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ABSTRACT  

This paper presents a novel approach to monitor model performance over time.  Instead of 

monitoring accuracy of prediction or conformity of predictors’ marginal distributions, this 

approach watches for changes in the joint distribution of the predictors.  Mathematically, the 

model predicted outcome is a function of the predictors’ values.  Therefore, the predicted 

outcomes contain intricate information about the joint distribution of the predictors. This 

paper proposes a simple metric that is coined the Feature Contribution Index.  Computing 

this index requires only the predicted target values and the predictors’ observed 

values.  Thus, we can assess the health of a model as soon as the scores are available and 

raise our readiness for preemptive actions long before the target values are eventually 

observed.  This index is model neutral because it works for any types of models that contain 

categorical or continuous predictors, and models that generate predicted values or 

probabilities.  Models can be monitored in near real time since the index is computed using 

simple and time-matured algorithms that can be run in parallel.  Finally, it is possible to 

provide statistical control limits on the index.  These limits help foretell whether a particular 

predictor is a plausible culprit in causing the deterioration of a model’s performance over 

time. 

INTRODUCTION 

In today’s intelligence-driven economy, corporations increasingly rely on analytic models to 

make their business decisions.  Like all tangible assets, models become dated, and their 

accuracies diminish over time.  To stay competitive, corporations constantly monitor their 

models.  When signs of deterioration of model performance appear, stakeholders need to 

determine if the models must be proactively updated or rebuilt to correct the problems.  

Since every decision to refresh a model carries risks and can disrupt normal business, a 

solid business case must be presented to support the request to update or rebuild a model. 

Not all models can be monitored or are worth monitoring.  In this paper, we focus on 

monitoring supervised learning models where there is one target variable.  Most, if not all, 

model performance metrics have one thing in common: they measure how well the model 

predicted values agree with the observed target values.  Various model performance metrics 

have been developed to measure the degree of this agreement.  However, we sometimes 

need to assess the health of a model at the time of scoring when the target values are yet 

to be observed.  If we must wait for the availability of the observed target values, then we 

might lose the opportunity to make a time-sensitive decision to refresh the model sooner.  

An example of this need is the fraud detection model.  It is known that those who commit 

fraud game the system to avoid being detected.  Since it takes time to diligently investigate 

fraud, we need some indicators to tell us now if the current system is being gamed.  If we 

find that the system is no longer effective in detecting fraud, then countermeasures must be 

taken to correct the situation. 

Although there are currently various model performance metrics to measure the overall 

performance of a predictive model, not all metrics are able to pinpoint which predictors 

might be responsible for the deterioration of model performance.  In addition, some metrics 

are applicable only to certain types of models and computing the metrics might require us 

to rebuild the model. 
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This paper proposes a model performance metric coined the Feature Contribution Index.  

Only the predicted target values and the predictors’ values are needed to calculate the 

index.  Thus, we can assess the health of a model as soon as the model scores are available 

and take preemptive actions long before the target values are observed.  This index is 

model neutral because it works for any types of models that contain categorical or 

continuous predictors, and models that generate predicted values or predicted probabilities.  

Models can be monitored in near real time since the index is computed using simple and 

robust algorithms that can be run in parallel.  Finally, statistical control limits on the index 

can be provided.  The statistical control limits can help determine whether a particular 

predictor is causing the deterioration of a model’s health over time. 

IDEA CONCEPTION 

Loosely speaking, a supervised learning model is an algorithm that takes the values of 

predictors as inputs and computes the predicted value of the target variable as the output.  

The algorithm is constructed based on the assumptions made on the probability distribution 

of the data.  The assumptions are the relationship between the target variable and the 

predictors, the covariance structure of the predictors, and the distribution of the target 

variable.  In a linear regression model, for example, the relationship between the target 

variable and the predictors is linear, the covariance structure of the predictors is fixed, and 

the target variable follows a normal distribution that is parametrized by a mean and a 

constant variance.  The mean of the target variable is the predicted value of the linear 

relationship. 

When a supervised learning model does not perform, we mean that the model can no longer 

be used to describe the probability distribution of the current data.  In other words, some 

assumptions made are no longer valid. Different metrics have been developed to check 

specific assumptions.  For the linear regression model, the lack-of-fit test checks the linear 

relationship assumption. The test of homogeneity checks the constant target variable 

variance assumption. The Shapiro–Wilk test checks the normality assumption.  In summary, 

checking the relationship between the target variable and the predictors and determining 

the probability distribution of the data assumptions requires the observed target values.  

When the target variable has yet to be observed, which is a common situation in applying 

the model to new data, these two groups of assumptions cannot be checked.  However, we 

can still check for changes in the covariance structure of the predictors. 

To compare the covariance structure of the predictors over time, we can use multivariate 

tests of equality of covariance matrices such as Box’s M test.  If we can put aside the 

argument of whether these tests can apply to our data (due to the assumptions requiring 

observed target values), these tests can be helpful.  However, we often need to know which 

of the predictors have triggered the differences in the covariance structures in addition to 

simply knowing that the covariance structures have changed over time. 

Let us study the linear regression model to generate ideas.  Under this model, the predicted 

value of the i-th observation is �̂�𝑖 = 𝑏0 + ∑ 𝑏𝑟𝑥𝑖𝑟
𝑘
𝑟=1  where k is the number of predictors,  𝑏0 is 

the intercept, 𝑏1, … , 𝑏𝑘 are the estimated regression coefficients, and 𝑥𝑖1, … , 𝑥𝑖𝑘 are the values 

of the predictors in the i-th observation.  Using the fact that �̅� = 𝑏0 + ∑ 𝑏𝑟�̅�𝑟
𝑘
𝑟=1 , it can be 

shown that 

 (�̂�𝑖 − �̅�)(𝑥𝑖𝑠 − �̅�𝑠) = ∑ 𝑏𝑟(𝑥𝑖𝑟 − �̅�𝑟)(𝑥𝑖𝑠 − �̅�𝑠)𝑘
𝑟=1  for 𝑠 = 1, … , 𝑘.   

Suppose n is the number of observations, then we have 

 
1

𝑛−1
∑ (�̂�𝑖 − �̅�)(𝑥𝑖𝑠 − �̅�𝑠)𝑛

𝑖=1 = ∑ 𝑏𝑟 (
1

𝑛−1
∑ (𝑥𝑖𝑟 − �̅�𝑟)(𝑥𝑖𝑠 − �̅�𝑠)𝑛

𝑖=1 )𝑘
𝑟=1 .   
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The left-hand side of the equation is the observed covariance between the predicted values 

and the values of the s-th predictor.  The right-hand side of the equation is a linear 

combination of the observed covariances between the values of each predictor and the s-th 

predictor. 

When we apply this linear regression model to new data, the estimated regression 

coefficients are considered fixed.  If the covariances among the predictors of the new data 

are the same as that of the training data, then the covariances between the predicted 

values and the values of the predictors of the new data should also be the same as that of 

the training data.  The contraposition of this condition says that if the covariances between 

the predicted values and the values of the predictors of the new data are different from that 

of the training data, then the covariances between the predicted values and the values of 

the predictors of the new data should also be different from that of the training data.  

Therefore, if we compare the covariances between the predicted values and the values of 

the predictors with that of the training data, then we might be able to tell if the covariance 

structures of the predictors have changed. 

EXTENSION TO CATEGORICAL VARIABLES 

Next, we will attempt to extend the idea in the last section to categorical target variables or 

predictors.  Let’s take on the categorical target variable first.  If we directly apply the idea in 

the previous section to the predicted category of a categorical target variable, then we must 

choose some thresholds for the predicted probabilities of the target categories.  Instead of 

running into the arguments of choosing the “right” thresholds, we will apply the above idea 

to the predicted probabilities.  In other words, we will use the correlation between each of 

the predicted probabilities with each of the predictors as our metrics. 

We cannot break a categorical predictor into its individual levels.  Under this constraint, we 

need to look outside of correlation for our metric.  The Eta-Square statistic measures the 

association between an interval variable and a categorical variable in a general linear model.  

When the general linear model has only one categorical predictor, the Eta-Square value is 

equal to the model’s R-Square value.  The model’s  R-Square value is the square of the 

correlation value when the general linear model has only one interval predictor.  Therefore, 

to use the same metric for both categorical predictors and interval predictors, we adopt the 

R-Square value as our metric and coin it the Feature Contribution Index.  

FEATURE CONTRIBUTION INDEX 

For a classification model where the target variable is categorical, the model outcome 

consists of the predicted probabilities.  For a regression model where the target variable is 

continuous, the model outcome is the predicted value.  In both types of models, the model 

outcome consists of one or more numeric values.  We measure individual predictors’ 

contribution to model performance by using the following procedure: 

1. For each numeric value in the model outcome, perform the main effect analysis of variance on each 
individual predictor.  

2. Measure the contribution of this predictor by the R-square statistic. For a categorical predictor, this is 
the full Eta-Squared statistic.  For an interval predictor, this is the squared Pearson correlation 
coefficient. 

3. For a categorical target, aggregate the contribution indices calculated in step two for each individual 
predicted probability. The aggregation method is discussed in the next section 

The Feature Contribution Index is a numeric value between zero and one inclusively.  A 

value of one indicates that the predictor solely determines the model outcomes.  A value of 

zero indicates that the predictor has no bearing on the model outcomes. 
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AGGREGATION FOR A CATEGORICAL TARGET 

We calculate the Feature Contribution Index for each predicted probability in step two of the 

steps listed in the previous section.  We want to come up with a single index for a 

categorical target since examining a single index is always more preferred than studying 

several indices for insights.  This single index is a weighted sum of the individual Feature 

Contribution Indices.  Without loss of generality, we require positive weights whose sum is 

one.  We can consider two choices for weights.  The first and the non-informative choice 

sets the weights equal to the reciprocal of the number of predicted probabilities.  For 

example, the weights are 0.5 for a binary target.   Another choice sets the weights equal to 

the observed relative frequencies (that is, proportions) of the target categories. 

For a binary target variable, the choice of weight does not matter.  Let p be the predicted 

probability of the event.  Then 1 – p is the predicted probability of the non-event.  For a 

predictor x, CORR(x, 1-p) = - CORR(x, p). Therefore, (CORR(x, 1-p))2 = (CORR(x, p))2 .  

Both sides of the equation are the R-Square statistics of the Feature Contribution Indices for 

the non-event and the event respectively.  Since they are equal, any weighted sum of them 

will result in the same results provided the weights are positive and sum to one.  

STATISTICAL CONTROL LIMITS 

Since our original goal is to monitor a model over time, we are more interested in studying 

the change or the trend of the R-Square statistics of each predictor than the R-square 

statistics themselves.  In other words, we are more interested in the change of the R-

Square statistics over time compared to a benchmark.  An obvious choice for the 

benchmark is the R-Square statistics that are calculated on the training data.  

Our hypothesis is that the predictors’ covariance structure in each monitoring data is 

identical to that of the training data.  Under this hypothesis, the R-Square statistics that are 

calculated on the monitoring data should be ideally the same as the R-Square statistics that 

are calculated on the training data.  In practice, the R-Square statistics are different 

because of the usual random elements in observing the data.  Our question is how much 

differences among the R-Square statistics can we tolerate before we drop the hypothesis?  

We address this question by constructing a confidence interval for the R-Square statistics at 

each time point.  If we can agree that the R-square statistic is equal to the Eta-Square 

statistic for an interval predictor, then we can apply the interval inversion method (Kromrey 

and Bell 2010 and Steiger 2004) to construct a confidence interval for the Eta-Square 

statistic. 

Let 𝜂0
2 be the Eta-Square statistic (that is, the benchmark value) calculated on the training 

data that have 𝑛 observations.  The corresponding F value is 

𝐹0 = 𝜂0
2 (1 − 𝜂0

2)⁄ × 𝑑𝑓2 𝑑𝑓1⁄  with two degrees of freedom, 𝑑𝑓1 and 𝑑𝑓2 = 𝑛 − 1 − 𝑑𝑓1.  

For an interval predictor, 𝑑𝑓1 = 1.  For a categorical predictor, 𝑑𝑓1 is equal to the number of 

categories of the predictor.  Suppose the confidence interval will have 100p% of coverage 

confidence, then, according to Kromrey and Bell (2010), the interval inversion method finds 

two values of the non-centrality parameter.  One value is such that the observed F 

significance equals (1 – p)/2.  Another value is such that the observed F significance equals 

(1 + p)/2.  The FNONCT function in SAS® can calculate these two values of the non-

centrality parameter for the F distribution.  The function takes four arguments in the 

following order: the observed F value, the 𝑑𝑓1 value, the 𝑑𝑓2 value, and the desired F 

significance value.  Since the FNONCT function uses a Newton-type algorithm to iteratively 

calculate a nonnegative non-centrality value, the function might return a missing value 

when the algorithm fails to converge.  This might happen when the observed F value is 

relatively small. 
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Let NCP_ETA_L = FNONCT(𝐹0, 𝑑𝑓1, 𝑑𝑓2, (1 + p)/2) and NCP_ETA_U = FNONCT(𝐹0, 𝑑𝑓1, 𝑑𝑓2, (1 

- p)/2).  In a one-way analysis of variance, the non-centrality (NC) parameter of the F test 

is equal to the sum of squares of the model (SSM) divided by the mean squares error (MSE) 

(MSE = SSE / 𝑑𝑓2).  The Eta-Square statistic is equal to SSM / (SSM + SSE).  Thus, the Eta-

Square statistic is equal to NC / (NC + 𝑑𝑓2).  Using this simple relationship, the lower 

confidence limit for Eta-Square is NCP_ETA_L / (NCP_ETA_L + 𝑑𝑓2) and the upper 

confidence limit for Eta-Square is NCP_ETA_U / (NCP_ETA_U + 𝑑𝑓2).  Please beware that the 

formula that we used is slightly different from that in Kromrey and Bell (2010).  In their 

paper, Kromrey and Bell used the sample size n instead of 𝑑𝑓2.  Because of this difference, 

our control limits are slightly wider than the control limits proposed by Kromrey and Bell.   

When we score the model on a monitoring data set, we assume that the predictors’ 

covariance structure remains unchanged from that of the training data.  Under this 

assumption, we would expect the actual Eta-Square values of the monitoring data are not 

different from the benchmark values.   Therefore, we will use the 𝜂0
2 for constructing the 

limits.  The 𝑑𝑓1 value stays the same despite the possibility of not observing all the 

categories of the categorical predictor (otherwise, we unknowingly changed the covariance 

structure).  The 𝑑𝑓2 value is equal to the number of observations in the monitoring data.  

Since we treat 𝜂0
2, which is itself a random variable, as fixed benchmarks for the monitoring 

data, we should call the limits the control limits to avoid any statistical issues.  This is 

because we cannot ensure that the coverage confidence is actually the nominal value 

100p%. 

Finally, if the Eta-Square statistics that are calculated on the monitoring data are outside 

the control limits, then we have reasons to suspect that the predictors’ covariance structure 

might have changed. 

SAS MACROS 

The following three SAS macros were developed for calculating the Feature Contribution 

Index: 

1. The Compute_FCI_NomPred macro computes the Feature Contribution Indices for a list of 
categorical predictors. 

2. The Compute_FCI_IntPred macro computes the Feature Contribution Indices for a list of interval 
predictors. 

3. The Compute_FCI macro reads input specifications, calls the Compute_FCI_NomPred and the 
Compute_FCI_IntPred macros to compute the Feature Contribution Indices, and returns the indices 
in the specified data. 

These macros require that the model outcomes are already available in the input monitoring 

data.  You can download these macros from 

https://support.sas.com/downloads/package.htm?pid=2225 and the accompanying 

documentation from http://support.sas.com/documentation/prod-

p/mdlmgr/14.2/en/PDF/SMM142_FCI_Macros.pdf. 

A fourth macro, Create_FCI_Report, was later developed for facilitating the entire process.  

It bypasses the Compute_FCI macro and directly calls the Compute_FCI_NomPred macro 

and the Compute_FCI_IntPred macro.  In addition, it generates professionally formatted 

tables and charts.  In the future, the Create_FCI_Report macro will be available for 

download and publish.  In the meantime, interested readers can contact the author directly 

to obtain the Create_FCI_Report macro. 

https://support.sas.com/downloads/package.htm?pid=2225
http://support.sas.com/documentation/prod-p/mdlmgr/14.2/en/PDF/SMM142_FCI_Macros.pdf
http://support.sas.com/documentation/prod-p/mdlmgr/14.2/en/PDF/SMM142_FCI_Macros.pdf
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SIMULATION STUDY 

After we determine that the predictors’ covariance structure has changed over time, our 

next task is to determine which of the predictors have triggered the change.  This task is 

more difficult than it looks. 

Let us use the linear regression example to aid our discussion.  Recall that the covariance 

between a predictor and the predicted value is a linear combination of the individual 

covariances between two predictors.  Mathematically, this is 

 
1

𝑛−1
∑ (�̂�𝑖 − �̅�)(𝑥𝑖𝑠 − �̅�𝑠)𝑛

𝑖=1 = ∑ 𝑏𝑟 (
1

𝑛−1
∑ (𝑥𝑖𝑟 − �̅�𝑟)(𝑥𝑖𝑠 − �̅�𝑠)𝑛

𝑖=1 )𝑘
𝑟=1 .  

Without loss of generality, let us consider the scenario where only the covariance between 

the first two predictors has changed but not their individual variances.  This change will 

affect the covariance between the first predictor and the predicted value.  Convoluted with 

the sign of the regression coefficient of the first predictor in the benchmark model, the 

covariance between the first predictor and the predicted value will increase or decrease.  

Similarly, the covariance between the second predictor and the predicted value will increase 

or decrease.  When we notice that only the Feature Contribution Indices of a pair of 

predictors are outside the control limits, we might conclude that the covariance between 

that pair of predictors has changed. 

In another scenario, the variance of the first predictor has changed.  In other words, the 

distance between 𝑥𝑖1 − �̅�1 has changed for 𝑖 = 1, … , 𝑛.  This change will affect all the 

covariances that involve the first predictor.  Since either 𝑟 = 1 or 𝑠 = 1, all the covariances 

between a predictor and the predicted value will be affected.  When we notice that all the 

Feature Contribution Indices are outside the control limits, we need to compare the 

predictors’ variance and their covariances with the benchmark value. An inadequacy of the 

Feature Contribution Index is the scenario where we do not come to any conclusions after 

studying these comparisons. 

In our final scenario, only the mean of the first predictor has changed.  This will not affect 

any covariances.  Thus, we will not see any Feature Contribution Indices outside the control 

limits.  If we are not concerned about the shifts of any means, then this is a good feature of 

the Feature Contribution Index as we have one thing less to check.  Otherwise, this is 

another inadequacy of the Feature Contribution Index and we must turn to other diagnostic 

methods instead. 

We are going to use a simulation study to illustrate the above three scenarios, demonstrate 

the steps of calling the macros, and review the results.  The predictors are, namely, X1 and 

X2.  The target variable is y whose expectation is  E(Y) = -3 + 4 * X1 + 2 * X2.   

A normal random noise with zero mean and unit variance is added to E(Y) to obtain the 

observed Y.  In the training data, which contains 1000 observations, the predictors have 

zero means, unit variances, and are uncorrelated (that is, zero correlations).  The ordinary 

least squares estimate of the model is �̂� = -2.9762 + 4.0061 * X1 + 1.9721 * X2. 

SCENARIO 1: CHANGE CORRELATION 

Seven monitoring data sets, each containing 100 observations, are simulated.  The 

predictors’ covariance structures are the same as that in the training data except for the 

correlation between the two predictors. Here are the changes to the correlations that are 

simulated in the five monitoring data sets: 

1. The correlation between X1 and X2 is 0.0, i.e., no change. 

2. The correlation between X1 and X2 is -0.4. 
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3. The correlation between X1 and X2 is -0.2. 

4. The correlation between X1 and X2 is +0.2. 

5. The correlation between X1 and X2 is +0.4. 

After we score the data sets, our first instinct is to compare the distributions of the 

predicted values with that of the benchmark training data (the ID column).  The box-plots in 

Figure 1 help us visualize the comparison.  At a first glance, although the distributions have 

different ranges, they are visually indifferent based on metrics such as the means and the 

medians.  If we compare their interquartile ranges, then we may suspect that the 

distributions in the second and the fifth monitoring data sets have changed because their 

interquartile ranges are shorter than others.  Therefore, visually comparing distributions 

might not enable us to realize that the predictors’ covariance structures have changed. 

   

Figure 1. Box Plots of Predicted Values Across Monitoring Data Sets for Scenario 1 

The panel chart in Figure 2 shows the Feature Contribution Indices of the predictors across 

the monitoring data sets.  The benchmark index is subtracted from the indices and the 

control limits so that all the graphs are drawn using the same scale.  Therefore, the vertical 

axis tells the change from the benchmark index.  Finally, the graphs are shown in 

descending level of the benchmark indices (the value of the level is inside the parentheses 

of the individual chart titles).  This enables us to focus on the predictors that contribute 

more to the model outcome in the benchmark data. 
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Figure 2. Feature Contribution Indices of Predictors Across Monitoring Data Sets for Scenario 1 

Table 1 shows the Feature Contribution Indices of the five monitoring data sets and the 

benchmark training data (the Reference column).  The out-of-bound values are highlighted 

in red. 

Table 1. Feature Contribution Indices of Predictors for Scenario 1 

Predictor Reference No Change Corr=-0.4 Corr=-0.2 Corr=0.2 Corr=0.4 

X1 81.1% 79.6% 72.5% 79.1% 84.0% 84.4% 

X2 18.8% 16.3% 0.0% 7.9% 30.9% 45.6% 

Ideally, we want to see that the indices of both perturbed predictors in each monitoring data 

set are outside the control limit (for example, X1 and X2 in the fourth monitoring data set 

that is labeled Corr=0.2). Since the monitoring data has only 100 observations, which is 

one-tenth the number of observations in the training data, the ideal results may not occur 

in every scenario unless the correlations become apparently stronger. 

SCENARIO 2: CHANGE STANDARD DEVIATION 

Four monitoring data sets, each containing 100 observations, are simulated.  The predictors’ 

covariance structures are the same as that in the training data except for the standard 

deviations of the predictors. Here are the changes to the standard deviation that are 

simulated in the four monitoring data sets: 

1. The standard deviations of X1 and X2 are 1, i.e., No Change. 

2. The standard deviation of X1 is 0.8 and that of X2 is 1. 

3. The standard deviation of X1 is 1 and that of X2 is 1.25. 

4. The standard deviation of X1 is 0.8 and that of X2 is 1.25. 

A comparison of the distributions shows more distinct differences than what was found in 

the first scenario (Figure 3).  The ranges and the interquartile ranges are visually different.  

However, the medians are seemingly the same. 
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Figure 3. Box Plots of Predicted Values Across Monitoring Data Sets for Scenario 2 

The panel chart in Figure 4 shows the Feature Contribution Indices of the predictors across 

the four monitoring data sets.  Since X1 has the highest benchmark index, a change in the 

standard deviation of any predictor (including X1) in the monitoring data set will trigger a 

stronger ripple effect on the X1’s index.  On the contrary, X2 has the lowest benchmark 

index, only a change in its own standard deviation plus another change of X1’s standard 

deviation in the monitoring data set can affect its index. 

 

Figure 4. Feature Contribution Indices of Predictors Across Monitoring Data Sets for Scenario 2 

Table 2 shows the Feature Contribution Indices of the four monitoring data sets and the 

benchmark training data (the Reference column).  The out-of-bound values are highlighted 

in red. 
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Table 2. Feature Contribution Indices of Predictors for Scenario 2 

Predictor Reference No Change 
SD1 = 0.8 & 
SD2 = 1.0 

SD1 = 1.0 & 
SD2 = 1.25 

SD1 = 0.8 & 
SD2 = 1.25 

X1 81.1% 79.6% 68.3% 74.1% 62.6% 

X2 18.8% 16.3% 17.1% 26.0% 34.6% 

Although we have not proved this fact mathematically, we notice that changing the standard 

deviation of a predictor will drastically magnify or shrink its Feature Contribution Index.  For 

example, changing only the standard deviation of X2 from 1 to 1.25 in the third monitoring 

data set will magnify its index approximately 1.4 times (from 18.8% to 26.0%).  The 

magnitudes of the changes might be even bigger when the standard deviations of other 

predictors also change. 

SCENARIO 3: CHANGE THE MEAN 

Four monitoring data sets, each containing 100 observations, are simulated.  The predictors’ 

covariance structures are the same as that in the training data except for the means of the 

predictors. Here are the simulated changes to the mean in the four monitoring data sets: 

1. The means of X1 and X2 are both 0, i.e., No Change. 

2. The mean of X1 is -10 and that of X2 is 0. 

3. The mean of X1 is 0 and that of X2 is 20. 

4. The mean of X1 is -10 and that of X2 is 20. 

The box-plots in Figure 5 show that the distributions have very different medians, but the 

ranges are similar.  This is expected since we changed only the means of the predictors but 

not their covariance structures. 

 

Figure 5. Box Plots of Predicted Values Across Monitoring Data Sets for Scenario 3 

The panel chart in Figure 6 shows the indices of the predictors across the data sets.  All the 

indices are within the control limits.  We do expect this because the indices are designed to 

detect changes in the covariance structures (including standard deviations and correlations), 

but not changes in the means. 
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Figure 6. Feature Contribution Indices of Predictors Across Monitoring Data Sets for Scenario 3 

Table 3 shows the Feature Contribution Indices of the four monitoring data sets and the 

benchmark training data (the Reference column).  The out-of-bound values, if any, are 

highlighted in red. 

Table 3. Feature Contribution Indices of Predictors for Scenario 3 

Predictor Reference No Change 
Mean1 = -10 & 

Means = 0 
Mean1 = 0 & 
Means = 20 

Mean1 = -10 & 
Means = 20 

X1 81.1% 79.6% 77.9% 81.8% 80.6% 

X2 18.8% 16.3% 9.7% 18.4% 17.2% 

ANALYSIS EXAMPLE 

Finally, we will illustrate our method using a real-life data set.  The data in this example 

describes the historical usage patterns along with the weather data about the bike rental 

demand in the Capital Bikeshare program in Washington, D.C.  The data is available on the 

Kaggle site1.  The original data was provided by Fanaee-T and Gama (2014). 

For the sake of discussion, we are going to build a Poisson regression model to predict the 

total number of rentals (that is, count).  The data originally covers 10,886 rental records 

dated from January 1, 2011 to December 31, 2012.  We create the training data and four 

monitoring data sets based on the rental dates.  The training data consists of all rentals in 

2011 and it has 5,422 observations.  The first monitoring data set consists of rentals in the 

first quarter of 2012 (that is, January to March) and has 1,363 observations.  The second 

monitoring data set consists of rentals in the second quarter of 2012 (that is, April to June) 

and has 1,366 observations.  The third monitoring data set consists of rentals from the third 

quarter of 2012 and it has 1,368 observations.  Finally, the fourth monitoring data set 

consists of rentals from the fourth quarter of 2012 and has 1,367 observations. 

A few categorical variables are created so that the Poisson regression model is more 

predictive.  For example, the rental_hour_group variable is created by grouping values of 

the rental_hour variable.  The grouping is determined mostly due to business reason.  The 

                                                           
 
1 https://www.kaggle.com/c/bike-sharing-demand.  

https://www.kaggle.com/c/bike-sharing-demand
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Poisson regression algorithm converged.  Plotting the predicted counts versus the observed 

counts assure us that the model fits the data well (Figure 7).  Thus, we will use this model 

result for our discussion. 

 

Figure 7. Predicted Counts Versus the Observed Counts of the Poisson Regression Model 

Table 4 shows the parameter estimates of the Poisson regression model.  The type III 

likelihood ratio tests of all the predictors are significant at the 0.01% level. 

Table 4. Parameter Estimates of the Poisson Regression Model 

Measurement Level Parameter Level DF Estimate 

 Intercept   1 3.9253 

Nominal 

holiday 
0 0 0 

1 1 0.0539 

rental_weekday 

1 1 -0.0270 

2 1 -0.0665 

3 1 -0.0562 

4 1 -0.1220 

5 1 -0.0518 

6 1 0.0144 

7 0 0 

rental_hour_group 

2AM - 5AM 1 -1.9459 

6AM - 8AM 1 0.6220 

9AM - 11AM 1 0.4495 

12NOON - 4PM 1 0.6151 

5PM - 7PM 1 1.0955 

8PM - 1AM 0 0 

weather 

1 0 0 

2 1 -0.0602 

3 1 -0.4314 

Interval 

temp   1 0.0406 

humidity   1 -0.0014 

windspeed   1 -0.0037 
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Next, we will apply this model to the four monitoring data sets.  Figure 8 shows the Feature 

Contribution Indices of all predictors in the training data and the four monitoring data sets.  

Overall, there are no drastic changes among the indices.  The more noticeable changes are 

at the humidity (the relative humidity), the season (the season indicator), and the temp 

(the hourly temperature) predictors.  Since the monitoring data sets are characterized by 

the rental dates (for example, in the first monitoring data set, season equals 1 for all 

observations, and humidity and temp varies within the winter-characterized ranges), the 

spreads of the humidity, the season, and the temp predictors in a monitoring data might be 

narrower than that in the benchmark data. 

 

Figure 8. Feature Contribution Indices of the Monitoring Data for the Analysis Example 

We will next review the Feature Contribution Indices of the predictors individually (Figure 

9).  You should notice that the weekend predictor does not have control limits.  The LOG 

messages show that the FNONCT functions ran into computational problems and could not 

return values.  Since the Feature Contribution Index of the weekend predictor is almost zero 

in the benchmark training data, we do anticipate this problem.  Therefore, we can safely put 

this undesirable result aside. 
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Figure 9. Feature Contribution Indices of Predictors Across Monitoring Data Sets for the Analysis 
Example 

Table 5 shows the Feature Contribution Indices of the four monitoring data sets and the 

benchmark training data (the ID column).  The out-of-bound values are highlighted in red. 

Table 5. Feature Contribution Indices of the Predictors for the Analysis Example 

Measurement 
Level 

Predictor 2011 2012 Q1 2012 Q2 2012 Q3 2012 Q4 

Interval 

atemp 31.5% 25.8% 30.4% 21.2% 22.3% 

humidity 12.9% 12.3% 17.4% 37.0% 11.3% 

temp 33.0% 28.6% 33.0% 36.7% 22.4% 

windspeed 1.1% 2.2% 3.0% 2.8% 1.6% 

Nominal 

holiday 0.0% 0.1% 0.2% 0.1% 0.0% 

rental_hour_group 67.3% 79.0% 86.7% 87.2% 85.2% 

rental_weekday 0.5% 0.4% 1.5% 0.6% 0.6% 

season 12.2% 0.0% 0.0% 0.0% 0.0% 

weather 3.1% 3.2% 3.5% 2.6% 2.7% 

weekend 0.0% 0.0% 0.8% 0.0% 0.0% 

workingday 0.0% 0.0% 1.0% 0.1% 0.0% 

The most obvious change occurs in the rental_hour_group predictor. The indices of other 

interval predictors that describe the climate of the quarters showed some changes. Our 

common sense tells us that these interval predictors are correlated, and their covariance 

structures do depend on the quarters.  Figure 10 shows the association structure between 

the rental_hour_group and the humidity predictors by quarter. 
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Figure 10. Association Structure Between the rental_hour_group and the humidity Predictors by 
Quarter 

At first glance, the humidity predictor has a smaller range in the quarterly data than in the 

training data.  In addition, the rental hour group seems to affect the interquartile ranges.  

For example, the interquartile ranges during 5PM – 7PM of 2012 Q1 overlaps the least with 

that of 2012 Q4. During other times of day, the interquartile range of 2012 Q1 overlaps 

more with that of 2012 Q4. 

Finally, the Feature Contribution Indices of the season drop to zero in the four monitoring 

data sets.  This is no surprise because the season predictor is practically constant in each 

monitoring data set.  Thus, it has no relevance to the model outcome except to raise or 

lower the overall mean of the predicted rental counts. 

CONCLUSION 

We have introduced the Feature Contribution Index and we attempted to interpret the 

meanings of the index using a few simulated studies and the Bike Share Demand data.  The 

Feature Contribution Index idea has plenty of room for improvement as we are not fully able 

to make conclusions based on their values.  We welcome others to join us in further 

studying, improving, and interpreting the Feature Contribution Index. 
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