

MACHINE LEARNING QUICK REFERENCE: BEST PRACTICES

Topic	Common Challenges	Suggested Best Practice
Data Preparation		
Data collection	<ul style="list-style-type: none"> Biased data Incomplete data The curse of dimensionality Sparsity 	<ul style="list-style-type: none"> Take time to understand the business problem and its context Enrich the data Dimension-reduction techniques Change representation of data (e.g., COO)
“Untidy” data	<ul style="list-style-type: none"> Value ranges as columns Multiple variables in the same column Variables in both rows and columns 	Restructure the data to be “tidy” by using the melt and cast process
Outliers	<ul style="list-style-type: none"> Out-of-range numeric values and unknown categorical values in score data Undue influence on squared loss functions (e.g., regression, GBM, k-means) 	<ul style="list-style-type: none"> Robust methods (e.g., Huber loss function) Discretization (binning) Winsorizing
Sparse target variables	<ul style="list-style-type: none"> Low primary event occurrence rate Overwhelming preponderance of zero or missing values in target 	<ul style="list-style-type: none"> Proportional oversampling Inverse prior probabilities Mixture models
Variables of disparate magnitudes	<ul style="list-style-type: none"> Misleading variable importance Distance measure imbalance Gradient dominance 	Standardization
High-cardinality variables	<ul style="list-style-type: none"> Overfitting Unknown categorical values in holdout data 	<ul style="list-style-type: none"> Discretization (binning) Weight of evidence Leave-one-out event rate
Missing data	<ul style="list-style-type: none"> Information loss Bias 	<ul style="list-style-type: none"> Discretization (binning) Imputation Tree-based modeling techniques
Strong multicollinearity	Unstable parameter estimates	<ul style="list-style-type: none"> Regularization Dimension reduction
Training		
Overfitting	High-variance and low-bias models that fail to generalize well	<ul style="list-style-type: none"> Regularization Noise injection Partitioning or cross validation
Hyperparameter tuning	Combinatorial explosion of hyperparameters in conventional algorithms (e.g., deep neural networks, super learners)	<ul style="list-style-type: none"> Local search optimization, including genetic algorithms Grid search, random search
Ensemble models	<ul style="list-style-type: none"> Single models that fail to provide adequate accuracy High-variance and low-bias models that fail to generalize well 	<ul style="list-style-type: none"> Established ensemble methods (e.g., bagging, boosting, stacking) Custom or manual combinations of predictions
Model Interpretation	Large number of parameters, rules, or other complexity obscures model interpretation	<ul style="list-style-type: none"> Variable selection by regularization (e.g., L1) Surrogate models Partial dependency plots, variable importance measures
Computational resource exploitation	<ul style="list-style-type: none"> Single-threaded algorithm implementations Heavy reliance on interpreted languages 	<ul style="list-style-type: none"> Train many single-threaded models in parallel Hardware acceleration (e.g. SSD, GPU) Low-level, native libraries Distributed computing, when appropriate
Deployment		
Model deployment	Trained model logic must be transferred from a development environment to an operational computing system to assist in organizational decision-making processes	<ul style="list-style-type: none"> Portable scoring code or scoring executables In-database scoring Web service scoring
Model decay	<ul style="list-style-type: none"> Business problem or market conditions have changed since the model was created New observations fall outside domain of training data 	<ul style="list-style-type: none"> Monitor models for decreasing accuracy Update/retrain models regularly Champion-challenger tests Online updates