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ABSTRACT  

Using the new SAS/OR® procedures, SAS® software and the San Francisco Fire Department analyzed emergency 
response operations to optimize ambulance locations and relate that information into dispatch procedures to 
decrease response times. The first model was created as a planning model for initial placement of medical units over 
the city of San Francisco. A second model was developed to determine how to best place remaining medical units 
around the city when some number of medical units are already out on an emergency. 

INTRODUCTION  

In the city of San Francisco, ambulances and fire stations are co-located.  There are 41 fire stations in the city and 19 
roving medical units that can be assigned to any of the 41 stations.  When an emergency call comes in, the closest 
unit is sent out on the call.  Response time reduction is key to saving lives and improving outcomes.  The focus of this 
project was to reduce response time.  

A reduction in response time could be achieved in many ways.  As an optimization problem, we focused on 
minimizing the distance between available units and emergency calls.  The underlying idea is that a reduction in 
distance will produce a reduction in response times.  This requires a quantifiable definition of the distance between 
calls and units.  Ideally, one could consider the distance between individual calls and a response unit by calculating 
the distance between every possible call location and possible response unit location.  However, this is not a good 
practical solution because calls can come from literally anywhere in the city.  Instead, the city is divided into 174 areas 
that have approximately equal population and call volume.  Subsequently, some areas are very small geographically 
and some are much larger.  For example, the area that covers Golden Gate Park is geographically much larger than 
the area for small sections of downtown San Francisco.  Distance between two points is then measured in terms of 
the average time to drive between a center point of the area and a fire station.  This distance definition does not allow 
us to model differences in traffic due to time of day or other factors but keeps our model and data simple enough for a 
quick solution time. 
 
Now that the problem of distance is well defined, we need to determine how to go about solving such a problem.  In 
the theory of operations research, this problem is a p-center problem.  A p-center problem consists of locating p 
facilities and assigning clients to them in order to minimize the maximum distance between a client and the facility to 
which the client is allocated.  In our case, we are assigning city areas to medical units in order to minimize the 
distance between emergency calls and the medic units.  This requires us to also assign medical units to fire stations, 
but we simply assign them to the ones that are providing coverage.  To minimize distance, you can minimize total 
distance, average distance, or just minimize the maximum distance.  We have chosen to minimize the maximum 
distance.  This approach ensures that all distances will be at or below a specific maximum distance, and it aligns with 
our goal of response times under a specific threshold. 
 
The remainder of this paper will discuss the formulation of the problem, solution, and practical challenges to 
implementation. 

THE PLANNING PROBLEM 
 
We call the initial problem formulation the planning problem.  This problem formulation is designed to answer the 
question:  “At a point in time with no ambulances currently in use, at which fire stations should the medical units be 
stationed to minimize the distance between the 174 areas of the city and the medical units?”  This problem addresses 
where the fire department should plan to station ambulances.  
 



 

2 

PROBLEM FORMULATION 
 
This section describes the problem formulation of the operations research problem.  We include both the equations 
and plain English descriptions.  In order to formulate a theoretic basis for a solution, we must formally define what we 
know and what we hope to determine.  We know the locations of stations where ambulances can sit to wait for calls 
and travel time between any station location and city area.  We are looking for how to assign city areas to station 
location and medic units to station location.   
 
We set up the following indices for the sets that we are going to need.   
 
Index Set Description 
i I set of all fire station locations 
j J set of all city areas 
m Im set of locations that must have a medic unit { i ∈  Im} ⊆ I  
 
 
We use the following names and indices to describe the data that we are going to put into the system.  This data will 
be supplied as SAS data sets.   
 
Parameter Parameter Description 
LocationsOpen number of available medical units in the system  
Si  supply of responses in location i 
Dj  demand for responses in area j 
Disij  distance from location i to area j 
defaultOpen list of locations that must be open (m ∈  Im) 
 
 
This describes what we already know.  Now we need to set up terms to describe what we are looking to solve.  These 
are commonly known as decision variables.   
 
Variable  Description 
Xij  = 1 if location i covers area j, 0 otherwise 
Openi  = 1 if location i has medic unit, 0 otherwise 
MaxDist  =  max distance between a location and any of its covered areas 
 
All of the terms and indices used in the following problem formulation are now defined. 
 
Objective Function 
The objective function states the goal of the optimization model.  In our case, the goal is:  Minimize the maximum 
distance between locations and areas.  In our notation, this is: 
 
Min MaxDist 
 
Constraints 
 
The minimization problem has the following constraints. 
 
Max Distance Definition:  Define the largest distance 
 

(1) MaxDist  ≥ Disij Xij  for all i∈ I, j∈J 
 
 
Staffed Constraint: Total locations opened must equal the number available to open 
 

(2) ∑
∈Ii

Openi = LocationsOpen 
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Service Constraint: Locations that cover an area must be open 
 

(3)   Xij ≤ Openi for all i∈ I, j∈J 
 
 
Cover Constraint: Sum of coverage must meet demand.  Demand here means that each area requires a response.  
That is, each area must be covered by a medical unit, and any solution provides coverage to all city areas. 

(4)  ∑
∈Ii

Xij = Dj    for all j∈J 

 
 
Supply Constraint: Sum of coverage must not exceed supply.  “Supply” here means that each location can provide 
coverage for some number of areas and coverage only occurs when a location has a medical unit. 
 

(5)  ∑
∈Jj

Xij ≤ Si  Openi   for all  i∈ I 

 
 
Default Open Constraint:  Forces locations in Im to be open.  This constraint is currently unused but provides a 
means for forcing certain locations to house a medical unit. 
 

(6)  Openi = 1  for all i∈ Im 
 
 
The only possible values for Xij and Openi are 0 and 1.  A station cannot be half open; it either is open or it is not.  
That is, Xij  is binary integer and Openi  is binary integer.  Due to these bounds on the variables, this problem is known 
as an integer programming problem. 
 

THE REAL TIME PROBLEM 
 
The planning problem glosses over one of the realities faced by the San Francisco Fire Department.  In only very rare 
instances would all available medical units be sitting and waiting for calls.  Most of the time, at least one medical unit 
is already out on the call.  So a better question to ask might be: “If some number of ambulances are out on calls, how 
should I reposition the remaining medical units to minimize the distance between calls and units?”   We call this the 
real-time problem.  The real-time problem formulation is the same as the planning problem with the addition of a few 
sets and a constraint. 
 
We define two new indices f and r and two new sets:  If  and Ir.   
If  is the set of locations for which all but some number x will be open.  Ir  contains the remaining set of locations not in 
Im or If.  X of these locations are opened.    In set terminology, these sets must have the following relationship to make 
our problem solvable:  If ∩ Ir  = Ø  and Ir ∩ Im = Ø and If ∩ Im = Ø and If U Ir  U Im = I.   That is, If and Ir cannot have any 
locations in common, nor can they have any locations in common with Im.  All locations must be represented in one of 
the three sets. 
 
We also must add one constraint which allows that all but k locations will come from the fixed location set. This means 
that the model can reassign only k medical units. The remaining units must stay where they are.   
 
Fixed Location Constraint:  Requires that all but k location(s) must come from the fixed location set 
 
 

 (7) ∑
∈ fIi

Openi + k = LocationsOpen 

 
 
One might wonder why we didn’t return to the planning problem and just rerun an optimal configuration for a reduced 
set of ambulances.  The reason is entirely practical.  It is not reasonable to ask medical units to move constantly.  
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Keeping medical units stationary when possible allows crews on the medic units to eat and rest, which are clearly 
important functions. 

OPTIMIZATION SOLUTION 
 
Now that the problems have been defined, they can be solved with SAS/OR® software.  First, we write the problem 
into the SAS OPTMODEL language and then we submit it to the SAS/OR® solvers. 
 

SAS OPTMODEL 
 
Using SAS OPTMODEL, we need write the equations described previously into SAS code.  We can write the SAS 
code to separate the model from the data.  All of the OPTMODEL code is not included here but we outline a few 
constraints to give some examples of how the problem formulations become code. 
 
Consider the service constraint: Locations that cover an area must be open. 
 

(3)   Xij ≤ Openi for all i∈ I, j∈J 
 
 
The following code defines the appropriate sets and the service constraint. 
proc optmodel presolver=0; 
/* Define Data */ 

set <string> LOCATIONS; 
number Supply { LOCATIONS }; 
read data fire.supply into LOCATIONS =[location] supply;   
set <string> AREAS; 
number Demand{AREAS}; 
read data fire.demand into AREAS=[area] demand;  
 
num distance {LOCATIONS, AREAS}; 
set <string, string> StatAreaIndex; 
read data distance2 into StatAreaIndex = [location area] distance; 
 

* Define Variables; 
var X { LOCATIONS, AREAS} binary; 
var Open { LOCATIONS } binary; 
 

* Define Constraints; 
 

* Service Constraint; 
con service_con {i in LOCATIONS, j in AREAS}: 
X[i,j] <= Open[i]; 

 
The line: set <string> LOCATIONS; simply defines that we are creating a set called locations that is text.  The line  
number Supply {LOCATIONS} defines a number called supply, which is indexed by locations.  All of our sets are 
set up similarly. 
 
Now that we have a set and a number defined, we can read the data into them using a read statement. 
  
   read data fire.supply into LOCATIONS=[location] supply;  
 
We designate that the data set fire.supply is our data source.   Because our number supply is dependent on set 
locations, we read the variable location (lower case) into the set LOCATIONS (upper case).  We then read the supply 
column (name of column) into the number supply. 
 
In the Define Variables section, two variables are defined: x and open.  Both are indexed by the sets between the 
brackets { }.  Both are binary, so the word binary must follow their declaration. 
 
* Define Variables; 
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   var X {LOCATIONS, AREAS} binary; 
   var Open {LOCATIONS} binary; 
 
In the Define Constraints section, the service constraint is constructed.  All constraint definitions start with “con” and 
then the name of the constraint followed by a colon.  If the constraint should be created for each instance in a set (for 
example, for each location and area), then we need to define that Xij ≤ Openi.  Before the colon, the index for which a 
constraint should be created is defined.  This is equivalent to a “for all i∈ I j∈J” following a constraint in the algebraic 
formulation.  After the colon, the constraint itself is defined in terms of the variables and sets already defined. 
 

FINDING A SOLUTION 
 
Because this is an integer programming problem, we need to use an integer programming solver.  The SAS solver we 
use is the MILP- Mixed Integer Linear Programming solver.   The solution time for this is too long to solve in a 
straightforward manner.  Other integer programming solvers used by the San Francisco Fire Department also 
resulted in very long solution times of twenty hours or more.  The solution to this problem is not really useful unless it 
can be solved quickly and passed to the dispatchers.   
 
We then turned to SAS Research and Development to find a faster way to arrive at a solution.  Fortunately, a very 
fast optimal solution – less than one minute – can be achieved with a binary search.  The key to understanding how 
this works is to remember that we are looking to minimize the maximum distance between a city area and a medic 
unit.  Thus, the solution to our problem lies somewhere in the list of distances and we just need to go look for it. 
 
The following outlines our search for the minimal maximum distance and we use the MILP solver to help us. 
 
 

(1)  Set a lowerbound for maxdistance 
lowerbound = max(j in AREAS) min(i in Stations) distance (i,j) 

 
(2)  Set dummy objective function. (for example, min 0) 

 
(3)  Solve as a series of feasibility problems.  Since the objective maxdist of the p-center problem is equal to one 

of the distance[i,j]; sort these distances and then perform a binary search, at each stage solving a feasibility 
problem where arcs with larger distance[i,j] are dropped. 

 
 

Follow these steps:   
  

a. Create an ordered array containing the distances.   
 

b. Choose the distance in the middle of the array (call it m).   
 

c. Create a constraint that sets all Xij = 0 for any distance greater than m.    
 

d. If a feasible solution to this problem exists, then the minimum maxdist is m or smaller, so you can start 
looking at a new m'< m and repeat from step c. 

 
If a feasible solution does not exist, then the minimum maxdist value must be larger than m and you can start 
looking at new m'> m and repeat from step c. 

 
Steps a – d are run iteratively until a feasible solution with the lowest maxdist value is found.  

 
Since there can be many solutions that have this minimum maximum distance, we then solve the problem again to 
minimize total distance holding the maximum distance to the level found in step 3. 
 
Using this method to solve either problem set results in a very fast solution time of under one minute. 

IMPLEMENTING THE SOLUTION 
 

The results of the model need to be communicated to the dispatchers.  San Francisco Fire Department uses a 
computerized dispatch system that visually tracks movement of ambulances using GPS.  The system does not control 
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the movement of medical units; dispatchers tell medical units when to move stations.  While a wide variety of data can 
be read out of the model solution into SAS data sets, the dispatchers need very limited information.  They need 
information only of the following form: “Move ambulance x from station 1 to station 2.”   
 
In fact, in the proposed implementation, dispatchers get a suggestion on where to put remaining ambulances.  They 
can override the solution if they think they know a better solution due to their experience with traffic patterns and call 
types.   Because calls come in constantly, the dispatcher needs a consistently updated solution.  This drives our need 
for a very quick solution time of under one minute. 

CONCLUSION 
 
When we implemented an optimization model, practical considerations played a large part in driving both the problem 
formulation as well as the solution method.  While optimization is the goal, the requirements for a fast solution time 
and the needs of the crew on the medical units and San Francisco Fire Department are equally as important to the 
end solution.  
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