available for selection. The adaptive LASSO method is used for model selection, with
AIC as the stopping criterion. Plots requested are the average check loss plot, the coefficient panel, and the criterion
panel.

proc quantselect data=baseball plots=(acl crit coef);
class league division;
model Salary = nAtBat nHits nHome nRuns nRBI nBB
yrMajor crAtBat crHits crHome crRuns crRbi
crBB league division nOuts nAssts nError /
selection=lasso (adaptive stop=aic)
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quantile=.9;
run;

Figure 9 displays model information. The quantile type is single-level, the selection method is adaptive LASSO, AIC is
both the select and stop criterion, and the choose criterion is SBC.

Figure 9 Model Information

The QUANTSELECT Procedure

Model Information

Data Set WORK . BASEBALL
Selection Method Adaptive LASSO
Quantile Type Single Level
Select Criterion AIC
Stop Criterion AIC
Choose Criterion SBC
Test Type Likelihood Ratio I
Dependent Variable salary

Figure 10 displays the selection summary information. You can see the values of AIC and AICC change as variables go
into and come out of the model. The optimal value of AIC is 1057.6857 at the fifth step, which corresponds to a model
with three variables: number of hits, career home runs, and division. These factors are the main factors in determining
salary for the 90th percentile.

Figure 10 Selection Summary

The QUANTSELECT Procedure
Selection stopped at a local minimum of the STOP criterion.
Selection Summary
Parameter Parameter Number
Step Entered Removed Parameters In AIC AICC
0 1 1219.3645 1219.3798
1 division 2 1199.2765 1199.3226
East
2 league 3 1200.9842 1201.0768
National
3 nHits 4 1150.8132 1150.9683
4 league 3 1153.0000 1153.0926
National
5 crHome 4 1057.6857* 1057.8407%*
6 league 5 1059.5331 1059.7665
National
7 league 4 1057.6857 1057.8407
National
* Optimal Value Of Criterion
Selection Summary
Parameter Parameter Model Adjusted
Step Entered Removed SBC R1 R1 p-Value
0 1222.9366 0.0000 0.0000 .
1 division 1206.4208 0.0806 0.0770 0.0043
East
2 league 1211.7006 0.0816 0.0745 0.7335
National
3 nHits 1165.1019 0.2468 0.2381 <.0001
4 league 1163.7164 0.2347 0.2289 0.1775
National
5 crHome 1071.9743%x 0.4714 0.4653%* <.0001
6 league 1077.3938 0.4717 0.4635 0.7519
National
7 league 1071.9743 0.4714 0.4653 0.7519
National
* Optimal Value Of Criterion
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Figure 11 Selected Effects

Selected Effects: Intercept nHits crHome division East

Figure 12 displays the coefficient panel, which shows the progression of the standardized coefficients and the SBC
throughout the selection process.

Figure 12 Coefficient Panel

Coefficient Progression for salary
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Figure 13 displays the progression of the average check loss for the selection process. It takes its lowest value at the
fifth stage.

Figure 13 Average Check Loss Plot
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Figure 14 displays the fit criteria for the selection progression.

Figure 14 CriterionPanel

Fit Criteria for salary

AlC AlCC
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Figure 15 contains the parameter estimates and their standardized versions.

Figure 15 Parameter Estimates

Parameter Estimates
Standardized
Parameter DF Estimate Estimate
Intercept 1 -102.136344 0
nHits 1 5.560281 244.615029
crHome 1 4.272688 367.624609
division East 1 174.773782 87.537677

You then perform a final analysis by using the QUANTREG procedure for the selected model:

proc quantreg data=baseball;
class division;
model Salary = nHits crHome division /
quantile=.9;
run;

Figure 16 displays summary statistics for this analysis.

Figure 16 Summary Statistics

The QUANTREG Procedure

Summary Statistics

Standard
Variable Q1 Median Q3 Mean Deviation MAD
nHits 73.0000 108.0 142.0 109.2 43.9933 51.8911
crHome 16.0000 40.0000 93.0000 71.4715 86.0406 45.9607
salary 190.0 425.0 750.0 535.9 451.1 407.7

Figure 17 contains the parameter estimates and standard errors.
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Figure 17 Parameter Estimates

Parameter Estimates

95% Confidence

Parameter DF Estimate Limits

Intercept 1 -102.136 -159.6696 64.9244
nHits 1 5.5603 4.3281 6.8183
crHome 1 4.2727 3.0359 6.2775

division East 1 174.7738 88.5813 359.0268
division West 0 0.0000 0.0000 0.0000

New QUANTLIFE Procedure

Quantile regression also provides an alternative and flexible technique for the analysis of survival data. You can
apply the method to right-censored responses, thus providing quantile-specific covariate effects and directly predicting
lifeime. Two quantile regression approaches have been developed to account for right-censoring. Portnoy (2003)
proposed a method to estimate conditional quantile functions from survival data based on the idea of the Kaplan-Meier
estimator. For each quantile, this problem is framed as a weighted linear regression quantile problem that is solved
for the conditional quantiles of a generalization of the Kaplan-Meier estimate. Peng and Huang (2008) developed a
censored quantile regression approach based on the Nelson-Aalen estimator of the cumulative hazard function. This
approach extends the martingale representation of that estimator to produce an estimating equation for conditional
quantiles. Both methods can be solved with linear programming algorithms. When there are no censored observations,
the Portnoy method produces the same estimates as are obtained from the QUANTREG procedure, and the Peng and
Huang method produces approximately the same estimates.

The experimental QUANTLIFE procedure provides these two quantile regression methods for the analysis of survival
data. PROC QUANTLIFE provides the following functionality:

provides interior point algorithms for estimation

enables parallel computing when multiple processors are available

provides Wald tests for the regression parameter estimates

produces survival plots, conditional quantile plots, and quantile process plots

supports the EFFECT statement so it can fit regression quantile spline curves

Consider a study of primary biliary cirrhosis, a rare but fatal chronic liver disease discussed in Lin, Wei, and Ying (1993).
Prognostic factors studied included age, edema, bilirubin, albumin, and prothrombin. Researchers at the Mayo Clinic
followed 418 patients between 1974 and 1984. The patients had a median follow-up time of 4.74 years and a censoring
rate of 61.5%. The following SAS statements create the SAS data set PBC:

data pbc;
input Time Status Age Albumin Bilirubin Edema Protime @Q@;
label Time="Follow-up Time in Days";

logAlbumin =log (Albumin) ;
logBilirubin =log(Bilirubin);
logProtime =log (Protime) ;
datalines;

400 1 58.7652 2.60 14.5 1.0 12.2 4500 0 56.4463 4.14 1.1 0.0 10.6
1012 1 70.0726 3.48 1.4 0.5 12.0 1925 1 54.7406 2.54 1.8 0.5 10.3
1504 0 38.1054 3.53 3.4 0.0 10.9 2503 1 66.2587 3.98 0.8 0.0 11.0
1832 0 55.5346 4.09 1.0 0.0 9.7 2466 1 53.0568 4.00 0.3 0.0 11.0
2400 1 42.5079 3.08 3.2 0.0 11.0 51 1 70.5599 2.74 12.6 1.0 11.5
3762 1 53.7139 4.16 1.4 0.0 12.0 304 1 59.1376 3.52 3.6 0.0 13.6

The syntax for the MODEL statement for the QUANTLIFE procedure is similar to that used in other SAS survival
procedures. You indicate the censoring variable by crossing it with the response variable, and then you supply the
censoring value in parentheses. The LOG option requests that the log response values be analyzed, the METHOD=NA
option specifies the Nelson-Aalen method, and the PLOT=(QUANTPLOT SURVIVAL QUANTILE) option requests the
estimated parameter by quantiles plot, the survival plot, and the predicted quantiles plot. The QUANTILE=(.1 .4 .5 .85)
option requests that those quantiles be modeled.

10
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ods graphics on;
proc quantlife data=pbc LOG method=na plot=(quantplot survival quantile) seed=1268;
model TimexStatus (0)=logBilirubin logProtime logAlbumin Age Edema
/quantile=(.1 .4 .5 .85);
run;
ods graphics off;

Figure 18 reports the model information. The Nelson-Aalen method is applied.

Figure 18 Model Information

The QUANTLIFE Procedure
Model Information
Data Set WORK.PBC
Dependent Variable Log (Time)
Censoring Variable Status
Censoring Value (s) 0
Number of Independent Variables 5
Number of Observations 418
Method Nelson-Aalen
Number of Resamplings 200
Seed for random number generator 1268

Figure 19 reports the censoring statistics: 257 observations out of 418 observations have been censored.

Figure 19 Censoring Summary

Summary of the Number of Event and Censored Values

Percent
Total Event Censored Censored
418 161 257 61.48

Figure 20 contains the parameter estimates. Each of the requested quantiles has its own set of parameter estimates.
The confidence limits are computed by resampling methods.

Figure 20 Parameter Estimates

Parameter Estimates

Standard 95% Confidence

Quantile Parameter DF Estimate Error Limits t Value Pr > |t|
0.1000 Intercept 1 14.8012 4.0122 6.9375 22.6649 3.69 0.0003
0.1000 logBilirubin 1 -0.4959 0.1405 -0.7713 -0.2204 -3.53 0.0005
0.1000 logProtime 1 -3.6456 1.4951 -6.5760 -0.7152 -2.44 0.0152
0.1000 logAlbumin 1 2.0165 0.9360 0.1819 3.8512 2.15 0.0318
0.1000 Age 1 -0.0249 0.0110 -0.0464 -0.0033 -2.26 0.0241
0.1000 Edema 1 -0.8840 0.6325 -2.1237 0.3558 -1.40 0.1630
0.4000 Intercept 1 13.4972 3.3406 6.9497 20.0448 4.04 <.0001
0.4000 logBilirubin 1 -0.6046 0.1013 -0.8031 -0.4062 -5.97 <.0001
0.4000 logProtime 1 -2.1717 1.3080 —-4.7355 0.3920 -1.66 0.0976
0.4000 logAlbumin 1 0.9891 0.8102 -0.5989 2.5770 1.22 0.2229
0.4000 Age 1 -0.0258 0.0077 -0.0409 -0.0106 -3.33 0.0009
0.4000 Edema 1 -1.0523 0.3694 -1.7763 -0.3282 -2.85 0.0046
0.5000 Intercept 1 10.9103 3.2581 4.5246 17.2959 3.35 0.0009
0.5000 logBilirubin 1 -0.5590 0.0829 -0.7214 -0.3966 -6.75 <.0001
0.5000 logProtime 1 -1.0761 1.4380 -3.8946 1.7423 -0.75 0.4547
0.5000 logAlbumin 1 1.3619 0.6494 0.0891 2.6348 2.10 0.0366
0.5000 Age 1 -0.0327 0.0091 -0.0505 -0.0149 -3.60 0.0004
0.5000 Edema 1 -0.7288 0.4126 -1.5375 0.0798 -1.77 0.0780
0.8500 Intercept 1 10.1137 10.0362 -9.5569 29.7843 1.01 0.3142
0.8500 logBilirubin 1 -0.5582 0.4125 -1.3667 0.2502 -1.35 0.1767
0.8500 logProtime 1 -0.8857 3.7313 -8.1989 6.4274 -0.24 0.8125
0.8500 logAlbumin 1 1.4435 1.3040 -1.1122 3.9993 1.11 0.2689
0.8500 Age 1 -0.0148 0.0215 -0.0569 0.0274 -0.69 0.4924
0.8500 Edema 1 -0.4028 0.6447 -1.6664 0.8607 -0.62 0.5324
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For comparison purposes, consider the table of parameter estimates shown in Figure 21. These were produced by
the LIFEREG procedure using the default Weibull distribution; PROC LIFEREG fits the accelerated failure time model,
which assumes that the effect of independent variables is multiplicative on the event time. The variable LOGPROTIME
has a very small p-value for this analysis. However, the same variable has much larger p-values for the quantile
regression analysis; they are 0.4547 for the 0.5 quantile and 0.8125 for the 0.85 quantile. The p-values are much
smaller for the lower quantiles. Apparently, the effect of this covariate depends on which side of the response distribution
is being modeled.

Figure 21 Parameter Estimates

The LIFEREG Procedure
Analysis of Maximum Likelihood Parameter Estimates
Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq
Intercept 1 12.2155 1.4539 9.3658 15.0651 70.59 <.0001
logBilirubin 1 -0.5770 0.0556 -0.6861 -0.4680 107.55 <.0001
logProtime 1 -1.7565 0.5248 -2.7850 -0.7280 11.20 0.0008
logAlbumin 1 1.6694 0.4276 0.8313 2.5074 15.24 <.0001
Age 1 -0.0265 0.0053 -0.0368 -0.0162 25.35 <.0001
Edema 1 -0.6303 0.1805 -0.9842 -0.2764 12.19 0.0005
Scale 1 0.6807 0.0430 0.6014 0.7704
Weibull Shape 1 1.4691 0.0928 1.2980 1.6628

This behavior of the covariate coefficients is illustrated in the quantiles plot in Figure 22. This is a scatter plot of
the estimated regression parameter against the quantiles. In the plot for logPROTIME, the parameter estimate grows
smaller from its value of —3.6456 for the 0.1 quantile and levels off around —1.0 for the 0.5 and higher quantiles.

Figure 22 Estimated Parameter by Quantiles Plot

Estimated Parameter by Quantile for Time
With 95% Confidence Limits
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Finally, Figure 23 displays the survival probabilities for the range of survival times, and Figure 24 displays the predicted
quantiles.
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Figure 23 Survival Plot Figure 24 Quantile Plot
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New ADAPTIVEREG Procedure

SAS/STAT software provides various tools for nonparametric regression, including the LOESS, TPSPLINE, and GAM
procedures. Typical nonparametric regression methods involve a large number of parameters to capture nonlinear
trends so the model space is fairly large. The sparsity of data in high dimensions is another issue, often resulting in
slow convergence or even failure for many nonparametric regression methods.

The LOESS and TPSPLINE procedures are limited to problems in low dimensions. The GAM procedure fits generalized
additive models with the assumption of additivity. It can handle data sets, but the computation time for its local scoring
algorithm (Hastie and Tibshirani, 1990) to converge increases quickly with the size of the data set.

The new ADAPTIVEREG procedure provides a nonparametric modeling approach for high-dimensional data. PROC
ADAPTIVEREG fits multivariate adaptive regression splines as introduced by Friedman (1991b). The method is a
nonparametric regression technique that combines both regression splines and model selection methods. It does not
assume parametric model forms, and it does not require knot values for constructing regression spline terms. Instead,
it constructs spline basis functions in an adaptive way by automatically selecting appropriate knot values for different
variables; it performs model reduction by applying model selection techniques. Thus, the ADAPTIVEREG procedure is
both a nonparametric regression procedure and a predictive modeling procedure.

The multivariate adaptive regression splines method is similar to recursive partitioning models (Breiman et al. 1984).
PROC ADAPTIVEREG grows an overfitted model with the fast update algorithm (Friedman 1993) and prunes it back
with the backward selection technique. During the forward selection process, bases are created from interactions
between existing parent bases and nonparametric transformations of continuous or classification variables as candidate
effects. After the model grows to a certain size, the backward selection process begins by deleting selected bases.
The deletion continues until the null model is reached, and then an overall best model is chosen based on some
goodness-of-fit criteria.

The ADAPTIVEREG procedure supports models with classification variables (Friedman 1991a), and it provides options
for improving modeling speed. PROC ADAPTIVEREG extends the method to data with response distributions from the
exponential family, such as binomial and Poisson (Buja et al. 1991). PROC ADAPTIVEREG is multithreaded so it takes
advantage of multiple processors.

PROC ADAPTIVEREG

supports classification variables with different ordering options

enables you to force effects into the final model or restrict variables in linear forms

supports options for fast forward selection
supports partitioning of data into training, validation, and testing roles

provides leave-one-out and k-fold cross validation

produces graphical representations of the selection process, model fit, functional components and fit diagnostics

The following example illustrates the use of the ADAPTIVEREG procedure. Researchers collected data on city-cycle
fuel efficiency and automobile characteristics for 361 vehicle models manufactured from 1970 to 1982. The data can
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be downloaded from the UCI Machine Learning Repository (Asuncion and Newman 2007). The following DATA step
creates the data set AUTOMPG:

title 'Automobile MPG study';
data autompg;
input mpg cylinders displacement horsepower weight
acceleration year origin name $35.;

datalines;
18.0 8 307.0 130.0 3504 12.0 70 1 chevrolet chevelle malibu
15.0 8 350.0 165.0 3693 11.5 70 1 buick skylark 320
18.0 8 318.0 150.0 3436 11.0 70 1 plymouth satellite
16.0 8 304.0 150.0 3433 12.0 70 1 amc rebel sst
17.0 8 302.0 140.0 3449 10.5 70 1 ford torino

’

There are nine variables in the data set. The response variable MPG is city-cycle mileage per gallon (mpg). Seven
predictor variables (number of cylinders, displacement, weight, acceleration, horsepower, year and origin) are created.
The variables for number of cylinders, year, and origin are categorical.

The dependency of vehicle fuel efficiency on these factors might be nonlinear. Dependency structures within the
predictors might also mean that some of the predictors are redundant. For example, a model with more cylinders is
likely to have more horsepower. The object of this analysis is to explore the nonlinear dependency structure and to find
a parsimonious model that does not overfit the data. A more parsimonious model has better predictive ability.

The following PROC ADAPTIVEREG statements fit an additive model with linear spline terms of continuous predictors.
The variable transformations and the model selection based on the transformed terms are performed in an adaptive
and automatic way. If the ADDITIVE option is not supplied, PROC ADAPTIVEREG will fit a model with both main effects
and two-way interaction terms.

ods graphics on;
proc adaptivereg data=autompg plots=all;
class cylinders year origin;
model mpg = cylinders displacement horsepower
weight acceleration year origin / additive;
run;
ods graphics off;

PROC ADAPTIVEREG summarizes important information about the fitted model in Figure 25.

Figure 25 Model Information and Fit Controls

Automobile MPG study
The ADAPTIVEREG Procedure

Model Information

Data Set WORK . AUTOMPG
Response Variable mpg

Class Variables cylinders year origin
Distribution Normal

Link Function Identity

Fit Controls

Maximum Number of Bases 21
Maximum Order of Interaction 1

DF Charged per Knot 2

Knot Separation Parameter 0.05
Penalty for Variable Reentry 0
Missing Value Handling Include

In addition to listing the classification variables in the “Model Information” table, PROC ADAPTIVEREG displays class-
level information about the classification variables specified in the CLASS statement. Figure 26 lists the levels of the
classification variables CYLINDERS, YEAR, and ORIGIN. Although the values of CYLINDERS and YEAR are naturally
ordered, they are treated as ordinary classification variables.
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Figure 26 Class Level Information

Class Level Information

Class Levels Values

cylinders 5 345638

year 13 70 71 72 73 74 75 76 77 78 79 80 81 82
origin 3 123

The “Fit Statistics” table in Figure 27 lists summary statistics for the fitted regression spline model. Because the final
model is essentially a linear model, several naive statistics are reported as if the model were fitted with predetermined
basis functions. However, the determination of basis functions and the model selection process are highly nonlinear,
so additional statistics that incorporate the extra sources of degrees of freedom are also displayed. These statistics
include effective degrees of freedom, the GCV criterion, and the GCV R-Square.

Figure 27 Fit Statistics

Fit Statistics

Naive R-Square 0.853201
Naive Adjusted R-Square 0.850290
Naive Mean Square Error 9.185230
Effective Degrees of Freedom 15.000000
GCV 9.777318
GCV R-Square 0.841081

The “Parameter Estimates” table in Figure 28 displays parameter estimates for constructed basis functions in addition
to each function’s construction component. For example, BASIS1 has an estimate of —0.003242. It is constructed from
a parent basis function BASISO (intercept) and a linear spline function of WEIGHT with a single knot placed at 3139.
BASIS3 is constructed from a parent basis function BASISO and an indicator function of YEAR. The indicator is set to
1 when a class level of YEAR falls into the subset of levels listed in the “Levels” column and set to 0 otherwise.

Figure 28 Parameter Estimates

Regression Spline Model after Backward Selection
Name Coefficient Parent Variable Knot Levels
BasisO 17.862071 Intercept
Basisl -0.003242 BasisO weight 3139.000000
Basis2 0.010344 BasisO weight 3139.000000
Basis3 2.045223 BasisO year 10 12 11 9 3 8 7
Basis9 2.539889 BasisO acceleration 20.700000
Basislé -0.241712 BasisO displacement 85.000000
Basisl7 4.767534 BasisO year 310 12 11 9
Basisl9 -6.203451 BasisO year 39

During the model construction and selection process, some basis function terms are removed. You can view the
backward elimination process in the selection plot shown in Figure 29. The plot displays how the model sum of squared
error and the corresponding GCV criterion change during the backward elimination process. The sum of squared
error increases as more basis functions are removed from the full model. The GCV criterion decreases at first when
three basis functions are dropped, and it increases afterwards. The vertical line indicates the selected model with the
minimum GCV value. The model is formed by dropping BASIS15, BASIS5, and BASIS10 from the full model.
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Figure 29 Selection Plot

Progression of Model Fit Criteria for mpg after Backward
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Basis Sequence

The final model is an additive model. Basis functions of the same variables can be grouped together to form functional
components. The “ANOVA Decomposition” table in Figure 30 shows four functional components and their contribution
to the final model. The functional component of weight contributes the most, while the component of displacement
contributes the least.

Figure 30 ANOVA Decomposition

ANOVA Decomposition
Number of LOF Change GCV Change
Function Bases DF if Omitted if Omitted
£ (weight) 2 2.000000 10106 29.558094
£ (year) 3 3.000000 2394.286639 6.645387
f (acceleration) 1 1.000000 325.035393 0.856841
f (displacement) 1 1.000000 74.696093 0.110602

Variable importance is another criterion that focuses on the contribution of each individual. Variable importance is
defined to be the square root of the GCV value of a submodel with all basis functions that involve a removed variable,
minus the square root of the GCV value of the selected model, then scaled to have the largest importance value of 100.
Figure 31 lists importance values for four variables that comprise the selected model. Similar to the ANOVA decompo-
sition results, WEIGHT and YEAR are two dominant factors that determine vehicle mpg values, while DISPLACEMENT
and ACCELERATION are less important.

Figure 31 Variable Importance

Variable Importance
Number of
Variable Bases Importance
displacement 1 0.560778
weight 2 100.000000
acceleration 1 4.265142
year 3 29.432291

The component panel in Figure 32 displays the fitted functional components against their forming variables. When a
vehicle model’s displacement is less than 85, its mpg value increases with its displacement. The displacement does not
matter much once it exceeds 85. The shape of the functional component strongly suggests a logarithm transformation.
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The component of WEIGHT shows that vehicle weight has negative impact on its mpg value. The trend suggests a
possible reciprocal transformation. When a model’s acceleration value is larger than 20.7, it affects the mpg value in a
positive manner. It does not matter much if it is less than 20.7. Although YEAR is treated as a classification variable, its
values are ordinal. The general trend is quite clear: more recent models tend to have higher mpg values. Automobile
companies apparently paid more attention to improving vehicle fuel efficiency after 1976.

Figure 32 Component Panel
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Figure 33 shows a panel of fit diagnostics for the selected model; all of these diagnostics indicate a reasonable fit.

Figure 33 Diagnostics Panel

Fit Diagnostics for mpg
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Finite Mixture Models

Finite mixture models enable you to fit statistical models to data when the distribution of the response is a finite mix-
ture of univariate distributions. These models are useful for applications such as estimating multimodal or heavy-tailed
densities, fitting zero-inflated or hurdle models to count data with excess zeros, modeling overdispersed data, and
fitting regression models with complex error distributions. Many well-known statistical models for dealing with overdis-
persed data are members of the finite mixture model family (for example, zero-inflated Poisson models and zero-inflated
negative binomial models.)

PROC FMM performs maximum likelihood estimation for all models, and it provides Markov chain Monte Carlo estima-
tion for many models, including zero-inflated Poisson models. The procedure includes many built-in link and distribution
functions, including the beta, shifted, Weibull, beta-binomial, and generalized Poisson distributions, as well as standard
members of the exponential family of distributions. In addition, several specialized built-in mixture models are provided,
such as the binomial cluster model (Morel and Nagaraj, 1993).

The FMM procedure becomes production with SAS/STAT 12.1. In addition, it adds the truncated normal and truncated
negative binomial distributions as well as support for output on both the probability and count scales.

Updated Frailty Models in Survival Analysis

When experimental units are clustered, the failure times of units within a cluster tend to be correlated. One approach is
to account for within-cluster correlation by using a shared frailty model in which the cluster effects are incorporated into
the model as random variables. Stokes, Chen, and So (2011) describe the new PHREG functionality to fit shared frailty
models via the specification of a RANDOM statement in the SAS/STAT 9.3 release. The penalized partial likelihood
approach is used, and that first implementation assumed that the frailties were distributed as lognormal. With SAS/STAT
12.1, the frailties can also be assumed to be distributed as gamma.

SAS/STAT 12.1 also provides a Bayesian analysis of the shared frailty model.

The hazard rate for the jth individual in the ith cluster is
24j (1) = Ao(n)eP B i

where A¢(¢) is an arbitrary baseline hazard rate, Z;; is the vector of (fixed-effect) covariates, 8 is the vector of re-
gression coefficients, and y; is the random effect for cluster i. The random components yi, ..., ys are assumed to be
independent and identically distributed.

In terms of the frailties uy, ..., us, given by y; = log(u;), the frailty model can be written as

2ij(0) = Ao(Dyu;ef 4 ®

The frailty can be distribution as gamma or lognormal:

Frailty Distribution Details
Gamma | ui~G(§.4) EG)=1 V) =0
LogNormal | y; ~ N(0,0) E(yi)=0 V(y)=190

The following example illustrates the use of the Bayesian frailty model to assess whether laser treatment delays the
occurrence of blindness in high risk diabetic patients. One eye of each patient is treated with laser photocoagulation,
and the other eye is treated with standard remedies. Since juvenile and adult diabetes have very different courses, it
is also desirable to examine how the age of onset of diabetes might affect the time of blindness. Since there are no
biological differences between the left eye and the right eye, it is natural to assume a common baseline hazard function
for the failure times of the left and right eyes. Each patient is a cluster that contributes two observations to the input
data set, one for each eye.

The following DATA step creates the data set BLIND. Variables include those for ID, time to blindness, status for blind-
ness, treatment, and type of diabetes.

proc format;
value type 0='Juvenile' 1='Adult';
value Rx ='Laser' 0='Others';
run;
data Blind;
input ID Time Status dty trt Q@;
Type= put (dty, type.);
Treat= put (trt, Rx.);
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datalines;
546.23 01 1 546.23 010 14 42.50 0 0 1 14 31.301 00
16 42.27 0 0 1 16 42.27 0 0 O 25 20.60 0 0 1 25 20.60 0 0 O
29 38.77 00 1 29 0.30100 46 65.23 0 0 1 46 54.27 1 0 0

The following SAS statements request the Bayesian frailty model. Essentially, you add the BAYES statement. The
DISPERSIONPRIOR=IGAMMA option specifies an inverse gamma distribution 1G(3, 3) for the dispersion parameter
for the frailty. No prior is specified for the regression coefficents, so the uniform prior is used by default. In the RANDOM
statement, the option SOLUTION(2 4) requests that Bayesian summary statistics and diagnostics be computed for the
second and fourth random effect parameters.

proc phreg data=Blind;
class ID Treat Type;
model TimexStatus (0)=Treat |Type;
random ID / dist=gamma solution (2 4);
bayes seed=1 dispersionprior=igamma (shape=3, scale=3);
title 'Bayesian Analysis for Gamma Frailty Model';
run;

Figure 34 displays the priors for the regression coefficients. By default, uniform priors are used.

Figure 34 Coefficient Priors

Bayesian Analysis for Gamma Frailty Model
The PHREG Procedure
Bayesian Analysis

Uniform Prior for Regression Coefficients

Parameter Prior

TreatLaser Constant
TypeAdult Constant
TreatLaserTypeAdult Constant

Figure 35 displays the dispersion parameter prior, which was chosen to be inverse gamma (3, 3).

Figure 35 Dispersion Prior

Dispersion Parameter Prior

Hyperparameters
Prior Shape Scale
Theta IGAMMA 3 3

Figure 36 displays the fit statistics.

Figure 36 Fit Statistics

Fit Statistics

DIC (smaller is better) 1987.797
pD (Effective Number of Parameters) 194.857

Figure 37 reports the posterior summaries. These values are similar to the parameter estimates obtained for the
frequentist frailty analysis assuming the frailties are distributed as gamma.
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Figure 37 Posterior Summaries

Bayesian Analysis for Gamma Frailty Model
The PHREG Procedure
Bayesian Analysis

Posterior Summaries

Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
TreatLaser 10000 -0.5399 0.2348 -0.6909 -0.5355 -0.3863
TypeAdult 10000 0.4363 0.2743 0.2444 0.4298 0.6138
TreatLaserTypeAdult 10000 -1.0019 0.3914 -1.2608 -0.9937 -0.7338
ID14 10000 0.0642 0.7595 -0.4127 0.1144 0.5894
ID25 10000 -0.4328 0.9178 -1.0333 -0.3636 0.2158
Theta 10000 1.1173 0.3761 0.8414 1.0719 1.3357

Figure 38 displays the credible intervals for the posterior parameters.

Figure 38 Posterior Intervals

Posterior Intervals

Parameter Alpha Equal-Tail Interval HPD Interval

TreatLaser 0.050 -1.0114 -0.0762 -1.0116 -0.0782
TypeAdult 0.050 -0.0759 0.9767 -0.0368 1.0063
TreatLaserTypeAdult 0.050 -1.7735 -0.2402 -1.7793 -0.2524
ID14 0.050 -1.5597 1.4514 -1.5085 1.4750
ID25 0.050 -2.4159 1.1902 -2.2176 1.3030
Theta 0.050 0.5273 1.9739 0.4687 1.8534

Figure 39 includes the effective sample sizes.

Figure 39 Effective Sample Sizes

Effective Sample Sizes
Autocorrelation
Parameter ESS Time Efficiency
TreatLaser 475.8 21.0190 0.0476
TypeAdult 245.7 40.6973 0.0246
TreatLaserTypeAdult 298.6 33.4948 0.0299
ID14 270.0 37.0418 0.0270
ID25 573.5 17.4373 0.0573
Theta 59.9 167.0 0.0060

These values are reasonable for this analysis.

The trace plot for TREATLASER is displayed in Figure 40. It shows reasonable mixing. The trace plots for the other
parameters were acceptable.
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Figure 40 Trace Plot

Diagnostics for TreatLaser

TreatLaser
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Updates to Bayesian Capabilities

Bayesian capabilities continue to grow in SAS/STAT software. These capabilities are available through two channels—
as additional capabilities in existing procedures, with the BAYES statement, and through a general modeling paradigm
with the MCMC procedure. Besides the availability of Bayesian frailty models in PROC PHREG, the Gamerman algo-
rithm becomes the default sampling mechanism in the GENMOD procedure, except when you have conjugacy in the
linear models.

In addition, the MCMC procedure has been enhanced in many different ways. The highlights are:

The RANDOM statement supports arbitrary hierarchy.

The MODEL statement supports missing value sampling.

More conjugate sampling algorithms are available.

Conjugate samplers now apply to random-effects parameters and missing value parameters, not just model
parameters.

o A slice sampler is now available.

In addition, the MCMC procedure no longer uses optimization to find starting values when the sampling algorithms
used are conjugate and/or direct, which can improve performance. You can now submit a combination of MODEL and
RANDOM statements without needing a PARMS statement, and several postprocessing macros provide summary and
diagnostic information. Additional distributions are available in the RANDOM statement, and the multivariate normal
distribution with autocorrelation covariance structure is available for the PRIOR, RANDOM, and MODEL statements.

The MCMC procedure also includes facilities for managing missing data. Previously, missing responses for the de-
pendent variable in the analysis resulted in those observations being deleted. Beginning with SAS/STAT 12.1, missing
values for the responses are automatically sampled. In addition, the MCMC procedure can now accommodate missing
values for the covariates. This new capability is illustrated with the following example, which uses the MCMC procedure
to fit Bayesian logistic regression models to analyze air pollution data.

Researchers studied the effects of air pollution on respiratory disease in children. The response variable (Y) rep-
resented whether a child exhibited wheezing symptoms; it was recorded as 1 for symptoms exhibited and 0 for no
symptoms exhibited. City of residence (X1) and maternal smoking status (X2) were the explanatory variables. The
variable X1 was coded as 1 if the child lived in the more polluted city, Steel City, and 0 if the child lived in Green Hills.
The variable X2 was the number of cigarettes the mother smoked per day. Both the covariates contain missing values:
17 for X1 and 30 for X2, respectively.
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This example illustrates the treatment of missing at random (MAR) data by ignoring the missing mechanism. In other
words, the missingness is assumed to depend only on the observed values, and not on the missing values, which
implies that the modeling of the missingness can be ignored. You can model nonignorable missing data, also called
MNAR (missing not at random), with the MCMC procedure. See Little and Rubin (2002) for further information about
missing data analysis.

Suppose you want to fit a Bayesian logistic regression model for whether the subject develops wheezing symptoms
with density as

Y; ~ binary(p;)
logit(p;) = Po+B1-X1; + fa2-X2;
forthei =1, ...,390 subjects.

With this model, you can write the odds ratio for comparing Steel City to Green Hills as follows:

ORx; = exp (B1)

The odds ratio is useful for interpreting how the odds of developing a wheeze change for a child living in the more
polluted city. Similarly, the odds ratio for the maternal smoking effect is written as:

ORy, = exp(B2)

The complete data likelihood function for each of the subjects is

p(YilBo, B1, B2 Xlmis,is X2mis,is X1ops,i> X20bs,)) = binary(p;)

where p(:|]-) denotes a conditional probability density. The binary density is evaluated at the specified value of ¥; and
corresponding mean parameter p;. The three parameters in the complete data likelihood are o, 81, and B8,, which
correspond to an intercept, adjustment for living in Steel City, and a slope for maternal smoking, respectively.

The covariates X1 and X2 are written in terms of whether they were missing (X1,,;5s and X2,,;5) or observed (X1,
and X2,,5). The goal is to make inferences from the observed data likelihood

r(Y;lBo. B1.B2. Xlobs,i’ Xzobs,i)

by multiplying the conditional distribution p(X1,;s,i» X 2mis,i | X 1ops,i» X 20ps,i) By the likelihood and integrating over the
missing observations. To make inferences from the observed data likelihood, you need to specify a distribution for
the missing covariates p(X1p;s,i. X 2mis,i| X 1ops,i- X 20ps,i» @), Where a represents the hyperparameters in the missing
data distributions. Suppose you specify a joint distribution of X1 and X2 in terms of the product of a conditional and
marginal distribution; that is,

PXmis, X2misle) = p(Xlpis|X2mis. @10, 211) P(X 2misla20)

For this example, say p(X1uis,i|X2mis.i- @10, 211) is a logistic regression and p(X2,,;5,;|a20) is a Poisson distribution.
You treat the missing covariates as parameters, and you place prior distributions on them and their hyperparameters.

Suppose you place the following prior distributions on the three regression parameters, the missing covariates, and

hyperparameters:
7(Bo). 7(B1). m(B2) = normal(0,0? = 10)
P(Xmis,ilX2i,@10,011) = binary(pc ;)
logit(pc,i) = a10+ o1 X2;
n(e10), m(@11) = normal(0,0% = 10)
P(X2pis,ilazg) = Poisson(e¥20)
n(az0) = normal(0,02 =2)
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where 7(-) indicates a prior distribution.
The following SAS statements create the data set AIR:

data air;
input y x1 x2;
datalines;

0

0

0
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=
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’

The next set of SAS statements fit a Bayesian logistic regression with missing covariates. The SEED= option specifies
a seed for the random number generator, which guarantees the reproducibility of the Markov chain. The NMC= option
specifies the number of posterior simulation iterations. The MONITOR= option outputs analysis on selected variables
of interest in the program. The STATS= option outputs posterior summary and interval statistics. The DIAG= option
requests the effective sample sizes of parameters.

proc mcmc data=air seed=1181 nmc=10000 monitor=(_parms_ orxl orx2)
stats=(summary interval) diag=ess;
parms betaO -1 betal 0.1 beta2 .01;
parms alphal0 0 alphall 0 alpha20 O0;

prior beta: alphal: ~ normal (0,var=10);
prior alpha20 ~ normal (0,var=2);

beginnodata;
pm = exp(alpha20);
orxl = exp (betal);
orx2 = exp (beta2);
endnodata;
model x2 ~ poisson(pm) monitor=(1 3 10);
Pl = logistic(alphalO + alphall * x2);
model x1 ~ binary(pl) monitor=(4 10 16);
P = logistic(beta0 + betalxxl + beta2xx2);
model y ~ binary(p);

run;

The PARMS statements specify the parameters in the model and assign initial values to each of them. The PRIOR
statements specify priors for all the model parameters. The notation BETA: and ALPHA: in the PRIOR statements are
shorthand for all variables that start with ‘BETA’ and ‘ALPHA, respectively. The shorthand notation is not necessary,
but it makes your code succinct.

The BEGINNODATA and ENDNODATA statements enclose three programming statements that calculate the Poisson
mean PM, and the two odds ratios (ORX1 and ORX2). These enclosed statements are independent of any data set
variables, and they are executed once per iteration to reduce unnecessary observation-level computations.

The first MODEL statement assigns a Poisson likelihood with mean PM to X2. The statement allows missing values in
the variable, creates one variable for each of the missing values, and augments them automatically. In each iteration,
PROC MCMC samples missing values from their posterior distributions and incorporates them as part of the simulation.
By default, the procedure does not output analyses of the posterior samples of the missing values. You can use the
MONITOR= option to choose the missing values that you want to monitor. In the example, the first, third, and tenth
missing values are monitored.

The P1 assignment statement calculates p. ;. The second MODEL statement assigns a binary likelihood with proba-
bility p1, and monitors the fourth, tenth, and sixteenth missing values in covariate X1.

The P1 assignment statement calculates p; in the logistic model. The third MODEL statement specifies the complete
data likelihood function for Y.

Figure 41 displays the “Number of Observations” and “Missing Data Information” tables. The “Number of Observations”
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table lists the number of observations read from the DATA= data set and the number of observations used in the
analysis. No observations were omitted from the data set in the analysis. The “Missing Data Information” table lists the
variables that contain missing values (X1 and X2), the number of missing observations in each variable, the observation
indices of these missing values, and the sampling algorithms used. By default, the first 20 observation indices of each
variable are listed.

Figure 41 Observation Information and Missing Data Information

The MCMC Procedure

Number of Observations Read 390
Number of Observations Used 390

Missing Data Information Table

Number of Observation Sampling
Variable Missing Obs Indices Method
x2 30 14 41 50 55 59 66 71 83 Geo—-Metropolis

88 90 118 158 174 175
178 183 196 203 210 212

x1 17 50 92 93 167 194 231 273 Inverse CDF
296 303 304 308 330 349
373 385 388 390

There are 30 missing values for the variable X2 and 17 missing values for variable X1. Internally, PROC MCMC
creates 30 and 17 variables for the missing values in X2 and X1, respectively. The default naming convention of these
missing values is determined by concatenating the response variable with the observation number. For example, the
first missing value in X2 is the fourteenth observation, and the corresponding variable is X2_14.

Figure 42 displays summary and interval statistics for each parameters, the odds ratios, and the monitored missing
values.

Figure 42 Posterior Summary and Interval Statistics

The MCMC Procedure
Posterior Summaries
Standard Percentiles
Parameter N Mean Deviation 25% 50% 75%
betal 10000 -1.3697 0.2051 -1.5057 -1.3715 -1.2293
betal 10000 0.4854 0.2431 0.3166 0.4807 0.6557
beta2 10000 0.0147 0.0230 -0.00091 0.0147 0.0302
alphal0 10000 -0.2256 0.1491 -0.3266 -0.2292 -0.1276
alphall 10000 0.0128 0.0213 -0.00155 0.0133 0.0270
alpha20 10000 1.5641 0.0246 1.5474 1.5637 1.5805
orxl 10000 1.6736 0.4139 1.3725 1.6172 1.9266
orx2 10000 1.0150 0.0234 0.9991 1.0148 1.0307
x2_14 10000 4.9290 2.1547 3.0000 5.0000 6.0000
x2_50 10000 4.9673 2.3007 3.0000 5.0000 6.0000
x2_90 10000 4.9516 2.2265 3.0000 5.0000 6.0000
x1_167 10000 0.5606 0.4963 0 1.0000 1.0000
x1_304 10000 0.4469 0.4972 0 0 1.0000
x1_388 10000 0.4222 0.4939 0 0 1.0000
Posterior Intervals
Parameter Alpha Equal-Tail Interval HPD Interval
betal 0.050 -1.7734 -0.9641 -1.7537 -0.9612
betal 0.050 0.0245 0.9532 0.00910 0.9374
beta2 0.050 -0.0309 0.0601 -0.0256 0.0628
alphal0 0.050 -0.5174 0.0661 -0.5280 0.0517
alphall 0.050 -0.0289 0.0546 -0.0302 0.0529
alpha20 0.050 1.5151 1.6127 1.5169 1.6137
orxl 0.050 1.0248 2.5939 0.9783 2.4848
orx2 0.050 0.9695 1.0619 0.9747 1.0648
x2_14 0.050 1.0000 9.0000 1.0000 9.0000
x2_50 0.050 1.0000 10.0000 1.0000 9.0000
x2_90 0.050 1.0000 10.0000 1.0000 9.0000
x1_167 0.050 0 1.0000 0 1.0000
x1_304 0.050 0 1.0000 0 1.0000
x1_388 0.050 0 1.0000 0 1.0000
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Lastly, Figure 43 displays the effective sample sizes (ESS) of monitored variables. The ESSs indicate reasonable
mixing for all of these variables.

Figure 43 Effective Sample Sizes

The MCMC Procedure
Effective Sample Sizes
Autocorrelation
Parameter ESS Time Efficiency
betal 702.7 14.2318 0.0703
betal 789.5 12.6656 0.0790
beta2 889.8 11.2383 0.0890
alphalO 812.0 12.3158 0.0812
alphall 683.7 14.6256 0.0684
alpha20 928.4 10.7708 0.0928
orxl 806.2 12.4039 0.0806
orx2 892.9 11.1997 0.0893
x2_14 1565.7 6.3871 0.1566
x2_50 1627.0 6.1461 0.1627
x2_90 1676.8 5.9636 0.1677
x1_167 10000.0 1.0000 1.0000
x1_304 9766.1 1.0240 0.9766
x1_388 10000.0 1.0000 1.0000

The odds ratio for X1 is the multiplicative change in the odds of a child wheezing in Steel City compared to the odds of
the child wheezing in Green Hills. The estimated odds ratio (ORX1) value is 1.6736 with a corresponding 95% equal-tail
credible interval of (1.0248, 2.5939). City of residence is a significant factor in a child’s wheezing status. The estimated
odds ratio for X2 is the multiplicative change in the odds of developing a wheeze for each additional reported cigarette
smoked per day. The odds ratio of ORX2 indicates that the odds of a child developing a wheeze is 1.0150 times higher
for each reported cigarette a mother smokes. The corresponding 95% equal-tail credible interval is (0.9695,1.0619).
Since this interval contains the value 1, maternal smoking is not considered to be an influential effect.

See Chen (2009) and Chen (2011) for more information about the MCMC procedure.

Additional Postprocessing

The LIFEREG and PROBIT procedures have been updated to include additional postprocessing statements. They now
provide the TEST, LSMEANS, LSMESTIMATE, ESTIMATE, SLICE, and EFFECTPLOT statements, and so does the
LOGISTIC procedure for stratified analyses.

Statistical Graphics

Each release of SAS/STAT software includes additional graphs. As seen in the examples in this paper, new procedures
come equipped with the appropriate graphs. The STDRATE procedure provides the strata SMR plot, the QUANTLIFE
procedure produces quantile plots, and the QUANTSELECT procedure displays a graph of the progression of the
average check loss. Existing procedures are also actively updating their existing graphs and adding useful new ones.
For example, the FREQ procedure adds a mosaic plot in this release, and it also displays the common odds ratio in the
odds ratios plot.

Other Highlights

A number of existing procedures have also had important updates; many of these are the result of user requests. A few
of these enhancements are listed:

WEIGHT statement in PROC LIFETEST

e case-level (observation-level) residual diagnostics with latent variables in PROC CALIS

partial R-square for relative importance of parameters in PROC LOGISTIC

Miettinen-Nurminen confidence limits for the difference of proportions in PROC FREQ

e Poisson sampling in PROC SURVEYSELECT
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e group sequential design with nonbinding acceptance boundary in the SEQDESIGN and SEQTEST procedures
e post-stratification estimation in the SURVEYMEANS procedure
e REF= option added to the CLASS statement for GLM, MIXED, GLIMMIX, and ORTHOREG procedures

For Further Information

A good place to start for further information is the “What's New in SAS/STAT 12.1” chapter in the online documentation
when it becomes available. In addition, the Statistics and Operations Focus Area includes substantial information about
the statistical products, and you can find it at support.sas.com/statistics/. The quarterly e-newsletter for that
site is available on its home page. And of course, complete information is available in the online documentation located
here: support.sas.com/documentation/onlinedoc/stat/.
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