
1

Paper 336-2009

Dear Miss SASAnswers: A Guide to Efficient PROC SQL Coding
Jane Stroupe and Linda Jolley, SAS Institute Inc., Cary, NC

ABSTRACT
She's back! Advice columnist Miss SASAnswers has received more questions from curious users—questions such as
"What used all that CPU time?", "Which should I use: merge or join?", "Should I use a subquery?", and "Why should I
learn SQL, anyway?" She will share her answers to help you harness the potential of Structured Query Language.

QUESTIONS AND ANSWERS

Dear Happy DATA Stepper,

Here are some advantages of using the SQL procedure:

• PROC SQL follows ANSI standard language definitions, so that you can use SQL knowledge gained from
other languages.

• PROC SQL can do in one step what the DATA step often accomplishes through several steps.
• PROC SQL code is sometimes easier to understand than the equivalent DATA step code.

If your data is in a relational database, here are some additional advantages to using the SQL procedure:

• PROC SQL allows you to write database-specific SQL statements and pass them directly to the database
for execution.

• WHERE statements and the WHERE= data set option, KEEP/DROP statements and the DROP=/KEEP=
data set options, BY statements, and some selected SAS functions can be passed to the database for
processing no matter where they are coded in SAS. Comparatively, PROC SQL will also pass joins,
GROUP BY clauses, and aggregate functions directly to the database for processing, where possible.

In addition, PROC SQL joins have their own set of advantages:
• You can join multiple data sets without having common variables in all the data sets.
• Data sets do not have to be sorted or indexed.
• You can perform inequality joins.

Think of the SQL procedure as another tool in your SAS tool belt. It gives you another way to solve your coding
problem.

Happy SQLing,
Miss SASAnswers

Dear Miss SASAnswers,
I can do anything with a DATA step. Why should I bother to learn SQL, anyway?

Signed,
Happy DATA Stepper

2

Dear Out of Order,

The order of the clauses is governed by the American National Standards Institute (ANSI) SQL standard. Here’s the
order in which you must TYPE the general clauses:

proc sql;
 select ...
 from ...
 where ...
 group by ...
 having ...
 order by ...;
quit;

You can use one of the following sayings to help you remember the order:
 Some French workers glue hardwood often.
 San Francisco, where the Greatful Dead heads originated.

You can also make up your own saying; use whatever works best to help you remember the order in which to type
the general clauses.

The order in which the clauses are processed by PROC SQL is usually as follows:

proc sql;
 select ...5
 from ...1
 where ...2
 group by ...3
 having ...4
 order by ...;6
quit;

1. The FROM clause is processed first. This opens the data sets that are ready for reading.
2. The WHERE clause is next. Just like the WHERE statement in the DATA step, the WHERE clause

preprocesses the open data and selects only the rows that meet the WHERE clause predicates criteria. The
results of WHERE clause processing are stored in an intermediate table.

3. The GROUP BY clause processes third. The GROUP BY clause creates the groups of the rows that the
WHERE clause selected. A quick note here: SAS has to perform some type of ordering of the data to be
able to create the different groups, but that does not necessarily mean that the groups will be placed in
ascending order or alphabetical order. If you want to make sure that the final results show up in a particular
order, you must specify an ORDER BY clause in addition to the GROUP BY clause.

4. The HAVING clause processes next. This clause subsets the groups that are created by the GROUP BY
clause based on the HAVING clause predicates, and, like the WHERE clause, builds an intermediate table.

5. The SELECT clause selects the columns for the report or table.
6. The ORDER BY clause orders the remaining rows in the intermediate table.

Happy SQLing,
Miss SASAnswers

Dear Miss SASAnswers,
I’m wondering why I have to type my clauses in the SELECT statement in a particular order. Is it because
the clauses execute in that order?

Signed,
Out of Order

3

Dear Twiddling My Thumbs,

The CPU time really depends on what you are asking PROC SQL or the DATA step to do. In general, if you want a
simple merge or inner join, the DATA step will finish faster than the equivalent PROC SQL code. This is partially due
to the differences in how the two steps execute.

The DATA step does a sequential read of all data sets on your MERGE statement. It starts with observation 1 in
each data set and moves down through the observations in the data sets, comparing BY values to determine which
comes next and when to read from more than one data set.

Theoretically, PROC SQL creates a Cartesian product (joins all rows in all data sets) and eliminates rows that do not
meet the WHERE or ON clause predicates. In fact, there are optimization routines that will presort your input data
sets, if needed, and create matching “chunks” of data to form the Cartesian product when doing a join on equal
conditions (an equijoin).

Where PROC SQL really shines compared to the DATA step is if you have to preprocess any of the data to get it into
shape for merging (sorting, and so on).

You can often accomplish in one step with SQL processing what it takes several steps to do with the DATA step.

Happy SQLing,
Miss SASAnswers

Dear Putting Them Together,

Well, that depends on your data and what you mean by “efficient”. You have to know the following:

• the relationship between the tables
• the sparseness or density of matches
• the size of the tables
• the availability of an index or sort flag

When data sets are large and unsorted, the SQL inner join might outperform SORT and MERGE. If you have a long
series of SORT and DATA steps, the SQL inner join might be easier to code and read.

In most cases, a DATA step MERGE statement generally outperforms an SQL outer join, even taking sort resources
into account.

 One exception is a very sparse match join when you only want the observations with matching key values.

Dear Miss SASAnswers,
Why does SQL processing take so much more CPU time to execute than using the DATA step?

Signed,
Twiddling My Thumbs

Dear Miss SASAnswers,
Which is more efficient, the DATA step MERGE or PROC SQL?

Signed,
Putting Them Together

Keep in mind that the SQL procedure a
many-to-many match or non-matching d

• ONE-TO-ONE matches produc

• ONE-TO-MANY matches prod

4

nd the DATA step MERGE do not provide the same result
data.
ce identical results.

uce identical results.

ts if you have a

• MANY-TO-MANY matches pro

• NON-MATCHING data produc

5

oduce different results.

ces different results.

6

Here’s a handy comparison chart of the DATA step matchmerge and the SQL inner join:

DATA Step Match-Merge SQL Inner Join

There is no limit to the number of data sets nor the
size of the data sets other than disk space.

The maximum number of tables that can be joined at
one time is 256.

Data is processed sequentially so that observations
with duplicate BY values are joined one-to-one.

Data is processed using a Cartesian product for
duplicate BY values.

Multiple data sets can be created. Only one data set can be created with one CREATE
TABLE statement.

Complex business logic can be incorporated using
IF-THEN or SELECT/WHEN logic.

CASE logic can be used for business logic; however,
it is not as flexible as DATA step syntax.

The data sets being merged must be sorted or
indexed on the BY variables.

The data sets being joined do not have to be sorted
nor indexed.

An exact match on the BY-variables values must be
found.

Inequality joins can be performed.

Like-named BY variables must be available in all
data sets.

Common variables do not have to be in all data sets.

Because there are no rules about the efficiency of using MERGE versus PROC SQL, you'll just have to benchmark
them to find out how they perform with your data.

Happy SQLing,
Miss SASAnswers

Dear Dealing with Restless Users,

There are several techniques that you can use to make your WHERE clauses work better. I've listed a couple for you
to try.

• If the subsets are small, indexing the SAS data set can make the query faster. An index is an optional file
that can be associated with a SAS data set and enables SAS to directly access observations based on the
value of the indexed variable.

For example, if you have an index on the variable SSN, a WHERE clause, such as
"where SSN='123-45-6789'", first checks the index file for record identifiers for that particular value and can
access the appropriate observations without having to read all observations in the data.

You can create the index by using PROC SQL, PROC DATASETS, SAS® Management Console, or the data
set INDEX= option.

Here's a PROC SQL example:

 proc sql;
 create index SSN

 on sasuser.people(SSN);
 quit;

Dear Miss SASAnswers,
We have a lot of users trying to retrieve subsets from a huge data set. Is there a way to make their
response time faster?

Signed,
Dealing with Restless Users

7

• If indexing the data is impractical, then you could store the data in sorted order. In this case, SAS only
queries the data until the WHERE conditions are satisfied, then it stops searching.

If your users’ queries generally retrieve data from the second half of your data set, you can use the
DESCENDING option when sorting the data.

Happy SQLing,
Miss SASAnswers

Dear Is It True,

First, let's look at what the CASE clause does.

The CASE expression selects values if certain conditions are met. Here is an example:

proc sql;
 select Make, Model, Type,
 case DriveTrain
 when 'Rear' then 'Rear Wheels'
 when 'Front' then 'Front Wheels'
 when 'All' then 'Four Wheels'
 else ' '
 end as WheelType
 from sashelp.cars;
quit;

Now to answer your question:

Distribution WHEN Expression Order

Uniform Doesn’t matter

Skewed Most frequently occurring to least frequently occurring

Happy SQLing,
Miss SASAnswers

Dear Set in My Ways,

The SET operators INTERSECT, UNION, and EXCEPT all return unique rows by default. If your queries are taking a
long time to process, try using the ALL keyword under these circumstances:

• You do not care if you return duplicate rows with those SET operators.
• You know that the rows in the tables are unique.

Dear Miss SASAnswers,
I learned in a SAS class that if you are using IF-THEN/ELSE processing, you should type the conditions in
descending order of frequency and the IF-THEN/ELSE works faster. Is that true of the CASE clause in
SQL? I love that CASE clause.

Signed,
Is It True?

Dear Miss SASAnswers,
What's up with those SET operators? They seem to take so l-o-n-g to process. Is there any way to make
them faster?

Signed,
Set in My Ways

8

Here’s an example. Suppose you want a list of all the employees who made charitable donations in both of the last
two years.

proc sql;
 select employee_id
 from orion.donations2007
 intersect all
 select employee_id
 from orion.donations2008;
quit;

The ALL keyword does not have to read the data sets multiple times in order to eliminate duplicates; so, the ALL
keyword can make your query more efficient.

Even if you know that you have no duplicates, use the ALL keyword. PROC SQL does not know that there are no
duplicates, so without the ALL keyword, PROC SQL processes the data twice.

Happy SQLing,
Miss SASAnswers

Dear Today Is the Day,

I’m glad you asked that question! You can use the SAS® 9.2 CONSTDATETIME option in the PROC SQL statement
to evaluate the TODAY, DATE, TIME, and DATETIME functions in a query once and use the resulting value in the
query.

Here’s an example:

proc sql constdatetime;
 select *
 from orion.Sales_History
 where Order_Date = today();
 select *
 from orion.Employee_Payroll
 where Employee_Hired_Date = today();
quit;

The advantages of using the CONSTDATETIME option include the following:
• It saves CPU resources.
• It ensures consistent results when the function is used multiple times in the query.
• If you are accessing database tables, the date can be passed to the database for processing.

Happy SQLing,
Miss SASAnswers

Dear Miss SASAnswers,
I use the TODAY() function to subset my data. Is there any way I can create a variable from the TODAY
function once without using a separate DATA step or creating a macro variable and reference that variable
in SQL?

Signed,
Today Is the Day

9

Dear Curious to Know,

An in-line view is a virtual table that is created by coding a SELECT statement on a FROM clause. It can be quite
useful by preventing an intermediate SAS data set from being created to solve complex problems.

Let’s use this code as an example:

proc sql;
 create table temp as
 select Job_Title,
 sum(salary) as Total_Salary
 from orion.Employee_organization O,
 orion.Employee_Payroll P
 where O.Employee_ID = P.Employee_ID;
 create table pct as
 select Employee_ID,
 Sales.Job_Title,
 Salary,
 Salary/Total_Salary as Percent format = percent7.1
 from orion.Sales,
 temp
 where Sales.Job_Title = temp.Job_Title
 order by Job_Title;
quit;

You could create a view, TEMP_VIEW, instead of a table:

proc sql;
 create view temp_view as
 select Job_Title,
 sum(salary) as Total_Salary
 from orion.Employee_organization O,
 orion.Employee_Payroll P
 where O.Employee_ID = P.Employee_ID;
 create table pct as
 select Employee_ID,
 Sales.Job_Title,
 Salary,
 Salary/Total_Salary as Percent format = percent7.1
 from orion.Sales,
 temp
 where Sales.Job_Title = temp.Job_Title
 order by Job_Title;
quit;

Dear Miss SASAnswers,
I was reading a SAS Global Forum paper in which the authors talked about an in-line view. So what is it,
exactly, and why would I use it?

Signed,
Curious to Know

10

Alternatively, you could use the SELECT statement from the view in the FROM clause of the second query as an in-
line view.

proc sql;
 create table pct as
 select Employee_ID,
 Sales.Job_Title,
 Salary,
 Salary/Total_Salary as Percent format=percent7.1
 from orion.Sales,
 (select Job_Title,
 sum(salary) as Total_Salary
 from orion.Employee_organization O,
 orion.Employee_Payroll P
 where O.Employee_ID = P.Employee_ID
 group by Job_Title) as TotSal
 where Sales.Job_Title = TotSal.Job_Title
 order by Job_Title;
quit;

The in-line view executes once and return its result set to the outer query, which then executes.

One additional advantage of in-line views is that you can test the in-line view query on its own to determine if it is
returning the result set that you expected.

Happy SQLing,
Miss SASAnswers

Dear Viewing in Slow Motion,

Use the DESCRIBE VIEW statement to look at the stored SELECT statement in your log.

proc sql;
 describe view orion.shoes;
quit;

Here's the log. Notice the ORDER BY clause in the view.

508 proc sql;
509 describe view shoes;
NOTE: SQL view WORK.SHOES is defined as:

 select Supplier_Name, Supplier_Country, Product_ID,
 Group_Name, Category_Name,
 Mfg_Suggested_Retail_Price from
 ORION.SHOE_VENDORS order by Supplier_Name;

510 quit;

The presence of the ORDER BY clause means that the data must be ordered by Supplier_Name every time it is
used, even if the data does not need to be returned in sorted order.

Have your co-worker recreate the view, leaving off the ORDER BY clause. I think you’ll find your queries run much
faster.

Happy SQLing,
Miss SASAnswers

Dear Miss SASAnswers,
My co-worker created a several SQL views for us to use, but they are much slower than if I had created a
table. What's the problem?

Signed,
Viewing in Slow Motion

11

Dear Sitting Here Waiting,

The problem with this code is that the inner query is a correlated subquery. Correlated subqueries can take a while
to execute because they require that values are passed to the inner query from the outer query and must be
evaluated for each row in the outer query.

You would probably be better off changing this from a correlated subquery into a join. Here's the new code:

proc sql;
 select a.*
 from orion.Employee_Addresses as a,
 orion.Employee_Donations as d
 where a.Employee_ID = d.Employee_ID
 and Paid_By = 'Payroll Deduction';
quit;

One advantage of the join is that the data set orion.Employee_Donations can be subset for the variable Paid_By, and
the resulting data can be used for the join.

Happy SQLing,
Miss SASAnswers

Dear Curious to Know,

The way that PROC SQL optimizes a join is complicated. SAS uses one of the following methods based on the
relative size of the input data sets and the information SAS can gather from the descriptor portion of the data sets:

Optimization Method Used when…
Index any appropriate indexes are available. The observations are matched

directly via that index.

Merge one or both of the data sets are already sorted. In this case, only the
groups of data with the same key values are combined.

Hash one of the data sets will fit into memory. In this case, PROC SQL
processes the rows from the other table sequentially, using table-lookup
techniques to locate matching rows.

Sort-Merge algorithm a last resort, brute force method is needed. PROC SQL sorts the
incoming data sets and uses the merge method.

Dear Miss SASAnswers,
My subquery is taking forever to execute. What’s up?

Signed,
Sitting Here Waiting

PS Here's the code that is the problem. The two data sets are huge, by the way.

 proc sql;
 select *
 from orion.Employee_Addresses
 where 'Payroll Deduction'=
 (select Paid_By
 from orion.Employee_Donations
 where
 Employee_Addresses.Employee_ID =
 Employee_Donations.Employee_ID);
quit;

Dear Miss SASAnswers,
How does using PROC SQL optimize a join?

Signed,
Curious to Know

12

If you want to know the method that is being used, you can use the _METHOD option in the PROC SQL statement.

proc sql _method;
 query code
quit;

Here's a partial list of the abbreviations that might be in the log when you use the _METHOD option.

Abbreviation Method
sqxcrta Create table as Select

sqxslct Select rows from table

sqxjsl Step loop join (Cartesian product)

sqxjm Merge join execution

sqxjndx Index join execution

sqxjhsh Hash join execution

sqxsort Sort table or rows

sqxsrc Read rows from source

sqxfil Filter rows from table

sqxsumg Summary statistics (with GROUP BY)

sqxsumn Summary statistics (not grouped)

sqxuniq Distinct rows only

Here's a sample log (with my comments) for you to see the information provided by the _METHOD option.

382 proc sql _method ;
383 select Employee_Addresses.*
384 from orion.Employee_Addresses,orion.Employee_Donations
385 where Employee_Addresses.Employee_ID = Employee_Donations.Employee_ID
386 and Paid_By = 'Payroll Deduction';

NOTE: SQL execution methods chosen are:

 sqxslct the SELECT clause
 sqxjhsh the Hash join
 sqxsrc(ORION.EMPLOYEE_ADDRESSES) Source rows from table 1
 sqxsrc(ORION.EMPLOYEE_DONATIONS) Source rows from table 2
387 quit;

Happy SQLing,
Miss SASAnswers

13

Dear Frustrated Manager,

Don't be frustrated, please. In SAS® 9.2, there's a wonderful enhancement! PROC SQL uses an index when
processing a SELECT DISTINCT statement. All you have to do is index the data set orders on the variable
Product_ID.

Happy SQLing,
Miss SASAnswers

Dear Not Quite so Frustrated Manager,

I’m glad that your level of frustration is better. However, there's not much you can do to prevent this particular query
from taking so long. The problem is that PROC SQL has to total the value of DeptSal then remerge it with the detail
data. I know your data sets are huge, so I can imagine your pain.

But, you can turn on an option to prevent the query from running. Actually, there are two options: a PROC SQL
option called NOREMERGE, and a system option called NOSQLREMERGE which goes on an OPTION statement.

If you attempt to remerge when the NOMERGE option or the NOSQLREMERGE system option is set, an error is
written to the SAS log.

Happy SQLing,
Miss SASAnswers

Dear Miss SASAnswers,
You said I could send you some code that my users wrote and submit almost every hour. It's tying up our
system to the point that no one can do anything else!

proc sql;
 select distinct Product_ID
 from orion.Orders;
quit;

There are many Product_IDs in that Orders data set. What am I to do?

Signed,
Frustrated Manager

Dear Miss SASAnswers,
It's me again. Your last suggestion was perfect for solving the problem. But now I have another one.
Here's an example of the queries that folks submit all the time and complain that it takes too long. Any hope
of a solution?

proc sql;
 select Manager_ID,
 DeptSal, sum(DeptSal) as GrandTot,
 DeptSal/calculated GrandTot as percent
 format=percent8.2
 from orion.totalsalaries;
quit;

Signed,
Not Quite so Frustrated Manager

14

CONCLUSION

Structured Query Language is an extremely powerful tool that you can use to query your data. Knowing the
differences between the SQL procedure and the DATA step enables you to make a good decision when choosing a
technique for managing data. Understanding the optimization techniques used by PROC SQL helps structure your
data and indexes to take advantage of the power of SQL. Learning PROC SQL options and SAS system options that
provide additional functionality can increase your comfort with submitting SQL code.

Miss SASAnswers might not exist in real life, but there are many places that you can find assistance. When you have
questions, help is just a phone call, e-mail, or Web search away. Contact SAS Technical Support with questions, or
check out SAS training that is offered on the Web or in the classroom. Happy efficient SQL coding!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Linda Jolley, Technical Training Specialist
SAS Institute Inc.
Kansas City Regional Office
Phone: (913) 491-1166
E-mail: linda.jolley@sas.com

Jane Stroupe, Technical Training Specialist
SAS Institute Inc.
Chicago Regional Office
Phone: (847) 367-7216
E-mail: jane.stroupe@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:linda.jolley@sas.com
mailto:jane.stroup@sas.com

