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ABSTRACT 

Because time series data have a unique data structure, it is not easy to apply some existing data mining tools directly 
to the data. For example, in classification and clustering problems, each time point is often considered a variable and 
each time series is considered an observation. As the time dimension increases, the number of variables also 
increases, in proportion to the time dimension. Therefore, data mining tasks require some feature extraction 
techniques to summarize each time series in a form that has a significantly lower dimension. This paper describes 
various feature extraction methods for time series data that are implemented in SAS® Enterprise Miner™.  

  

INTRODUCTION  

 
Time series data mining has four major tasks: clustering, indexing, classification, and segmentation. Clustering finds 
groups of time series that have similar patterns. Indexing finds similar time series in order, given a query series. 
Classification assigns each time series to a known category by using a trained model. Segmentation partitions time 
series. Time series data can be considered multidimensional data; this means that there is one observation per time 
unit, and each time unit makes one dimension. Some common data mining techniques are used for the tasks. 
However, in the real world, each time series is usually a high-dimensional sequence, such as stock market data 
whose prices change over time or data collected by a medical device. When the time unit is seconds, the dimensions 
of data that accumulate in just one hour are 3,600. Moreover, the dimensions are highly correlated to one another. 
The number of variables in training data increases proportionally as the time dimension increases. Most existing data 
mining tools cannot be used efficiently on time series data without a dimension reduction. Therefore, a dimension 
reduction is required through feature extraction techniques that map each time series to a lower-dimensional space. 
The most common techniques of dimension reduction in time series are singular value decomposition (SVD), discrete 
Fourier transformation (DFT), discrete wavelet transformation (DWT), and line segment methods. Some classical 
time series analyses, such as seasonal, trend, seasonal decomposition, and correlation analyses, are also used for 
feature extraction.  

This paper shows how to use SAS Enterprise Miner to implement the feature extraction techniques. But it does not 
attempt to explain these time series techniques in detail and instead invites the interested reader to explore some of 
the literature on the subject: Keogh and Pazzani (2000a), Keogh et al. (2000), and Gavrilov et al. (2000) for time 
series dimensionality reduction and the TIMESERIES procedure documentation in SAS/ETS® for the classical time 
series analyses.    

This paper is organized as follows. First, it explains feature extraction and dimension reduction techniques that use 
classical time series analysis, and then it describes feature extraction techniques that use some well-known 
mathematical functions for dimension reduction. Next, it demonstrates the performance of dimension reduction 
techniques by presenting some examples. The paper uses SAS Enterprise Miner 13.1 to demonstrate these 
techniques.  
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FEATURE EXTRACTION USING CLASSICAL TIME SERIES ANALYSIS 

 

TIME SERIES REDUCTION WITH TIME INTERVALS   

 

Summarizing the time series based on a specific time interval is one of the simplest data reduction methods. Figure 1 
shows data reduction plots of the airline passenger data (monthly, from January 1949 to December 1960) in the 

Sashelp library based on several time intervals. The data set contains 144 monthly data points (12 months  12 
years). While the plots move from high frequency to low frequency in the time interval, the data points are reduced 
and the trends are shown.  

 

Figure 1. Reducing Time Series Based on Time Frequencies 

  

Trend analysis is a line segment dimension reduction method that is explained later, but this type of line segment 
occurs based on time frequencies only. Arbitrary line segmentation is not allowed. You can use the trend analysis as 
a pre–data cleaning procedure that includes accumulation, transformation, differencing, and missing value 
replacement.  

 

SEASONAL ANALYSIS 

 

Seasonal analysis provides five statistics: sum, mean, median, minimum, and maximum. For a seasonal cycle length 
that is implicitly given by the time interval, the statistics are calculated at each season point over the seasonal cycle. 

Suppose },...,,{ 12021 xxx , and the seasonal cycle is 4. Using mean statistics, you obtain a set of },,,{ 4321 ssss by 

seasonal analysis:  

1s = mean },,...,,,{ 117113951 xxxxx  

2s = mean },,...,,,{ 1181141062 xxxxx  

3s = mean },,...,,,{ 1191151173 xxxxx  
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4s = mean },,...,,,{ 1201161284 xxxxx  

 

Therefore, the 120–time dimension space is mapped to the 4-dimension space. No matter how many time 
dimensions you have, the number of reduced dimensions is the seasonal cycle length.  

 

Figures 2 and 3 show seasonal analyses of the cosmetic sales data in the SAS Sampsio library. The data set 
consists of three cross ID variables (Group, State, and SKU), a time ID variable (Month_Yr), and a target (Sales). It 
contains monthly sales data collected from January 1996 to December 1998. The State and Group variables are 
ignored in this example, so the sales data have been accumulated over the State and Group variables.  

 

Figure 2. Seasonal Analysis of Cosmetic Sales Data 

           

If you change the Time Interval property to Quarter, you get the output summarized by quarter.   

 

 

Figure 3. Seasonal Analysis of Cosmetic Sales Data 
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Overall, product 54105 has higher sales than the other products evenly over all the seasons. You can also use the 
season data for classification or clustering when you export the season statistics.  

 

CORRELATION ANALYSIS  

 

Correlation analysis provides autocorrelation and cross-correlation when target series are defined. The time series 
data can be characterized using time domain statistics such as autocovariances, autocorrelations, normalized 
autocorrelations, partial autocorrelations, normalized partial autocorrelations, inverse autocorrelations, normalized 
inverse autocorrelations, and white noise test statistics. These statistics are used for model identification in the 
ARIMA model, so they represent the feature of time series well. For example, AR processes can be identified by the 
shape of the autocorrelation function (ACF) plot and their order by the shape of the partial autocorrelation function 
(PACF) plot, and MA processes can be identified by the shape of the PACF plot and their order by the shape of the 
ACF plot. If you use the ACF and PACF together, the resulting features represent an ARIMA model well. Figure 4 
shows how to use the correlation analysis for feature extraction. Both time series nodes use the maximum lag of 5, 
and you merge two outcome data sets into one data set for clustering input data. Using the Metadata node, you 
delete the lag 0 because its value is constant. The Cluster node has 10 input variables (5 from ACF and 5 from 
PACF) and the time series ID variable. You set the maximum number of clusters as 5.  

 

 

 

Figure 4. Clustering Flow Using Both ACF and PACF 
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Figure 5. Tree Plot Resulting from the Cluster Node 

 

 

Figure 5 shows apparently two variables: normalized ACFs at LAG2 and LAG4 and normalized PACF at LAG3 as key 
classification variables. Using both ARIMA model identification statistics could give better results in time series 
clustering. However, in order to have more precise clustering, it is necessary to do further analyses by using the fitted 
coefficients within the classified model category.  

Note that the TS Correlation node also provides the functionality of time covariate selection based on the cross-
correlation between target and input series. 

 

 

SEASONAL DECOMPOSITION   

 

You could use the classical seasonal decomposition techniques to divide each time series into several components, 
such as the trend-cycle component, seasonal irregular component, seasonal component, trend-cycle-seasonal 
component, irregular component, seasonally adjusted component, percent change seasonally adjusted component, 
trend component, and cycle component. The four commonly used seasonal decomposition techniques are as follows: 

 

 Additive   
tttt ISTCO  )(  

 Multiplicative  
tttt ISTCO )(  

 Log-additive        
tttt ISTCO  )()log(  

 Pseudo-additive )1()(  tttt ISTCO  

 

In these equations, (
tO ) is the original time series, (

tS ) is the seasonal component, 
tTC)( is the trend-cycle 

component, and (
tI ) is irregular components. You can further decompose the trend-cycle component 

tTC)( into 

separate trend (
tT ) and cycle (

tC ) components by using fixed-parameter filtering techniques. The multiplicative mode 

is for series that are strictly positive, and the pseudo-additive mode is for series that are nonnegative. For more 
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information about the seasonal decomposition formulas, see the TIMESERIES procedure documentation in 
SAS/ETS. Figure 6 shows a decomposition example that uses the airline passenger data set. It also shows the 
various types of decomposed series from the airline data.  

 

 

 

 

Figure 6. Decomposed Series from the Original Series

You can use the decomposed features of time series as inputs for the TS Dimension Reduction node and in further 
clustering analysis. An example is shown on page 11. 

 

FEATURE EXTRACTION FOR DIMENSION REDUCTION   

 

The TS Dimension Reduction node implements several feature extraction methods for time series dimension 
reduction that are described in the following sections. Figure 7 shows the property sheet of the TS Dimension 
Reduction node.   

Original 

Seasonal 

Trend-Cycle 

Irregular 

Trend-Cycle-Seasonal 

Cycle 

Trend 

Seasonally Adjusted 
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Figure 7. Property Sheet of TS Dimension Reduction Node 

 

 

Suppose that X is an m  T matrix of m time series with length T. One of this paper’s goals is to demonstrate how to 

reduce the matrix X to a matrix Y of dimensions m  d, where d < T. When the time dimension is reduced, the 
classification tools of SAS Enterprise Miner can be used to cluster or classify the m rows of Y. 

 

SINGULAR VALUE DECOMPOSITION 

 

Singular value decomposition (SVD) is a classical dimension reduction method that is used in a wide variety of 

statistical analyses. Suppose X is an m  T matrix of m time series of length T. X can be expressed as a singular 

value decomposition, U  Q  V, where Q is a diagonal matrix of the m eigenvalues of X'X (or singular values of X), U 

is the m  T matrix of orthonormal eigenvectors vectors of XX', and V is the T  n matrix of orthonormal eigenvectors 
vectors of X'X. This section demonstrates how SVD can be used for time series data reduction. 

 

Figure 8 shows the relationship between the original set of time series, the decomposition, and the reduction. To 
obtain the desired dimension reduction (d < T), choose only the d largest singular values and the associated 

eigenvectors of XX' and X'X. Based on this selection, subset the Q matrix to obtain a d  d diagonal matrix, D, of the 

largest eigenvalues; subset the U matrix to obtain an n  d matrix, U, of eigenvectors; and subset the V matrix to 

obtain a d  m matrix, V, of eigenvectors.  

 

The d row vectors become a basis for the dimension reduction technique. The Y = U  Q matrix with dimensions m  

d is the set of the reduced time series. If you use all the T eigenvalues (d = T), the reconstruction forms exactly the 
same X matrix (no reduction). 
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d T–d 

T–d 

d 

  = 

Q 
(T  T) 

V 
(T  T) 

U 
(m  T) 

X 
(m  T) 

 (dd) 
T–d 

T–d 

 

Figure 8. Singular Value Decomposition of X Matrix 

 

In the TS Dimension Reduction node, SVD works as follows: it decomposes the (m  n) matrix X (where m is greater 
than or equal to n) into the form U diag (Q) V', where U'U = V'V = VV' = In. Q contains the singular values of X. U is m 

 n, Q is n  1, and V is n  n. When m is greater than or equal to n, U consists of the orthonormal eigenvectors of 
XX', and V consists of the orthonormal eigenvectors of X'X. Q contains the square roots of the eigenvalues of X'X 
and XX', except for some zeros. If m is less than n, a corresponding decomposition is performed in which U and V 
switch roles: X = U diag (Q) V', but U'U = UU' = V'V = Im. 

DISCRETE FOURIER TRANSFORMATION 

 

Fourier transformation was introduced by the French mathematician and physicist Joseph Fourier in the early 
nineteenth century. It decomposes a signal into its frequencies. Any functions of a variable, whether continuous or 
discontinuous, can be expanded in a series of sines of multiples of that variable; the result has been widely used in 
analysis. For a sequence {Xt}, the Fourier transformation can be expressed as a linear combination of the orthogonal 

trigonometric functions given in the system 

]}2/[,,2,1,0:)/2cos(),/2{sin( nknktnkt   

where [𝑥] is the greatest integer and less than or equal to 𝑥.  

Therefore,  

ntnktbnktaX k

n

k

kt ,,2,1)],/2sin()/2cos([
]2/[

0

 


  

This is called the Fourier series of the sequence Xt, and 
ka and 

kb are called Fourier coefficients. You can also write 

the Fourier series of Xt as  

 

 

odd is  if  ,
2/1

2/1

n

n

nk

tiw

kt
kecX 





  

or 

even is  if  ,
2/

12/

n

n

nk

tiw

kt
kecX 



  

 

where ]2/[,,1,0,/2 nknwk   , and the Fourier coefficients 
kc are given by   







n

t

tiw

tk
keZ

n
c

1

1
 

 

Thus the Fourier coefficients
kk ba , , and 

kc are related as  
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More details can be found in Chapter 10 of Wei (1990).  

Agrawal, Faloutsos, and Swami (1993) and Agrawal et al. (1995) first introduced the discrete Fourier transformation 
for dimension reduction of time series. In the TS Dimension Reduction node, the fast Fourier transform (FFT) is used; 
it is a version of the discrete Fourier transform. The TS Dimension Reduction node returns the first [d/2] pairs of 

).,( kk ba Suppose you want to have four dimensions; then it returns ),( 11 ba  and ).,( 22 ba  If you want to include the 

mean coefficient ),( 00 ca   the final number of dimensions is seven and the order of new variables in the reduced 

data set is 
0a ,

11 ,ba , ., 22 ba  In the FFT implementation of the TS Dimension Reduction node, if n is a power of 2, a 

fast Fourier transform is used (Singleton 1969); otherwise, a chirp z-transform algorithm is used (Monro and Branch 
1976).  

 

DISCRETE WAVELET TRANSFORMATION 

 

Wavelet transformations are widely used in many fields, such as signal processing and image analysis. They are very 
useful for compressing digital files and reducing image or signal noise. They also have a reversible characteristic, 
enabling the original series to be recovered easily after the transformation. As a discrete wavelet transformation, a 
simple Haar transform is used in the TS Dimension Reduction node, consisting of the pairs 

                                   [ 2/1

0 2h , 2/1

1 2h ]    and    [ 2/1

0 2g , 2/1

1 2g ] 

for wavelet scale coefficients and wavelet detail coefficients respectively. For example, if you have a vector  𝒙 =
[2, 4, −2, 2], then you obtain scale coefficients and detail coefficients as follows: 

 

Resolution Level   Scale Coefficients Detail Coefficients 

2  

(original data) 

]2,2,4,2[ 4,23,22,21,2  ssss   

 

1 ]0,23[ 2,11.1  ss  ]22,2[ 2,11,1  dd  

0 ]3[ 1,0 s  ]3[ 1,0 d     

  

In this table,  

[
1,1s

2,211,20 shsh  , 
2,1s

4,213,20 shsh  ] 

 [
1,0s  0h 1,1s  1h 2,1s ] 

and 

 [
1,1d 2,211,20 sgsg  ,

2,1d 4,213,20 sgsg  ] 

[
1,0d  0g 1,1s  1g 2,1s ] 

Now, if you have [
1,0s ,

1,0d ], you can reconstruct the scale coefficient at the resolution level 1. In addition, if you have 

[
1,1d ,

2,1d ], the original vector is fully restored. Therefore, if you want to reduce the dimension of X from 4 to 2, you 

have a wavelet transformation vector of [3, 3]. Chan and Fu (1999) give more details about time series indexing by 
using wavelets, and Ogden (1997) provides general information about wavelet analysis. 
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LINE SEGMENT METHOD WITH MEAN OR SUM  

 

Keogh and Pazzani (2000a) proposed the line segment method first with a mean statistic; they call it piecewise 
aggregate approximation (PAA). This is the simplest dimension reduction method in time series. If you have a time 
dimension of size T, the line segment method divides the time dimension into d equal-size segments (or time 
intervals). After segmentation, you can compute the sum, mean, or other aggregation statistic of each segment. For 
example, suppose you have a time series that contains 12 time points, {1,2,5,7,8,5,5,7,8,2,5,3}, and you want a 
reduced time series that contains 3 time points. In this case, you can transform the original series into a reduced 
series, {3.75, 6.25, 4.5}, that contains the mean statistic of each segment. Figure 9 shows the original series and the 
transformed series that contains three means. The biggest advantage of this method is that it is simple to understand 
and to implement.  

 

Figure 9. Line Segment Method 

 

 

EVALUATION OF PERFORMANCE USING THE SYNTHETIC CONTROL CHART TIME 
SERIES DATA   

 

To evaluate the performance of the feature extraction and dimension reduction methods, you use the synthetic 
control chart data set, which was used for similarity analysis by Alcock and Manolopoulos (1999). This data set 
contains 600 time series that consist of six different classes of control charts: normal, cyclic, increasing trend, 
decreasing trend, upward shift, and downward shift. A partial plot of the series is shown in Figure 10. 
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Figure 10. Synthetic Control Chart Time Series: (A) Downward Trend, (B) Cyclic, (C) Normal, (D) Upward 
Shift, (E) Upward Trend, (F) Downward Shift. Image courtesy of Eamonn Keogh, from the UCI KDD Archive 

(Hettich and Bay 1999). 

 

 

EXAMPLE 1: CLUSTERING PERFORMANCE WITH TS DECOMPOSITION AND TS DIMENSION REDUCTION 
NODES  

This example shows how to cluster the example time series by using seasonal components and dimension reduction 
techniques and also shows the resulting clustering performance. As a clustering tool, you use the SAS Enterprise 
Miner Cluster node with its default settings, except that you specify the number of clusters as 6 and the internal 
standardization as No. The full data set has 60 dimensions (60 time points in each series). This example shows how 
much benefit you can derive from using the classical time series analysis before conducting dimension reduction in 
time series clustering. For example, you want to separate the time series that have cyclic behaviors from the rest of 
the time series. You use the TS Decomposition node to extract only cyclic components; then the node suppresses all 
other embedded components, such as seasonal, trend, and irregular components. Figure 11 shows the diagram flow 
for the analysis.    

 

Figure 11. Time Series Clustering with Features from Classical Time Series Analysis  

and Dimension Reduction 

A 

B 

C 

D 

E 

F 
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The TS Decomposition node sets the export component property to Cycle. The other options in the node are set by 
default. You also need to use filter node to exclude some missing values in the resulted cyclic components. So you 
open the variable editor and set the Keep Missing Values property to No, and you set the Default Filtering Method to 
None. Note that CC means “Cyclic Component.” In the TS Dimension Reduction node, you use the CC variable as 
input and do not use the “ORIGINAL” series; you also use the wavelet transformation and the dimension of 20. The 
Cluster node sets the number of clusters to 6 and does not use the internal standardization. The SAS Code node 
reports the classified result with the original category as shown in Table 1. The table shows that 100 cyclic time series 
are completely separated from 500 noncyclic time series; it also shows five distinct cyclic categories. 

Table 1. Clustering Results with Cyclic Components 

Original 
Category 

Classified 
Category 

Count 

Cyclic 1 21 

Cyclic 2 15 

Cyclic 3 22 

Cyclic 5 21 

Cyclic 6 21 

DecreTrend 4 100 

DownShift 4 100 

IncreTrend 4 100 

Normal 4 100 

UpShift 4 100 

 

 

EXAMPLE 2: PERFORMANCE EVALUATION OF DIMENSION REDUCTION TECHNIQUES 

 

As a second example, suppose you are interested in the performance of the dimension reduction tool itself. You 
would like to observe whether there is any performance difference between using a reduced data set and using the 
original data set in the same classification tool. The reduced data set has only 10 dimensions. The dimension was 
reduced with a 1/6 rate. For the piecewise normalization, you use two pieces for separate normalization because the 
series is not too long. You directly connect two nodes (Input Data and TS Dimension Reduction nodes) to conduct the 
performance test. The diagram flow is shown in Figure 12. 

 

Figure 12. Diagram Flow for Performance Analysis of Dimension Reduction Techniques 

 

In order to evaluate the results, you compute a similarity measure between the true classification of 6 types (𝐶𝑖  , 𝑖 =
1,2, … , 6) and the resulting clusters (𝐶𝑗

′, 𝑗 = 1,2, … ,6) by using the formulas (from Gavrilov et al. 2000), 

SIM(𝐶𝑖 , 𝐶𝑗
′) = 2

|𝐶𝑖 ∩  𝐶𝑗
′|

|𝐶𝑖| + |𝐶𝑗
′|

 

and 

SIM(𝐶, 𝐶′) =
1

𝑘
∑ max

𝑗
[SIM(𝐶𝑖 , 𝐶𝑗

′)]

𝑖
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where 𝐶𝑖 is a true classification, 𝐶𝑗
′ is an obtained classification, and k is the number of clusters. This similarity 

measure returns 0 if the two clusters are completely dissimilar. If they are exactly the same, it returns 1. Because 
SIM(𝐶, 𝐶′) is not a symmetric measure, a symmetrized version of SIM(𝐶, 𝐶′) is used as follows: 

SYMSIM(𝐶, 𝐶′) =
SIM(𝐶, 𝐶′) + SIM(𝐶′, 𝐶)

2
 

Table 2 shows the results of SYMSIM(𝐶, 𝐶′).   

 

Table 2. Evaluation of Clustering Results 

 

 No 

Normalization 

Global 
Normalization 

Piecewise Normalization 

(Bin = 10) 

Full data 0.832 0.840 0.771 

DWT 0.823 0.818 0.746 

SVD 0.832 0.839 0.784 

DFT 0.830 0.805 0.729 

LSM 0.858 0.821 0.819 

LSS 0.858 0.821 0.819 

 

Table 2 indicates that using the full data set provides no advantage over using the reduced data sets. Ten features 
out of 60 dimensions produce very similar clustering results. You do not lose much information through dimension 
reduction. Sometimes the reduced data sets produce somewhat better results, because some noises are also 
reduced through the dimension reduction techniques.  

CONCLUSIONS 

 

In this paper, time series feature extraction is explained in two ways: feature extraction through classical time series 
and feature extraction for dimension reduction. Using these feature extraction techniques either separately or 
together provides a useful time series classification tool to accompany the other functions in SAS Enterprise Miner. 
By comparing predictions from using the full data set and using the reduced data sets, the paper shows that these 
dimension reduction techniques perform well. In particular, combining seasonal decomposition with the dimension 
reduction method shows impressive results. Keogh and Pazzani (2000b) showed that Euclidean distance measures 
for clustering do not perform well, and they suggest a modified version of the dynamic time warping method, which 
outperforms other methods. A further analysis is recommended using TS Similarity node, which provides the dynamic 
time warping method in SAS Enterprise Miner. 
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