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Abstract 
Statistical design and analysis of experiments has revolutionized science and industry, from agriculture 
to industrial quality improvement. But the principles of experimental design go far beyond these 
traditional applications. Researchers in areas as diverse as direct marketing, computer simulation, and 
Web site design are also using statistical experiments to study and optimize their endeavors. For 
example, you can optimize Web site traffic by conducting an experiment on different choices for 
headline texts, product images, or button text. Or you can study customer behavior by designing a direct 
marketing campaign with different offers and prices. In this presentation we demonstrate specialized 
features of SAS/QC software that enable you to perform these kinds of experiments. Our aim is not only 
to show how SAS® software  can enable advances in the particular applications we cover, but also to 
inspire you to think outside of your own box by looking for new applications of experimental design. 

Experiments Come Naturally! 
Experimentation is the most natural of human responses to the task of acquiring information.  In nearly 
every new endeavor, an initial discovery and pioneering phase is followed by a phase of 
experimentation—trying out various changes in the methodology or technique to see which ones make 
for the best result.  Teachers experiment with teaching methods, store managers experiment with ways 
to schedule their employees, and cavemen probably experimented with the best sources of stone tools! 
Strangely enough, modern enterprises often need to relearn this skill that came so naturally to the 
Neanderthal man. As Peters and Waterman note in In Search of Excellence, 

… most big institutions have forgotten how to test and learn. They seem to prefer 
analysis and debate to trying something out, and they are paralyzed by fear of failure, 
however small. (Peters and Waterman, 1982)  

That observation is key: to experiment productively is to embrace the possibility of fruitful failure, 
failure you can learn from—in a sense, successful failure.  

Statistical design of experiments is critical for succeeding through planned failure.  Early in the last 
century, scientists such as R. A. Fisher and R. C. Bose made the fundamental discovery that the statistical 
methods used to analyze an experiment after it is performed can also tell you how best to design the 
experiment before it is performed (Fisher 1971).  Thus was the field of statistical design of experiments 
born, and it is difficult to overstate its subsequent impact on all aspects of science and technology.  For 
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example, it is fair to say that the so-called “Green Revolution” in agriculture of the last century was 
enabled by statistically driven experimentation, taking techniques developed by Fisher and his 
colleagues in the 1920s and applying them to problems of famine and food production throughout the 
post-WWII third world (Wikipedia 2009).  Likewise, in the 1950s G. E. P. Box, G. Taguchi, and many 
others began to apply statistical design of experiments to problems in industry, producing a similar 
revolution in industrial output and quality (Box, Hunter, and Hunter 2005). The pattern is clear: when 
scientists and engineers want to optimize a product or process, they turn to statistical design of 
experiments. 

The New Frontier 
Although traditional applications of statistical design of experiments are still being vigorously studied 
and improved, the dawn of the twenty-first century brings many new human endeavors that need to be 
optimized. In turn these bring many new applications for statistical design of experiments.  Many of 
these applications, as indeed with many other aspects of modern life, have to do with computers and 
the Internet.  For example, the number of websites has increased a hundredfold and more in the past 
decade (Netcraft  2009). Every one of these sites can be opti mized to deliver its information as 
efficiently as possible.  As another example, computers are often used to simulate physical experiments 
that are difficult, costly, or perhaps even impossible to perform.  The design for such computer 
experiments shares some features with design for the corresponding physical processes, but there are 
also new wrinkles.  A third example of a new arena for experimentation, and thus for statistical design of 
experiments, is marketing, where the interest is in targeting the message to customers as accurately as 
possible. 

The next three sections discuss specific examples of statistical design of experiments in these areas, 
demonstrating specialized features of SAS/QC software that enable you to get the most out of such 
novel studies.  The goal of this paper is not only to show how SAS software works for these particular 
examples, but more importantly to inspire you to think outside of your own box in looking for new 
applications of experimentation and thus for statistical experimental design. 

Example 1: Website Experiment 
A multinational company has just completed a major redesign of its website and wants to perform 
experimental testing before a big launch event. They want to do a simultaneous launch in three 
countries with the website localized to those countries. The experiment is to be conducted over nine 
weeks, with three different designs tested per week. The restrictions are that only one country, one 
endorsement (celebrity), and one product can be used per week. Besides these three restrictions, all 
other testing variables can vary.  

The company would like to test  variables such as font size (small, medium, large), font type (Roman, 
Arial, Helvetica), sound (none, low, full), color (black, red, blue), background (flowers, stars, mountains), 
celebrity endorsement (Britney, Josh, Lindsay), and product (economy, special, deluxe). 



3 
 

A full-factorial design in eight factors of three levels would be 6,561 runs. Instead of running such a large 
experiment, you could consider an orthogonal array in 18, 27, or 36 runs that exist for the same 
specification. Usually you would choose the 27-run design, completely randomize the run order, and 
perform the experiments. However, the restrictions mentioned previously have repercussions for the 
critical question of how the experiment is to be randomized.    

Randomization neutralizes the effects of systematic biases that might be involved in implementing the 
design and provides a basis for the assumptions underlying the analysis. But, in this example you can 
test only one combination of Country, Endorsement, and Product per week, and you are limited to 
performing only three designs per week over a nine-week period. This restriction on randomization 
induces a split-plot structure in which weeks are whole plots, the three restricted variables Country, 
Endorsement, and Product are the whole-plot factors, and the other five variables are subplot 
factors. 

A new feature in SAS/QC 9.2 is the ability to construct full- and fractional-factorial split-plot designs 
with the FACTEX procedure. The following program constructs a resolution III design for this 
experiment, with the BLOCKS statement specifying the Week effect, and the new statement 
UNITEFFECT specifying that Country, Endorsement, and Product should be constant for the week and 
that Size, Color, Background, Font, and Sound should vary within the week. 

proc factex; 
   factors Country Endorsement Product Size Color  

  Background Font Sound / nlev=3; 
   model r=3; 
   size design=27; 
   blocks units=(Week=9); 
   uniteffect Week / 
      whole=(Country Endorsement Product) 
      sub  =(Size Color Background Font Sound) 
      ; 
   output out=WebDesign randomize 
      Country     cvals=("USA"     "Japan"   "India"    ) 
      Size        cvals=("Small"   "Medium"  "Large"    ) 
      Color       cvals=("Black"   "Red"     "Blue"     ) 
      Font        cvals=("Roman"   "Ariel"   "Helvetica") 
      Background  cvals=("Flowers" "Stars"   "Mountains") 
      Product     cvals=("Economy" "Special" "Deluxe"   ) 
      Sound       cvals=("None"    "Low"     "Full"     ) 
      Endorsement cvals=("Britney" "Josh"    "Lindsay"  ) 
      ; 
run; 
 

Table 1 shows the resulting split-plot design with each Week assigned a fixed set of Country-
Endorsement-Product combinations. The experiments are run over nine weeks with three 
experiments per week.  
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.   

Run Week Country Endorsement Product Size Color Background Font Sound 
1 1 USA Britney Economy Small Black Flowers Roman None 
2 1 USA Britney Economy Large Blue Mountains Helvetica Full 
3 1 USA Britney Economy Medium Red Stars Ariel Low 
4 2 India Lindsay Deluxe Large Blue Mountains Ariel Low 
5 2 India Lindsay Deluxe Medium Red Stars Roman None 
6 2 India Lindsay Deluxe Small Black Flowers Helvetica Full 
7 3 Japan Josh Special Medium Red Stars Helvetica Full 
8 3 Japan Josh Special Small Black Flowers Ariel Low 
9 3 Japan Josh Special Large Blue Mountains Roman None 

10 4 India Josh Economy Large Red Flowers Helvetica Low 
11 4 India Josh Economy Medium Black Mountains Ariel None 
12 4 India Josh Economy Small Blue Stars Roman Full 
13 5 Japan Britney Deluxe Medium Black Mountains Roman Full 
14 5 Japan Britney Deluxe Small Blue Stars Helvetica Low 
15 5 Japan Britney Deluxe Large Red Flowers Ariel None 
16 6 USA Lindsay Special Small Blue Stars Ariel None 
17 6 USA Lindsay Special Large Red Flowers Roman Full 
18 6 USA Lindsay Special Medium Black Mountains Helvetica Low 
19 7 Japan Lindsay Economy Medium Blue Flowers Ariel Full 
20 7 Japan Lindsay Economy Small Red Mountains Roman Low 
21 7 Japan Lindsay Economy Large Black Stars Helvetica None 
22 8 USA Josh Deluxe Small Red Mountains Helvetica None 
23 8 USA Josh Deluxe Large Black Stars Ariel Full 
24 8 USA Josh Deluxe Medium Blue Flowers Roman Low 
25 9 India Britney Special Large Black Stars Roman Low 
26 9 India Britney Special Medium Blue Flowers Helvetica None 
27 9 India Britney Special Small Red Mountains Ariel Full 

Table 1. Split-Plot Design for Website Experiment 

 
For an example of designing a multistep fractional-factorial split-plot that uses PROC FACTEX and 
how JMP® users can use the JMP scripting language (JSL) to take advantage of these advanced SAS 
design capabilities, see Ramirez and Weisz (2009). 

Example 2: Marketing Testing 
Traditionally, marketers who gauge customer preferences use a grab bag of ad hoc techniques based on 
expert opinion, past experience, and “We’ve always done it that way.” The most common tool is “one-
factor-at-a-time” testing, also called  A/B testing or split-run testing. These methods work well enough 
to find obvious trends in small studies, but they are not sophisticated enough for large studies with 
subtle effects and interactions. Industry analysts are now looking to apply techniques for statistical 
design of experiments to make their market research more sensitive, more accurate, and more 
economical.  

Bell, Ledolter, and Swersey (2006) present a case study from an advertising testing application which 
uses statistically designed experimentation. A bank wants to test the effectiveness of their direct mail 
program for credit card offers. Nineteen factors are identified that are thought to influence a customer’s 
decision whether to respond to an advertised product. Some of the factors control how the mailing 
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envelope and the accompanying letter are designed; other factors include the value of a free gi ft, 
additional inserts, interest rate, and so on.  The complete list of factors is shown in Table 2. 

 

Table 2. Factors for Marketing Testing Case Study 

The experimenters are interested mainly in first-stage screening, identifying potentially active factors to 
be investigated further in depth. They choose a 20-run Plackett-Burman design, in which main effects 
are aliased with two-factor interactions. This is a saturated design with no degrees of freedom available 
to test the effect estimates. The design listing is shown Table 3 (some column names have been edited 
to fit in the table): 

 

Table 3. Design Listing for Marketing Testing Case Study 

The experimental mailings are sent to 100,000 customers; each of the 20 different mailings in the design 
is sent to 5,000 customers.  This sample size should be large enough to enable experimenters to detect a 
shift as small as 0.2% in the response rate.  Note that the same experiment performed using one-factor-
at-a-time method would require more than four times as many mailings to estimate the effects with the 
same statistical power as the 20-run designed experiment.  
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The performance of the campaign is measured by the number of orders received and the response rate. 
Figure 1 shows a main-effect plot from the SAS® 9.2 ADX Interface for Design of Experiments for all the 
factors based on the observed response rate.  

 

  

Figure 1. Main-Effect Plot 

Zooming in, Figure 2 shows the five effects that stand out as active. 

   

  

Figure 2. Active Effects 

Several of these effects are in accord with expert opinion: 

• Increasing the credit card interest rate reduce s the response rate percentage 0.86. 
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• Placing an attention-getting sticker on the letter increases the response rate percentage by 0.55, 
easily outweighing the additional cost of the sticker. 

• The improved headline wording H1 is preferred to the old style H2. 

However, a couple effects are counterintuitive: 

• The respondents are not swayed by the targeted message, although the creative team was 
certain that appealing to a customer’s interest would improve the response. 

• Adding a second buckslip (a small sheet of paper to highlight product information) negatively 
impacts the response. Perhaps the second buckslip contains unnecessary information and 
obscures the main message. 

It is acceptable, indeed desirable, to have an experiment reveal that some hypotheses are not borne out 
by experience. It is the creative team’s job to come up with potential improvements; if you require that 
all of their guesses be correct, you will get a lot fewer guesses.  Experimentation encourages experts to 
take a risk in their notions and guesses, knowing that fruitless ideas will be caught well before they 
become too costly. 

As another way to analyze this data, a formal main-effects statistical model can also be fitted to 
observed response rates. The resulting normal plot of the effect estimates is shown in Figure 3. The 
effects that fall away from the pseudo-standard error (PSE) line are generally significant and confirm 
earlier conclusions. 

 

Figure 3. Normal Plot of Effect Estimates 
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Example 3: Computer Simulation Experiment 
As noted in the first section, statistical design of experiments began with applications in agriculture and 
later in manufacturing—growing and making actual physical stuff. However, physical experiments such 
as this can be time-consuming and costly. With the advent of fast and affordable computing power, a 
versatile new tool in science and technology is the computer experiment. This involves developing a 
mathematical model of the elements of a physical system and then modeling its general characteristics 
with a much simpler summary model.  To account for variation of the true mathematical model around 
the simpler one, the summary model includes one or more random components. Thus, physical 
experiments can be performed by computer simulation. Although such computer experiments cannot 
replace physical experiments, they do provide a good approximation for understanding the general 
features of your process. 

As an example, consider an experimental study conducted by the National Institute of Standards and 
Technology (NIST) Building and Fire Research Laboratory concerning the reflective coatings for buildings 
(Zarr 1998). A reflective coating applied to the exterior of a building is designed to reflect solar radiation, 
thereby reducing the cooling requirements for a conditioned space. Below are some the questions the 
experimenters were interested in answering: 

• How do building parameters such as roof reflectance, building insulation, attic ventilation, and 
attic size affect the heating and cooling loads of the building in different climates? Which 
parameter is the most important? 

• Does the presence of a reflective roof cause an undesired increase in heating load during the 
winter heating season? 

The input parameters to be controlled were : geographic location, roof reflectance index, ceiling 
insulation resistance, attic ventilation rate, and attic framing area. Table 4 shows the factors and  levels 
of interest. 

Factors Levels 
LOC (geographic location) Miami, Phoenix, Birmingham, DC, Portland, 

Bismarck 
REFLECT (roof solar reflectance) 0.10, 0.30, 0.45, 0.60, 0.80 
RESIST (ceiling thermal resistance) 0, 11, 19, 30, 38, 49 
ATICVENT (attic ventilation rate) 0.5, 2.3, 4.6, 6.9, 9.2 
ATICAREA (attic framing area) 333, 417, 501 

Table 4. Factors and Levels in Reflective Coating Study 

If an experiment on these factors were to be run physically, the engineers would have to build or find 
houses at the correct location with certain exact specifications, and then modify the physical attributes 
to match the levels of interest. Obviously, this would be time-consuming and expensive, and in fact 
probably infeasible. Instead NIST engineers decided to use historical data on weather and energy use to 
simulate the experiments. They performed a full-factorial experiment in 6x5x6x5x3 = 2700 runs, which 
required around 31 hours to simulate  on a PC. The following sections explore different design options 
the engineers might have employed to significantly reduce this computation time . 
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Design Choice 1 

As part of a strategy of sequential experimentation, instead of running a full-factorial experiment, you 
can run a screening experiment as a first step. This helps to identify the important factors and their 
corresponding levels of interest, and it weeds out the nonsignificant factors. Usually only two levels are 
chosen for each factor in a screening design.  All the factors in the NIST scenario have more than two 
levels, but you can adapt this to a screening design in the following way.  Besides Location, all factors are 
quantitative, so you can use the minimum and the maximum of the range as the two levels, low and 
high, of each factor. For Location you can pick two of the six cities—say, the ones that have the 
minimum and maximum average annual temperature.  

With five two-level factors, a good option is the fractional -factorial 25-1 design, which is a half-fraction in 
16 runs. This design has resolution V—that is, all 5 main effects and all 10 two-factor interactions are 
simultaneously estimable with full efficiency. Assuming there are no quadratic effects, this design works 
well to identify the main effects and interactions.  The 25-1 design for this case is shown in Table 5. 

RUN LOC REFLECT RESIST ATICVENT ATICAREA 

1 Portland 0.1 0 0.5 500 
2 Phoenix 0.1 0 0.5 300 
3 Portland 0.8 0 0.5 300 
4 Phoenix 0.8 0 0.5 500 
5 Portland 0.1 49 0.5 300 
6 Phoenix 0.1 49 0.5 500 
7 Portland 0.8 49 0.5 500 
8 Phoenix 0.8 49 0.5 300 
9 Portland 0.1 0 9.2 300 

10 Phoenix 0.1 0 9.2 500 
11 Portland 0.8 0 9.2 500 
12 Phoenix 0.8 0 9.2 300 
13 Portland 0.1 49 9.2 500 
14 Phoenix 0.1 49 9.2 300 
15 Portland 0.8 49 9.2 300 
16 Phoenix 0.8 49 9.2 500 

Table 5. Fractional-Factorial Design 

 
Design Choice 2 

On the other hand, if you suspect there might be more complicated effects, then reducing the number 
of levels studied for each factor might not be appropriate.  Instead, suppose you want a design that 
preserves the original factor levels, over the original experimental design space.  You could explore the 
option of using an orthogonal array. Ideally you would like to use a design that is orthogonal and 
balanced, with all levels of all factors occurring equally often and all parameter estimates  uncorrelated. 
 
The SAS/STAT®  market research experimental design macros (Kuhfeld 2009) are powerful tools for 
constructing orthogonal and near-orthogonal experimental designs. The %MktEx macro can construct 
over 117,000 orthogonal arrays from its catalog.  If an orthogonal array does not exist for your 
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application, the %MktEx macro can find an efficient experimental design by using a coordinate exchange 
or candidate set search algorithm.  
 
The following statement specifies the five factors and their levels, corresponding to those in the building 
simulation study, to construct a 180-run orthogonal array which can estimate all the main effects and 
the two-factor interactions: 
 

%mktex(6 5 6 5 3, interact=@2, n=180) 
 

 
The %Mktex macro uses the best method available to find the best combination of a subset of 180 runs 
among a full-factorial design 625231 of 2,700 runs. For this particular 625231 factor structure, no standard 
design exists, so construction by design optimization is warranted.  The %Mktex macro uses the SAS/QC 
OPTEX procedure the underneath and also uses the coordinate-exchange method to find the 
appropriate design. Table 6 shows a partial listing of the design (the factor names and levels were 
uncoded using an additional step that is not shown): 

  OBS       Loc        Reflect    Resist    Aticvent    Aticarea 
 
    1    Birmingham      0.10        0         4.6         333 
    2    Birmingham      0.10        0         9.2         417 
    3    Birmingham      0.10       19         0.5         333 
    4    Birmingham      0.10       30         2.3         501 
    5    Birmingham      0.10       38         6.9         333 
    6    Birmingham      0.10       49         2.3         333 
    7    Birmingham      0.30        0         0.5         501 
    8    Birmingham      0.30       11         2.3         333 
    9    Birmingham      0.30       19         9.2         501 
   10    Birmingham      0.30       30         9.2         417 
    .    .                  .        .           .           . 
    .    .                  .        .           .           . 
    .    .                  .        .           .           . 
  179    Portland        0.80       38         0.5         501 
  180    Portland        0.80       49         9.2         333 

Table 6. Orthogonal Array  

Table 7 shows the output from the %Mkteval evaluation of this design. The table displays the canonical 
correlations between pairs of coded factors. If a design is orthogonal for main effects, the matrix shows 
all zeroes off the diagonal . This design is not orthogonal because the matrix shows minor presence of 
correlation between the main effects.  Note that this amount of correlation is unlikely to severely impact 
the quality of the information obtained from this design.  If a 180-run design that enables you to 
estimate all main effects and interactions between the original factors as classification effects is what 
you want, this is a perfectly adequate alternative. 
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  LOC  REFLECT  RESIST  ATICVENT ATICAREA 
LOC      1        0.10     0.08     0.06     0.10 
REFLECT     0.10     1        0.11     0.13     0.08 
RESIST     0.08     0.11     1        0.07     0.06 
ATICVENT    0.06     0.13     0.07     1         0.11 
ATICAREA     0.10     0.08     0.06     0.11     1 

Table 7. Design Evaluation 

 

Design Choice 3 

In Design Choice 2, the %Mktex macro took several minutes to search an appropriate design. Also, it 
should be noted that %Mktex treats all the variables as classification variables. However, if you want to 
consider only Location as a classification variable because it has qualitative levels, you can search 
directly for a nonstandard design with the OPTEX procedure. With this method, you specify a candidate 
set of design points and a linear model, and then use an optimal design algorithm to choose a particular 
number of points so that the terms in the model can be estimated as efficiently as possible.   

The following SAS statements use the SAS/STAT PLAN procedure to create the full set of 2,700 runs as a 
candidate set and then use PROC OPTEX to select just 60 of them optimally—a 1/45 fraction. In Design 
Choice 2 the main effects and interactions are specified, but in this example the quadratic effects are 
also included to detect the presence of curvature. 

/* 
/  Create complete 6x5x6x5x3 candidate set. 
/-----------------------------------------------------------------*/ 
proc plan; 
   factors loc=6 reflect=5 resist=6 aticvent=5 aticarea=3 / noprint; 
   output out=Full; 
run; 
 
/* 
/  Select 60 run design D-optimally. 
/-----------------------------------------------------------------*/ 
proc optex data=Full coding=orthcan; 
   class loc; 
   model loc|reflect|resist|aticvent|aticarea@2 
         reflect*reflect resist*resist 
         aticvent*aticvent aticarea*aticarea; 
   generate n=60 method=m_fedorov niter=100 keep=10; 
   output out=Design3; 
quit; 
 

The output obtained from PROC OPTEX and shown in Table 8 illustrates the efficiencies of the design 
saved in the data set Design3. These efficiency numbers represent the goodness of a design relative to 
the 2,700-run full-factorial design which is both orthogonal and balanced.  The best D-efficiency design 
was found in the first try, and the best A-efficiency design was found in the eighth try. The efficiencies 
shown in this table are relative to the best hypothetical design. They are not on a scale of 0 to 100  
because only one of the five factors is specified as a classification variable.  
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                                                                Average 
                                                               Prediction 
 Design                                                         Standard 
 Number     D-Efficiency     A-Efficiency     G-Efficiency       Error 
 
      1       147.0331         103.7270          85.9147          0.8017 
      2       146.8678         102.8669          81.3364          0.8050 
      3       146.8678         102.8669          81.3364          0.8050 
      4       146.8678         102.8669          81.3364          0.8050 
      5       146.8678         102.8669          81.3364          0.8050 
      6       146.8678         102.8669          81.3364          0.8050 
      7       146.8180         103.0231          84.1224          0.8044 
      8       146.7163         107.8359          88.2064          0.7863 
      9       146.6867         104.3503          84.0153          0.7993 
     10       146.6535         101.8050          87.6281          0.8092 

Table 8. Design Efficiencies 

Table 9 shows the frequency distributions of the factor levels for the final design that the OPTEX 
procedure found.  Note that only the levels of the classification factor LOC are approximately uniformly 
sampled.  For the other factors, modeled with quadratic effects, only extreme and central levels are 
included, the extreme levels with more weight.  This is in accord with the ideal optimum design for a 
quadratic model over a rectangular candidate space, which only requires three levels per factor. 

Loc Freq % 
1 8 13.33 
2 8 13.33 
3 11 18.33 
4 9 15.00 
5 12 20.00 
6 12 20.00 

 

Reflect Freq % 
1 27 45.00 
2 0 0.00 
3 6 10.00 
4 0 0.00 
5 27 45.00 

   
 

Resist Freq % 
1 26 43.33 
2 0 0.00 
3 4 6.67 
4 3 5.00 
5 0 0.00 
6 27 45.00 

 

Aticvent Freq % 
1 26 43.33 
2 0 0.00 
3 7 11.67 
4 0 0.00 
5 27 45.00 

   
 

Aticarea Freq % 
1 27 45.00 
2 6 10.00 
3 27 45.00 

   
   
   

 

Table 9. Frequency Distribution of Factor Levels 

Design Choice 4 

This design choice offers another way of treating the Location factor. If you examine the factor variables, 
it seems that the Location variable was considered in order to account for the range of outdoor 
temperature, which is likely to contribute in obvious and relatively uninteresting ways to the variability 
observed in the response data. For making inferences over the whole range of environmental 
conditions, this makes Location a block effect, rather than being an effect of direct interest.  To adjust 
for the variability between locations, Location should be treated as a blocking variable. By doing so, you 
are assuming that Location probably has an effect on the response but that effect is only a nuisance in 
estimating other effects of direct interest. Furthermore, if you are interested in studying the response 
surface, the design should be able to estimate the quadratic effects in addition to the main effects and 
two-factor interactions. 

The following SAS statements again use PROC OPTEX on the full candidate set of 450 runs. (Location is 
excluded because it is the blocking variable.) This time the statements ask that the 180-run design be 
optimally blocked into 30 blocks of 6 runs each.  
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/* 
/  Create complete 5x6x5x3 candidate set. 
/-----------------------------------------------------------------*/ 
proc plan; 
   factors reflect=5 resist=6 aticvent=5 aticarea=3 / noprint; 
   output out=Full; 
run; 
/* 
/  Create a response surface blocked design in 6 blocks with 30 runs  
/-----------------------------------------------------------------*/ 
proc optex data=Full coding=orthcan; 
   model reflect|resist|aticvent|aticarea@2 
         reflect*reflect resist*resist  

                   aticvent*aticvent aticarea*aticarea; 
   blocks structure=(6)30; 
   output out=Design4 blockname=loc; 
quit; 
 

Table 10 shows the partial listing of the response surface design (the variable levels were uncoded using 
an additional data step not shown here): 

 

 Loc Reflect Resist Aticvent  Aticarea 

1 Miami 0.10 19 9.2 501 

2 Miami 0.45 30 4.6 417 

3 Miami 0.45 0 9.2 417 

. . . . . . 

. . . . . . 

30 Miami 0.10 49 0.5 333 

31 Phoenix  0.45 49 9.2 501 

32 Phoenix  0.45 49 9.2 417 

33 Phoenix  0.80 0 9.2 333 

. . . . . . 

. . . . . . 

60 Phoenix  0.10 19 4.6 417 

61 Birmingham  0.80 49 9.2 333 

62 Birmingham  0.10 49 9.2 501 

63 Birmingham  0.10 0 9.2 333 

. . . . . . 

. . . . . . 

90 Birmingham  0.80 30 4.6 333 

91 DC 0.80 49 0.5 333 

92 DC 0.10 49 9.2 501 

93 DC 0.80 0 9.2 333 

. . . . . . 

. . . . . . 

120 DC 0.80 49 9.2 333 

121 Portland 0.80 19 9.2 333 

122 Portland 0.80 49 0.5 417 

123 Portland 0.10 0 9.2 501 

. . . . . . 

. . . . . . 

150 Portland 0.45 30 9.2 501 

151 Bismarck 0.10 0 0.5 417 

152 Bismarck 0.80 0 0.5 333 

153 Bismarck 0.80 0 9.2 501 

. . . . . . 

. . . . . . 

180 Bismarck 0.10 19 9.2 333 

Table 10. Partial Listing of Blocked Optimal Response Surface Design 
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Summary 
In Experimentation Matters, Stefan Thomke explores the many new kinds of experiments that are 
possible nowadays, and he gives principles that enterprises should heed in order to benefit from these 
new technologies.  Citing new possibilities for computer modeling and simulation (as in Example 3) and 
for rapid prototyping by combinatorial methods (similar to the other two examples), Thomke highlights 
a key guideline: experiment early and often, without fear of failure.  “Effective experiments are 
supposed to reveal what does not work early,” writes Thomke; the ideal is to “fail often to succeed 
sooner.”  With this thought in mind, and with the examples presented in this paper for inspiration, we 
encourage you to look for novel experimental opportunities in your own enterprise.  As you do so, SAS 
software is your critical tool for finding fruitful failures, the kind of short-term failures that lead to long-
term success. 
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