Potential Result Set Differences between
Relational DBMSs and
the SAS System

Fred Levine, Senior Systems Developer, SAS Institute Inc

Overview

Over the years, the SAS/ACCESS engine development team has made continuous performance
improvements to our products by providing our users with the ability to offload to underlying relational
data base management systems (RDBMSSs) processing that normally would occur in the SAS System.
In many cases, one can see significant performance improvements when processing occurs on the
RDBMS server. There are three basic mechanisms that provide this functionality:

e The SQL Pass-Through facility, which utilizes special syntax in PROC SQL to allow RDBMS-
specific SQL to get passed to the RDBMS server.

e« The SAS WHERE clause used with a SAS/ACCESS engine. This is the WHERE clause that can
be surfaced from any SAS procedure that operates on rectangular data.

« PROC SQL queries that process tables from a single SAS/ACCESS LIBNAME engine and
contain performance-sensitive operations such as joins, distinct processing, and SQL-defined
aggregate functions.

For the purposes of this paper, | will only address the latter two performance mechanisms because in
these two cases, RDBMS server processing is hormally transparent to the user. It is this transparency
that at times can be troublesome due to the fact that

e Certain types of processing are handled differently in SAS than in most RDBMSs, which
potentially can yield different result sets.

« Users may not always be aware of which software system is processing their SAS jobs. As a
result, they may get unexpected results.

Prerequisites

To get the most benefit from the concepts discussed in this paper, you should already be familiar with
the syntax of the SAS/ACCESS LIBNAME statement that controls when queries are passed to the
RDBMS. For further information, please refer to the SAS/ACCESS LIBNAME engine documentation.

RDBMS Null Values Versus SAS Missing Values

How does RDBMS processing differ from SAS processing? The major area of processing where result
set differences can occur is when processing null data.

In the SAS System, the element that is most similar to the RDBMS null value is the SAS missing value.
Because RDBMS nulls and SAS missing values are conceptually the same, SAS/ACCESS engines will
translate SAS missing values to RDBMS nulls when creating RDBMS tables from within SAS and,
conversely, translate RDBMS nulls to SAS missing values when reading RDBMS tables into SAS.

So how do RDBMS Nulls and SAS missing values differ?

Potential Result Set Differences between Relational DBMSs and the SAS System 2

In most relational RDBMSs, nulls represent the absence of data; that is, RDBMS nulls do not sort or
compare because there is no data on which to operate. However in SAS, we have the concept of a
missing value, which is quite different. A SAS missing value is a special, reserved floating point number
that can have 28 possible values represented by the following elements:

e Anperiod (.)
e Anunderscore and a period (_.)
e Aperiod and an alpha (.A through .Z).

These values make a lot of sense for SAS procedures that utilize survey data where more than one
missing value is needed. For example, consider an epidemiological survey that asks a patient about
their genetic predisposition to certain illnesses. The patient could decide to leave some of these
questions blank for one or more reasons. They may not know the answer or actually refuse to answer. If
the survey required a reason for not answering the question, then in this example, two missing values
would be needed. For example, the values could be coded as .D for “do not know” and .R for “refuse to
answer.”

So it is helpful in such cases for software that has its roots in statistical analysis to provide multiple
missing values. Because these missing values must be distinguishable from each other, it is important to
note that SAS missing values will evaluate with standard comparison operators, unlike RDBMS
nulls which only evaluate with special null comparison operators, that is, “where column is
null.”

This ability to evaluate missing values with standard comparison operators has significant implications
when passing queries to an RDBMS for processing, because the RDBMS will interpret nulls differently
than SAS.

In the following examples, | use the value "." as the SAS missing value to illustrate these differences
because the SAS "." is the most commonly used missing value and is visually identical to an RDBMS
null.

Example 1 - Evaluating Column < 0 with Null Data

Data Processed by RDBMS

libname ora oracle user=scott pw=tiger;

data ora.tabll; x=. ; [* create missing value */
run;

NOTE: The data set ORA.TABL1 has 1 observations and 1 variables.
NOTE: DATA statement used:

real time 24.20 seconds

cpu time 0.20 seconds

/* WHERE clause passed to Oracle for processing: */

proc print data=ora.tabll; where x < 0;
run;

NOTE: No observations were selected from data set ORA. TABLI1.

Potential Result Set Differences between Relational DBMSs and the SAS System

Data Processed by SAS
libname ora oracle user=scott pw=tiger direct_sql=(nowhere);
I* WHERE clause processed by SAS: */

proc print data=ora.tabll; where x < 0;
run;

Obs X
1

NOTE: There were 1 observations read from the data set ORA. TABL1.

In this very simple example, we see a difference in results because in Oracle the null is interpreted as
the absence of data and therefore will not evaluate with a ‘<’ comparison operator. However in SAS, the
null (SAS missing value) is interpreted as its internal floating point representation whose ordinal value is
less than 0. Therefore, in SAS the expression does satisfy the condition of the WHERE clause.

Example 2 - Comparing Nulls for Equality

In the following two exhibits, PROC PRINT is used to show regional sales employees’ salaries and

commissions for a Midwest region and a South region. Note that not all these employees were given
commissions, so the value of commissions can be null.

proc print data=ora.midwest;
run;

Obs EMPID SALARY COMMISSION

1 100 30000 1200
2 101 35000
3 102 33000

NOTE: There were 3 observations read from the data set ORA.MIDWEST.
NOTE: PROCEDURE PRINT used:

real time 1.14 seconds
cpu time 0.13 seconds

Potential Result Set Differences between Relational DBMSs and the SAS System

proc print data=ora.south;
run;

Obs EMPID SALARY COMMISSION

1 200 32500 .
2 201 34000 800
3 202 41000 250

NOTE: There were 3 observations read from the data set ORA.SOUTH.
NOTE: PROCEDURE PRINT used:

real time 0.05 seconds
cpu time 0.04 seconds

Using these two employee tables, we can find out which Midwestern sales employees made the same
commission as the Southern sales employees. To do this, construct a simple inner join by first passing
the query to Oracle and then to SAS. Here is the code for the Oracle processing along with the output:
I* WHERE clause passed to Oracle for processing: */
libname ora oracle user=scott pw=tiger;

proc sql;

select midwest.empid, south.empid from ora.midwest, ora.south
where midwest.commission=south.commission;

NOTE: No rows were selected.

No rows were selected. This is the result one would expect because, as one can see from the above

output, there are no Midwestern employees who made the same commission as any of the Southern
employees.

Potential Result Set Differences between Relational DBMSs and the SAS System 5

Next, here is the same query, but this time SAS does the processing:
/* WHERE clause processed by SAS: */
libname ora oracle user=scott pw=tiger direct_sql=no;

select midwest.empid, south.empid from ora.midwest, ora.south
where midwest.commission=south.commission;

EMPID EMPID

102 200
101 200

Note in the output that the Midwestern employees identified as 101, 102, and the Southern employee
identified as 200 did not make commissions. As a result, all of these employees had null values for
commission.

The reason that SAS found these matches is that SAS missing values are interpreted as real ordinal
numbers and therefore will match when one SAS missing value equals another. However, the result set
from the SAS processing does not truly reflect the intent of the query. If | wanted to know which
employees did not make a commission, | would have specified "where commission is null* as part of the
query. (For more information about revising SAS code in these circumstances, see the section "Work-
arounds for Null Data Problems.")

Example 3 - Internally Comparing Nulls for Equality with Outer Joins
In the two examples so far, we have been using data that contains null values. However, it is also
possible to get different result sets from SAS and an RDBMS when submitting outer joins where the data
does not contain nulls but the internal processing generates nulls for intermediate result sets.
To illustrate, below are four simple Ingres tables that will construct a four-table outer join:
Table 1 - ing.q

proc print data=ing.q;
run;

Obs x

A WN B
o~ Wk

Potential Result Set Differences between Relational DBMSs and the SAS System

Table 2 - ing.q2

proc print data=ing.q2;

run;
Obs x
1 1
2 3
3 4
4 6
Table 3 - ing.y
proc print data=ing.y;
run;
Obs x
1 2
2 4
3 6
Table 4 - ing.z

proc print data=ing.z;
run;

Obs x

W N -
[SaRNoS Iy

Potential Result Set Differences between Relational DBMSs and the SAS System 7

Here is the code used to pass the outer join query to Ingres:
/* SQL query passed to Ingres for processing: */
libname ing ingres database=clifftop;
proc sql;
select * from ing.y left join ing.q ony.x = q.x
left joining.z on z.x=y.x
right join ing.q2 on g.x = z.x;

Here are the results when Ingres processes the query:

o b WwWE

Here is the same outer join query but this time processed by SAS:
I* SQL query processed by SAS: */
libname ing ingres database=clifftop direct_sql= no;
proc sql;
select * from ing.y left join ing.q on y.x = q.x
left joining.z on z.x=y.x
right join ing.qg2 on g.x = z.x;

Here are the results from SAS:

x
x
x
x

NNDDNDN
o~ WwWE

None of these tables contain nulls. So why do we get different results? The answer lies in the fact that
this query generates intermediate result sets. Therefore, let's analyze each intermediate result set to see
how these tables are being joined.

Potential Result Set Differences between Relational DBMSs and the SAS System

First Intermediate Result Set

{select * from ing.y left join ing.q on y.x = q.x}

Tables Joined:

Y. X g.x
2 1
4 3
6 4
6
Generates:
y.X q.x
2 .
4 4
6 6
Second Intermediate Result Set
{left joining.z on z.x=y.x}
Tables Joined:
y.X | g.x Z.X
2 1
4 4 3
6 6 5
Generates:
y.X gx zX

oA~ DN
o B~

Potential Result Set Differences between Relational DBMSs and the SAS System

Third Intermediate Result Set

{right join ing.g2 on g.x = z.x;}

Tables Joined:

y.X | QX | z.X g2.x
2 1
4 4 3
6 6 4
6

Here is where this query gets interesting. Note that the ON clause in this last intermediate result set
does not reference a column from the g2 table being joined. This is where the problem lies. Notice the
result set so far. In the first row, g.x does equal z.x when SAS does the processing because missing
values do compare in SAS. As a result, the first row constitutes a match in SAS and is joined to the first
row of q2. Because there are no other rows that match here, the final SAS-processed result set is as

follows:

<
X

q.x

zZ.X g2.x

NN

oWk

When this same query gets passed to Ingres, the final result set looks different. Here are the relevant
tables again just prior to the last join. When Ingres (or any RDBMS) processes this query, g.x will not
equal z.x because these nulls have no value and therefore do not compare.

Tables Joined:

y.X | qX | zX g2.x
2 1
4 4 3
6 6 4
6

Potential Result Set Differences between Relational DBMSs and the SAS System 10

Here is the final result set for Ingres. Note that because there are no matches, we only see nulls in the
non-preserved tables.

Final Ingres Result Set:

y.X g.x z.X q2.x

o~ WE

This example is a bit unusual because outer join queries usually reference at least one column from the
tables being joined in their respective ON clauses. However, we can now see how different results can
occur even when the data do not contain any nulls.

Work-arounds for Null Data Problems

A generic solution for the null data issue does exist that will always produce consistent results regardless
of whether SAS or an underlying RDBMS is doing the processing. When specifying WHERE and ON
conditions, one can add: "and <expression>is not null." This additional statement will prevent SAS
from evaluating nulls thereby making SAS produce the same results as an underlying RDBMS. This
extra statement will have no effect when passed to the RDBMS for processing.

When applied to the three examples discussed earlier, the revised code appears as follows. The
additional “is not null” expressions are in red:

Revised Code for Example 1 - Evaluating Column < 0 with Null Data

proc print data=ora.tabll; where x < 0 and x is not null;
run;

Revised Code for Example 2 - Comparing Nulls for Equality

select midwest.empid, south.empid from ora.midwest, ora.south
where midwest.commission=south.commission
and midwest.commission is not null;

Revised Code for Example 3 - Internally Comparing Nulls for Equality with Outer Joins

select * from ing.y left join ing.q on (y.x = g.x and y.x is not null)
left joining.z on (z.x=y.x and z.x is not null)
right join ing.g2 on (g.x = z.x and g.x is not null);

Note that in examples 2 and 3 in which we compare two columns for equality, you only need to add the
“is not null” expression for one of the contributing columns because if one of them is not null, we could
never be comparing two nulls for equality.

Potential Result Set Differences between Relational DBMSs and the SAS System 11

In all these examples, identical results would be returned regardless of whether SAS or the underlying
RDBMS was doing the processing. The third example is admittedly cumbersome because a user may
know very well that the underlying tables do not contain any null data and would only generate such a
query to account for nulls in generated intermediate result sets that are not surfaced to the user.

Adding the “is not null” expression to all WHERE clauses and all ON clauses may not always be the
most efficient thing to do, so | am not suggesting that it be specified all the time. Depending on the query
it can add a lot of code complexity. However, it is a solution that will solve this problem and users should
use their own judgement and knowledge of their own data to determine when it would be prudent to
apply the “is not null” expression.

Conclusion

The examples in this paper illustrate how it is possible to get different result sets depending on whether
SAS or an underlying RDBMS (via a SAS/ACCESS LIBNAME engine) is doing the processing.

Although in many cases the differences illustrated in these examples will not present a problem, it is
important for SAS/ACCESS users to understand how these result set differences can occur so they can
tailor their underlying data and subsequent querying to achieve the desired results.

Contact Information

Fred Levine

Senior Systems Developer
SAS Institute Inc

Cary, NC 27513
Fred.Levine@sas.com

	Overview
	Prerequisites
	RDBMS Null Values Versus SAS Missing Values
	
	Example 1 - Evaluating Column < 0 with Null Data
	Data Processed by RDBMS
	Data Processed by SAS

	Example 2 - Comparing Nulls for Equality
	Example 3 - Internally Comparing Nulls for Equality with Outer Joins
	Table 1 - ing.q
	Table 2 - ing.q2
	Table 3 - ing.y
	Table 4 - ing.z
	First Intermediate Result Set
	Second Intermediate Result Set
	Third Intermediate Result Set

	Work-arounds for Null Data Problems
	Revised Code for Example 1 - Evaluating Column < 0 with Null Data
	Revised Code for Example 2 - Comparing Nulls for Equality
	Revised Code for Example 3 - Internally Comparing Nulls for Equality with Outer Joins

	Conclusion
	Contact Information

