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ABSTRACT  

Factor analysis is an exploratory statistical technique to investigate dimensions and the factor structure 
underlying a set of variables (items) while cluster analysis is an exploratory statistical technique to group 
observations (people, things, events) into clusters or groups so that the degree of association is strong 
between members of the same cluster and weak between members of different clusters. Factor and 
cluster analysis guidelines and SAS® code will be discussed as well as illustrating and discussing results 
for sample data analysis. Procedures shown will be PROC FACTOR, PROC CORR alpha, PROC 
STANDARDIZE, PROC CLUSTER, and PROC FASTCLUS. 

INTRODUCTION  

Exploratory factor analysis (EFA) investigates the possible underlying factor structure (dimensions) of a 
set of interrelated variables without imposing a preconceived structure on the outcome (Child, 1990). The 
analysis groups similar items to identify dimensions (also called factors or latent constructs).    
 
Exploratory cluster analysis (ECA) is a technique for dividing a multivariate dataset into “natural” clusters 
or groups. The technique involves identifying groups of individuals or objects that are similar to each other 
but different from individuals or objects in other groups. 
 

Cluster analysis, like factor analysis, makes no distinction between independent and dependent variables.  
Factor analysis reduces the number of variables by grouping them into a smaller set of factors. Cluster 
analysis reduces the number of observations by grouping them into a smaller set of clusters. 
 
There is no right or wrong answer to “how many factors or clusters should I keep?”. The answer depends 
on what you’re going to do with the factors or clusters. To find a good factor solution, you must look at 
how the items group together and what dimensions they measure.  To find a good cluster solution, you 
must look at the characteristics of the clusters at successive steps and decide when you have an 
interpretable solution or a solution that has a reasonable number of homogeneous clusters. 

DATA 

Data for both factor analysis and cluster analysis examples are free datasets found online. The factor 
analysis example uses data (n=1418) collected online during 2015 using the Nerdy Personality 
Attributes Scale (NPAS), https://openpsychometrics.org/_rawdata/ .  NPAS was developed as a project 
to quantify what "nerdiness" is and provides an estimate of how much a respondent's personality is 
similar to the average for those who identify themselves as nerds versus those who do not. The NPAS 
has 26 questions with a five point scale, 1=Disagree, 3=Neutral and 5=Agree. The NPAS is for 
educational use only and is not to be used as a diagnostic or screening tool.  
 
Data for the cluster analysis example (n=406) is a set of car characteristics including acceleration, 
horsepower, MPG, cylinders, weight, displacement, model, origin, and car name. The dataset can be 
found at https://perso.telecom-paristech.fr/eagan/class/igr204/datasets. 
 

EXPLORATORY FACTOR ANALYSIS (EFA) 

Psychologists searching for a neat and tidy description of human intellectual abilities lead to the 
development of factor analytic methods. Galton, a scientist during the 19th and 20th centuries, laid the 
foundations for factor analytic methods by developing quantitative methods to determine the 
interdependence between 2 variables. Karl Pearson was the first to explicitly define factor analysis. In 

https://openpsychometrics.org/_rawdata/
https://perso.telecom-paristech.fr/eagan/class/igr204/datasets
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1902, Macdonnell was the first to publish an application of factor analysis, a comparison of physical 
characteristics between 3000 criminals and 1000 Cambridge undergraduates (Child, 1990).   
 
EFA 

 is a variable reduction technique which identifies the number of latent constructs (dimensions) and 
the underlying factor structure of a set of variables 

 hypothesizes underlying latent constructs (a dimension not measured directly) 

 estimates factors which influence responses on observed variables 

 allows you to describe and identify the number of factors (dimensions or latent constructs) 

 includes unique error terms due to unreliability in measurement 

 traditionally is used to explore the possible underlying factor structure of a set of measured variables 
without imposing any preconceived structure on the outcome (Child, 1990).  

 
EFA decomposes an adjusted correlation matrix. Variables are standardized in EFA, e.g., mean=0, 
standard deviation=1, diagonals are adjusted for unique factors, 1-u.  Squared multiple correlations 
(SMC) are used as communality estimates on the diagonals.  
 
The amount of variance explained is equal to the trace of the decomposed adjusted correlation matrix, 
the sum of the adjusted diagonals or communalities.  Observed variables are a linear combination of the 
underlying and unique factors. Factors are estimated, (X1 = b1F1 + b2F2 + . . . e1  where e1 is a unique 
error term).   
 
Eigenvalues indicate the amount of variance explained by each factor. Eigenvectors are the weights that 
could be used to calculate factor scores. In common practice, factor scores are calculated with a mean or 
sum of measured variables that “load” on a factor. 
 

The EFA Model is Y = X+ E 
where Y is a matrix of measured variables 
 X is a matrix of common factors 

  is a matrix of weights (factor loadings) 
 E is a matrix of unique error terms, error variation 
 
Communality is the variance of observed variables accounted for by a common factor. A large 
communality value indicates a strong influence by an underlying construct.  Community is computed by 
summing squares of factor loadings  

    d1
2 = 1 – communality = % variance accounted for by the unique factor 

    d1 = square root (1-community) = unique factor weight (parameter estimate) 

 
Figure 1 below shows 4 factors (circles) each measured by 3 observed variables (rectangles) with unique 
factors (error). Since measurement is not perfect, error or unreliability is estimated and specified explicitly 
in the diagram.  Factor loadings (parameter estimates) help interpret factors. Loadings are the correlation 
between observed variables and factors, are standardized regression weights if variables are 
standardized (weights used to predict variables from factor), and are path coefficients in path analysis. 
Standardized linear weights represent the effect size of the factor on variability of observed variables. 
 
Goals of factor analysis are 

1) to help an investigator determine the number of latent constructs underlying a set of items (variables) 
2) to provide a means of explaining variation among variables (items) using a few newly created 

variables (factors or dimensions) 
3) to define the content or meaning of factors or dimensions, e.g., latent constructs 
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  Figure 1 Factor Analytic Model 
 
Assumptions underlying EFA are 

 interval or ratio level measurement 

 random sampling 

 relationship between observed variables is linear 

 a normal distribution (each observed variable) 

 a bivariate normal distribution (each pair of observed variables) 

 multivariate normality  

  
Limitations of EFA are 

 reliability of the measurement instrument.  Avoid an instrument with low reliability. 

 sample size ( larger sample  larger correlation) 

 a minimal number of cases for reliable results, more than 100 observations and 5 times the 
number of items. 

 since some subjects may not answer every item, a larger sample is desirable. For example, 30 
items would require at least 150 cases (5*30), a sample of 200 subjects would allow for missing 
data. 

 sample selection 

 representative of population 

 do not pool populations. 

 variables could be sample specific, e.g., a unique quality possessed by a group does not generalize 
to the population 

 nonnormal distribution of data 

 correlations describe relationships and are the basis of factor analysis. No causal inferences can be 
made from correlations alone. 
 

Factor Extraction  
Factor analysis seeks to discover common factors. The technique for extracting factors attempts to take 
out as much common variance as possible in the first factor. Subsequent factors are, in turn, intended to 
account for the maximum amount of the remaining common variance until, hopefully, no common 
variance remains.  
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Direct extraction methods obtain the factor matrix directly from the correlation matrix by application of 
specified mathematical models. Most factor analysts agree that direct solutions are not sufficient. 
Adjustment to the frames of reference by rotation methods improves the interpretation of factor loadings 
by reducing some of the ambiguities which accompany the preliminary analysis (Child, 1990). The 
process of manipulating the reference axes is known as rotation.  
 

Rotation applied to the reference axes means the axes are turned about the origin until some alternative 
position has been reached. The simplest case is when the axes are held at 90o to each other, orthogonal 
rotation. Rotating the axes through different angles gives an oblique rotation (not at 90o to each other). 
 
Criteria for Extracting Factors 
Determining the number of factors to extract in a factor analytic procedure means keeping the factors that 
account for the most variance in the data. Criteria for determining the number of factors are:  
1) Kaiser’s criterion, suggested by Guttman and adapted by Kaiser, considers factors with an eigenvalue 

greater than one as common factors (Nunnally, 1978) 
2) Cattell’s (1966) scree test. The name is based on an analogy between the debris, called scree, that 

collects at the bottom of a hill after a landslide, and the relatively meaningless factors that result from 
overextraction. On a scree plot, because each factor explains less variance than the preceding 
factors, an imaginary line divides the markers for successive factors and generally runs from top left 
of the graph to the bottom right. If there is a point below which factors explain relatively little variance 
and above which they explain substantially more, this usually appears as an “elbow” in the plot. This 
plot bears some physical resemblance to the profile of a hillside. The portion beyond the elbow 
corresponds to the rubble, or scree, that gathers. Cattell’s guidelines call for retaining factors above 
the elbow and rejecting those below it.  

3) Proportion of variance keeps a factor if it accounts for a predetermined amount of the variance (e.g., 
5%, 10%). 

4) Interpretability criteria 
a. Are there at least 3 items with loading values set a priori, e.g. > 0.45.  
b. Do the variables that load on a factor share some conceptual meaning? 
c. Do the variables that load on different factors seem to measure different constructs? 
d. Does the rotated factor pattern demonstrate simple structure? Are there relatively 

i. high loadings on one factor? 
ii. low loadings on other factors? 

 
Reliability Analysis Prior to EFA Analysis  
Reliability refers to the accuracy and precision of a measurement procedure (Thorndike, Cunningham, 
Thorndike, & Hagen, 1991). Reliability may be viewed as an instrument’s relative lack of error. In addition, 
reliability is a function of properties of the underlying construct being measured, the measurement 
instrument itself, the groups being assessed, the testing environment, and the purpose of assessment. 
Reliability answers the question, “How well does the instrument measure what it purports to measure?”.  
 

Some degree of inconsistency is present in all measurement procedures. The variability in a set of item 
scores is due to the actual variation across individuals in the phenomenon that the scale measures, made 
up of true score and error. Therefore, each observation of a measurement (X) is equal to true score (T) 
plus measurement error (e), or X = T + e.  
 

Reliability can be assessed by internal consistency – measured with Cronbach’s coefficient alpha.  
Internal consistency is a procedure to estimate the reliability of a measurement instrument from a single 
administration of a single form. Internal consistency depends on the individual’s performance from item to 
item based on the standard deviation of the test and the standard deviations of the items. Cronbach’s 
coefficient alpha is measured on a scale from zero to one with a value closer to one being a more reliable 
measurement instrument and showing higher internal consistency.   
 

Reversing Items  
Examination of reliability analysis and item-to-total correlations reveal which, if any, item scales should be 
reversed. Items could be worded so that most responses will be in the same “direction”. However, if 
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appropriate responses are in the opposite “direction” of the scale, item responses are reserved.  Negative 
item-to-total correlations determine which item response scales to reverse. For example, with a scale of 
1=strongly agree, 2=agree, 3=disagree, 4=strongly disagree, responses are reversed to 1=strongly 
disagree, 2=disagree, 3=agree, 4=strongly agree.   

To reverse an item on a 4-point scale the SAS code is q3r = 5 – q3; 

Substitute the values 1, 2, 3, 4 to verify responses are reversed. 
For a 5-point scale the SAS code is q12r = 6 – q12;  

Substitute the values 1, 2, 3, 4, 5 to verify responses will be reversed. 
 
EFA Steps 

1) Reliability analysis, reverse items if needed 
2) Set variance levels a priori, proportion of variance and cumulative variance 
3) Initial extraction 

 each factor accounts for a maximum amount of variance that has not previously been accounted 
for by any of the other factors 

 factors are uncorrelated 
 eigenvalues represent the amount of variance accounted for by each factor 

4) Determine the number of factors to retain 
 scree test, look for elbow (optional) 
 proportion of variance 
 cumulative variance 
 prior communality estimates are not perfectly accurate, cumulative proportion must equal 100% 

so some eigenvalues will be negative after factors are extracted, e.g., if 5 factors are extracted, 
cumulative proportion equals 100% and factors 6 and above have negative eigenvalues 

 interpretability 
 at least 3 observed (measured) variables per factor 
 common conceptual meaning 
 each factor measures a different construct or dimension 
 rotated factor pattern has simple structure (no cross loadings)   

5) Rotation – a transformation  
6) Interpret solution 
7) Calculate factor scores 
8) Results in a table 
9) Prepare results, paper 
 
SAS Code 
PROC FACTOR and options for EFA 
DATA =  specifies dataset to be analyzed 
PRIORS =SMC  squared multiple correlations used as adjusted diagonals of the correlation matrix 
METHOD =ML,ULS  specifies maximum likelihood and unweighted least squares methods 
ROTATE =   VARIMAX(orthogonal at a 90 degee angle) 
  PROMAX (oblique, not at a 90 degree angle)  
SCREE  requests a scree plot of the eigenvalues 
N =    specifies number of factors 
MINEIGEN=1  specifies select factors with eigenvalues greater than 1 
OUT =   data and estimated factor scores, use raw data and N= 
FLAG =  include a flag (*) for factor loadings above a specified value 
REORDER =   sort the loadings from largest to smallest values for each factor 
  
PROC CORR and options for reliability  

DATA =         specifies dataset to be analyzed 
ALPHA         computes Cronbach’s coefficient alpha 
NOCORR        suppresses Pearson correlations 
NOMISS        excludes observations with missing values from the analysis 
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EFA EXAMPLE and Results 
Syntax for preliminary steps is not shown.  The syntax below illustrates code for the final analysis:  

   proc factor data=rawsub1 method=ml priors=smc rotate=varimax  

      n=4 reorder flag=.45; *scree; 

        var Q1-Q26;  

   title2 'factor analysis - 4 factors';   

   run; 

 

   proc corr data=rawsub1 nomiss nocorr alpha;  

     var q7 q12 q25 q5 q26 q24; 

   title2 'reliability - 4 factors with loadings ge .45'; 

   proc corr data=rawsub1 nomiss nocorr alpha;  

     var q23 q6 q9; 

   proc corr data=rawsub1 nomiss nocorr alpha;  

     var q17 q16 q3 q13; 

   proc corr data=rawsub1 nomiss nocorr alpha;  

     var q11 q19 q15 q2; 

   run; 

 

A rotated four factor solution with factor loadings greater than or equal to 0.45 found 6 items for factor 
one, 3 items for factor two, 4 items for factor three and 4 items for factor four. Interpretability guidelines 
specify at least 3 observed (measured) variables or items per factor. Items loading on each factor are 
shown in Table 1. Each factor measures a dimension of a how respondents identified with having 
attributes of a nerdy personality. Seventeen items with factor loadings greater than or equal to 0.45 were 
retained for a four factor solution (from the twenty-six item scale).    
 

Table 1.  NPAS Rotated Factor Pattern Loadings and Reliability – Four Factor Solution 

Factor Item Number Loading Item 

1  7 0.704 I watch science related shows. 

1 12 0.623 I spend more time at the library than any other public place. 

1 25 0.586 I care about super heroes. 

1  5 0.531 I collect books. 

1  26 0.472 I can be socially awkward at times. 

1 24 0.465 I am a strange person. 

   Factor 1 reliability (Cronbach alpha) = 0.78 with 6 items 

    

2 23 0.650 I get excited about my ideas and research. 

2 6 0.578 I prefer academic success to social success. 

2  9 0.540 I like science fiction. 

   Factor 2 reliability (Cronbach alpha) = 0.67 with 3 items 

    

3  17 0.764 I am more comfortable interacting online than in person. 

3 16 0.583 I gravitate towards introspection  (Note: introspection is the 

examination or observation of one's own mental and emotional processes) 
3  3 0.559 I like to play RPFs.  (ex D&D) 

3 13 0.520 I would describe my smarts as bookish. 

     Factor 3 reliability (Cronbach alpha) = 0.71 with 4 items 

    

4 11 0.681 I am more comfortable with my hobbies than I am with other 
people 

4 19 0.639 I have played a lot of video games.  

4 15 0.523 I have started writing a novel. 

4 2 0.468 I was in advanced classes. 

   Factor 4 reliability (Cronbach alpha) = 0.69 with 4 items 
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EXPLORATORY CLUSTER ANALYSIS (ECA) 

Cluster analysis originated in anthropology through studies by Driver and Kroeber in 1932 and was 
introduced to psychology by Zubin in 1938 and Tryon in 1939. Cluster analysis techniques were used by 
Cattell beginning in 1943 for trait theory classification in personality psychology. 
 

Exploratory Cluster Analysis can be used in   

 Marketing to form clusters of customers who have similar buying habits or demographics to take 
advantage of similarities, develop marketing strategies to target offers to subgroups. 

 Management as a requirement for predicting the sales of a product to different cities and is achieved 
by clustering demographically similar cities.  

 IT to cluster load balancing in application servers. 

 Software development to restructure and improve software functionality. 

 Analyzing social networks to identify communities.  

 Internet search engines to search more intelligently. 

 Data mining for the process of discovering meaningful correlations, patterns and trends from large 
amounts of data, using pattern recognition technologies as well as statistical and mathematical 
techniques. Clustering is often one of the first steps in data mining analysis. 

 Diagnosis to use symptom checklists and psychological inventories to cluster patients into subgroups 
that have similar characteristics for diagnosis and appropriate treatment. 

 Archaeology to cluster skulls excavated from archaeological digs into civilizations from which they 
originated.  

 Geology to analyze mineral contents of excavated materials to study their origins and spread. 

 Biology to organize and group different species of animals before identifying differences between 
animals. 

 Astronomy to classify stars into a main sequence, white giants, and red dwarfs, according to 
temperature and luminosity. 

 Food industry to make recommendations for new items based on customer preferences 

 The military for body measurement data to reduce the number of different uniform sizes kept in 
inventory. 

 Law enforcement to manage resources more effectively by identifying areas of higher and similar 
types of crime. 

 Education to identify and examine groups of students or schools with similar properties and needs. 
 
Method 
Cluster analysis does not specify a particular statistical method or model.  There are no assumptions 
about the underlying distribution of the data for cluster analysis. Regression, factor analysis, and 
discriminant analysis have specified methods or models. Cluster analysis groups observations that are 
similar while factor analysis groups variables that are similar. The choice of a cluster analytic method 
depends on the goal of the analysis, the size of the data set, and types of variables. Methods commonly 
used for small data sets are impractical for data files with thousands of cases.  
 
The appropriate clustering algorithm and parameter settings (including values such as the distance 
function, density threshold or the number of expected clusters) depend on the individual data set and 
intended use of the results. Cluster analysis is an iterative process of knowledge discovery and 
optimization modifying data processing and model parameters until the result achieves preferred as well 
as appropriate properties. 
 

Warning for Cluster Analysis  
Cluster analysis has no mechanism for differentiating between relevant and irrelevant variables. 
Therefore the choice of variables included in a cluster analysis must be related to conceptual 
considerations. The clusters formed can be very dependent on the variables included. Data used in 
cluster analysis can be interval, ordinal or categorical. However, having a mixture of different types of 
variable will make the analysis more complicated. With cluster analysis you need to have some way of 
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measuring the distance between observations. The type of measure used will depend on what type of 
data you have. 
 

How Alike (or Different) Are the Cases? 
Distance is a measure of how far apart two objects are, while similarity measures how similar two objects 
are. For cases that are alike, distance measures are small and similarity measures are large. There are 
many different definitions of distance and similarity. Some, like the Euclidean distance, are suitable for 
only continuous variables, while others are suitable for only categorical variables. 
 
Standardizing the Variables 
If variables are measured on different scales, variables with large values contribute more to the distance 
measure than variables with small values.  Variables can be standardized using z-scores. When looking 
at the distance between two people based on their IQs and incomes in dollars, differences in incomes 
would dominate any distance measures. A difference of $100 when squared becomes 10,000, while a 
difference of 30 IQ points squared would be 900.  Variables measured in large numbers will contribute 
more to the distance than variables recorded with smaller numbers. One strategy is to run the cluster 
analysis twice, once without standardizing and once with standardizing to see how much difference, if 
any, is found in the resulting clusters. 
 
PROC STANDARD syntax  
PROC STANDARD DATA=<input dataset> OUT=<output dataset> 

  MEAN = <mean value>  (specifies mean value) 

  STD = <std value>    (specifies standard deviation value)  

  <options>: 

  VAR <variables>; 

  FREQ <variable>; 

  WEIGHT <variable>; 

  BY <variables>; 

 

Hierarchical Clustering 
There are numerous ways in which clusters can be formed. Hierarchical clustering is one of the most 
straightforward methods. It can be either agglomerative or divisive.  
To form clusters using a hierarchical cluster analysis, you must select: 

 a criterion for determining similarity or distance between cases, 

 a criterion for determining which clusters are merged at successive steps, 

 the number of clusters you need to represent your data. 
 
Agglomerative hierarchical clustering begins with every case being a cluster. At successive steps, similar 
clusters are merged. The algorithm ends with everybody in one cluster. In agglomerative clustering, once 
a cluster is formed, it cannot be split; it can only be combined with other clusters. Agglomerative 
hierarchical clustering doesn’t let cases separate from clusters that they’ve joined. Once in a cluster, 
always in that cluster.  Divisive clustering starts with all cases in one cluster and ends up with individuals 
as clusters. Neither the first step nor the last step is the best solution. 
 
Plotting Cluster Distances: The Dendrogram 
A visual representation of the distance at which clusters are combined can be shown with a dendrogram. 
The dendrogram is read from left to right. Vertical lines show joined clusters. The position of the line on 
the scale indicates the distance at which clusters are joined. The observed distances are rescaled to fall 
into the range of 1 to 25, the actual distances are not seen; however, the ratio of the rescaled distances 
within the dendrogram is the same as the ratio of the original distances. 
Tip: When you read a dendrogram, you want to determine at what stage the distances between clusters 

that are combined is large. Look for large distances between sequential vertical lines. 
 
Syntax for PROC TREE - dendrogram 
PROC TREE <options>; 

  NAME <variables>;    
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  HEIGHT <variables>;    

  PARENT <variables>;    

  BY <variables>;    

  COPY <variables>;    

  FREQ <variables>;    

  ID <variables>;    

run;  

 

K-Means Clustering 
Hierarchical clustering requires a distance or similarity matrix between all pairs of cases. That’s a huge 
matrix if there are tens of thousands of cases in the data file. A clustering method that doesn’t require 
computation of all possible distances is k-means clustering. It differs from hierarchical clustering in 
several ways:  

 determine the number of clusters a priori.  

 run an analysis for each different number of clusters, e.g. 3 clusters, 4 clusters, etc.. 

 the algorithm repeatedly reassigns cases to clusters, so the same case can move from cluster to 
cluster during the analysis.  In agglomerative hierarchical clustering, cases are added only to existing 
clusters.  

 the k-means algorithm, where k is the number of clusters you want, assigns cases to the cluster for 
which its distance to the cluster mean is the smallest . 

 the algorithm centers around finding k-means. 

 start out with an initial set of means and classify cases based on their distances to the centers, 

 compute the cluster means again, using the cases that are assigned to the cluster, 

 reclassify all cases based on the new set of means, 

 keep repeating this step until cluster means don’t change much between successive steps. 

 finally, calculate the means of the clusters once again and assign the cases to their permanent 
clusters. 

 
Two-Step Cluster 
With a large data set or to use a procedure that can rapidly form clusters on the basis of either categorical 
or continuous data, neither of the previous two procedures works as well as two-step clustering. 
Hierarchical clustering requires a matrix of distances between all pairs of cases, and k-means requires 
shuffling cases in and out of clusters and knowing the number of clusters in advance.  
Step 1: Preclustering: Making Little Clusters 

 the first step of the two-step procedure is formation of preclusters.  

 the goal of preclustering is to reduce the size of the matrix that contains distances between all 
possible pairs of cases. Preclusters are just clusters of the original cases that are used in place of the 
raw data in the hierarchical clustering.  

 as a case is read, the algorithm decides, based on a distance measure, if the current case should be 
merged with a previously formed precluster or start a new precluster.  

 when preclustering is complete, all cases in the same precluster are treated as a single entity.  

 the size of the distance matrix is no longer dependent on the number of cases but on the number of 
preclusters. 

Step 2: Hierarchical Clustering of Preclusters 

 in the second step, use the standard hierarchical clustering algorithm on the preclusters.  

 forming clusters hierarchically lets you explore a range of solutions with different numbers of clusters. 
Tip: A large number of preclusters gives better results because the cases are more similar in a 

precluster; however, forming many preclusters slows the algorithm. 
 
Cluster Analysis Steps 
Cluster analysis methods are not clearly established. There are many options one may select when 
performing cluster analysis. For example, each case could start as a separate cluster and continue to 
combine similar clusters until there is one cluster left. This method uses distances between data points. 
The most common and generally accepted way to calculate distances between objects in a multi-
dimensional space is to compute Euclidean distances (an extension of Pythagoras’ theorem). 



10 

 
The choice of methods used for cluster analysis could depend on the size of the data set as well as the 
types of variables.  Hierarchical clustering is appropriate for a small data set. K-means clustering where 
the number of clusters is known works for a moderately large data set. A large data set or a mixture of 
continuous and categorical variables requires a two-step procedure.  
 

Note: While the theoretical foundation of these methods is excellent, there is one key problem known as 
overfitting (unless constraints are put on the model complexity). A more complex model will usually be 
able to explain the data better, which makes choosing the appropriate number and type of variables a key 
factor in model development.  
 
Steps 

 start with a number of cases to subdivide into homogeneous groups or clusters, 

 choose the variables,  

 decide whether to standardize the variables in some way so that they all contribute equally to the 
distance or similarity between cases; the analysis can be run with both standardized and 
unstandardized variables and then compared for the number of clusters,  

 decide which clustering procedure to use, based on the number of cases and types of variables that 
you want to use for forming clusters. 

For hierarchical clustering,  

 choose a statistic that quantifies how far apart (or similar) two cases are,  

 select a method for forming the groups; could have as many clusters as you do cases (not a useful 
solution),  

 determine how many clusters are needed to represent the data; look at how similar clusters are 
(descriptive statistics for variables for each cluster). 

For k-means clustering,  

 select the number of clusters, 

 the algorithm iteratively estimates the cluster means and assigns each case to the cluster for which 
its distance to the cluster mean is the smallest, 

 assigns cases to the cluster where the smallest distance to the cluster mean. 

For two-step clustering,  

 cases are assigned to “preclusters”,  

 the preclusters are clustered using the hierarchical clustering algorithm, 

 specify the number of clusters you want or let the algorithm decide based on preselected criteria. 
 
PROC CLUSTER 
The CLUSTER procedure hierarchically clusters the observations in a SAS data set by using one of 
eleven methods. The data can be coordinates or distances. If the data are coordinates, PROC CLUSTER 
computes squared Euclidean distances.  
 

There are numerous clustering methods. All methods are based on the usual agglomerative hierarchical 
clustering procedure. Each observation begins in a cluster by itself. The two closest clusters are merged 
to form a new cluster that replaces the two old clusters. Merging of the two closest clusters is repeated 
until only one cluster is left. The various clustering methods differ in how the distance between two 
clusters is computed. 
 

The CLUSTER procedure is not practical for very large data sets because the CPU time is roughly 
proportional to the square or cube of the number of observations. The FASTCLUS procedure requires 
time proportional to the number of observations and can be used with much larger data sets than PROC 
CLUSTER. If you want to cluster a very large data set hierarchically, use PROC CLUSTER for a 
preliminary cluster analysis. Then use PROC FASTCLUS to determine cluster membership.  
 

Plots of the pseudo F statistic and cubic clustering criterion (CCC) are options in PROC CLUSTER. 
Values of CCC, pseudo F, and observed overall r-squared, and approximate expected overall r-squared 
are shown with PROC FASTCLUS. Values of cubic clustering criterion greater than 2 or 3 indicate good 
clusters. Values between 0 and 2 indicate potential clusters, but they should be taken with caution; large 
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negative values can indicate outliers. Note: approximate expected R square and CCC values are not valid 
for correlated variables. For correlated variables, use cluster principal component scores from the PROC 
PRINCOMP procedure. 
 

PROC CLUSTER displays a history of the clustering process, showing statistics useful for estimating the 
number of clusters in the population from which the data are sampled. PROC CLUSTER also creates an 
output data set that can be used by PROC TREE to draw a tree diagram of the cluster hierarchy or to 
output the cluster membership at any desired level. For example, to obtain the five-cluster solution, you 
could first use PROC CLUSTER with the OUTTREE= option, and then use this output data set as the 
input data set to the TREE procedure. With PROC TREE, specify NCLUSTERS=5 and the OUT= options 
to obtain the five-cluster solution and draw a tree diagram.  
 
Syntax PROC CLUSTER 
PROC CLUSTER DATA=<input dataset>  

    METHOD=<name>   

    OUTTREE=<dataset>   

    std   (standardize, mean=0, std=1)     

    ccc    (cubic clustering criterion plot) 

    pseudo   (pseudo F plot) 

    <options>; 

  BY <variables>;     (separate analysis) 

  COPY <variables>;   (copied from input dataset to OUTTREE=dataset) 

  FREQ <variable>; (frequency of occurrence of variables) 

  ID <variables>;  (to identify observations)  

  RMSSTD <variables>; (variable containing root mean squared deviations) 

  VAR <variables>; (variables in the analysis) 

 
PROC FASTCLUS 
PROC FASTCLUS is intended for use with large data sets, 100 or more observations. With small data 
sets, the results can be highly sensitive to the order of the observations in the dataset. PROC FASTCLUS 
uses algorithms that place a larger influence on variables with larger variance. Standardizing the 
variables before performing the cluster analysis is recommended.  PROC FASTCLUS produces brief 
summaries of the clusters it finds. For more extensive examination of the clusters, you can request an 
output data set containing a cluster membership variable. 
 

PROC FASTCLUS performs a disjoint cluster analysis on the basis of distances computed from one or 
more quantitative variables. The observations are divided into clusters such that every observation 
belongs to one and only one cluster; the clusters do not form a tree structure as they do in the CLUSTER 
procedure. For an analysis for different numbers of clusters, run PROC FASTCLUS several times 
changing the number of clusters requested in each analysis.  
 

By default, PROC FASTCLUS uses Euclidean distances, so the cluster centers are based on least 
squares estimation. The cluster centers are the means of the observations assigned to each cluster when 
the algorithm is run to complete convergence. PROC FASTCLUS is designed to find good clusters, not 
the best possible clusters, with only two or three passes through the data set. PROC FASTCLUS can be 
an effective procedure for detecting outliers which appear as clusters with only one member.   
 
Syntax PROC FASTCLUS 
PROC FASTCLUS DATA= <input data> 

   INSTAT =   <dataset created with OUTSTAT=> 

   OUT =    <output SAS dataset> 

   OUTSTAT =   <output SAS dataset containing statistics> 

   CLUSTER =   <specifies name for cluster membership variable> 

   MEAN =    <output SAS dataset containing cluster centers> 

   MAXCLUSTERS=n;  (if MAXCLUSTERS is not specified, n=100, by default) 

 VAR <variables>;   (variables in the analysis) 

 ID <variables>;     (to identify observations)      
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 FREQ <variable>;   (frequency of occurrence of variables) 

 WEIGHT <variable>;  (compete weighted cluster means) 

 BY <variables>;      (separate analysis)  

 
Graphical Representation 

A plot or scatter plot provides a graphical representation of the clusters (see Display 5 for an example). 
Canonical variables are created using the PROC CANDISC procedure and plotted with PROC SGPLOT.  
 
Syntax for PROC SGPLOT; 
proc candisc data=<dataset name> out=<out dataset name> noprint; 

  var <variables>;  

  class <variables>;  

proc sgplot data=<out dataset name rom proc candisc>7; 

  scatter y=can2 x=can1 / group=class variable name from proc candisc>;  

run; 

 

Example – Cluster Analysis using car dataset 
Data for the cluster analysis example (n=406) is a set of car characteristics including acceleration, 
horsepower, MPG, cylinders, weight, displacement, model, origin, and car name. For marketing purposes, 
a cluster analysis could identify groups of vehicles by characteristics.  
 
Data was standardized due to different measurement scales.  Analysis was completed with PROC 
CLUSTER and PROC FASTCLUS.   Eigenvalues from PROC CLUSTER were examined for a three 
cluster solution (see Display 2).    
 
SAS Code 
proc standard data=rawsub1 mean=0 std=1 out=stan1;  

 var MPG Cylinders Displacement Horsepower Weight Acceleration;  

run; 

 

proc means data=stan1;  

 var MPG Cylinders Displacement Horsepower Weight Acceleration;  

run;  

 

proc cluster data=stan1 outtree=tree1 std  

 method=average ccc pseudo;  

var MPG Cylinders Displacement Horsepower Weight Acceleration;  

title2 'standardized data'; 

run; 

 

**** 3 clusters; 

proc fastclus data=stan1 out=clus3 maxclusters=3 summary maxiter=100;  

 var MPG Cylinders Displacement Horsepower Weight Acceleration; 

  id car; 

title2'standardized data - 3 clusters';  

run; 

 

proc means data=clus3 maxdec=2;  

class cluster; 

var MPG Cylinders Displacement Horsepower Weight Acceleration; 

run; 

 

proc candisc data=clus3 out=can3 noprint; 

  var MPG Cylinders Displacement Horsepower Weight Acceleration; 

  class cluster;  

 

proc sgplot data=can3; 

  scatter y=can2 x=can1 / group=cluster;  

run; 
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data clus3x; set clus3; keep carid cluster; 

proc sort data=rawsub1; by carid;  

proc sort data=clus3x; by carid;  

data new3;  

  merge rawsub1 clus3x; by carid; 

proc means data = new3  maxdec=2;  

 var MPG Cylinders Displacement Horsepower Weight Acceleration; 

  class cluster;  

run;  

 
Results 
Cluster analysis using a k-means cluster procedure found three groups of cars using characteristics of 
MPG, number of cylinders, displacement, horsepower, weight, and acceleration to differentiate the 
groups. Display 1 shows mean values for the total group. Display 2 illustrates eigenvalues of the 
correlation matrix from PROC CLUSTER.  Three clusters were identified to explain 96.26% of the 
variance in the data.   
 

Variable N Mean Std Dev Minimum Maximum 

MPG 

Cylinders 

Displacement 

Horsepower 

Weight 

Acceleration 

392 

392 

392 

392 

392 

392 

23.45 

5.47 

194.41 

104.47 

2977.58 

15.54 

7.81 

1.71 

104.64 

38.49 

849.40 

2.76 

9.00 

3.00 

68.00 

46.00 

1613.00 

8.00 

46.60 

8.00 

455.00 

230.00 

5140.00 

24.80 

                   Display 1.  Means for Car Data (PROC MEANS) 

 

Eigenvalues of the Correlation Matrix 

 Eigenvalue Difference Proportion Cumulative 

1 4.78826616 4.05963505 0.7980 0.7980 

2 0.72863111 0.47016380 0.1214 0.9195 

3 0.25846732 0.13329030 0.0431 0.9626 

4 0.12517701 0.06200061 0.0209 0.9834 

5 0.06317640 0.02689440 0.0105 0.9940 

6 0.03628200  0.0060 1.0000 

Display 2.  Eigenvalues for Standardized Data (PROC CLUSTER) 
 

Cluster analysis using car data found three groups with distinct characteristics. Cluster 2 has lower 
average values for cylinders (4.00), horsepower (75.66), and weight (2239.85) than Clusters 1 (5.54, 
100.32, 3108.12) or Cluster 3 (7.98, 161.09, 4125.14) but a larger value for MPG (miles per gallon) (30.31 
(Cluster 2), 20.52 (Cluster 1), 14.66 (Cluster 3)).     
 

The Cluster Summery shown in Display 3 includes the distance between cluster centers, the nearest 
cluster, and frequency in each cluster. Display 4 shows the means for each cluster.  A graphical 
representation of the cluster locations is shown in Display 5.  
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Cluster Summary 

Cluster Frequency 

RMS Std 

Deviation 

Maximum Distance 

from Seed 

to Observation 

Radius 

Exceeded 

Nearest 

Cluster 

Distance Between 

Cluster Centroids 

1 120 0.5254 2.7700  2 2.1394 

2 182 0.5058 3.3298  1 2.1394 

3 104 0.4918 2.5177  1 3.2168 

        Display 3. PROC FASTCLUS Cluster Summary 

 

Cluster N Obs Variable N Mean Std Dev Minimum Maximum 

1 120 MPG 

Cylinders 

Displacement 

Horsepower 

Weight 

Acceleration 

118 

120 

120 

117 

120 

120 

20.52 

5.54 

196.36 

100.32 

3108.12 

16.35 

3.23 

1.03 

51.06 

12.04 

365.36 

2.18 

15.00 

3.00 

80.00 

72.00 

2310.00 

11.30 

32.70 

8.00 

350.00 

133.00 

4060.00 

22.20 

2 182 MPG 

Cylinders 

Displacement 

Horsepower 

Weight 

Acceleration 

181 

182 

182 

179 

182 

182 

30.31 

4.00 

106.57 

75.66 

2239.85 

16.64 

5.43 

0.21 

23.69 

13.16 

306.18 

2.41 

18.00 

3.00 

68.00 

46.00 

1613.00 

11.60 

46.60 

6.00 

262.00 

113.00 

3250.00 

24.80 

3 104 MPG 

Cylinders 

Displacement 

Horsepower 

Weight 

Acceleration 

99 

104 

104 

104 

104 

104 

14.66 

7.98 

347.32 

161.09 

4125.14 

12.60 

2.37 

0.20 

45.22 

25.75 

436.75 

1.89 

9.00 

6.00 

231.00 

120.00 

3086.00 

8.00 

23.00 

8.00 

455.00 

230.00 

5140.00 

18.50 

          Display 4.  Cluster Means (PROC MEANS) 
 
Discussion 

Exploratory factor analysis techniques investigate the underlying factor structure of a set of variables 
while exploratory cluster analysis groups observations using variables to determine similarities in group 
membership. Cluster analysis groups observations that are similar while factor analysis groups variables 
that are similar. 
 
Factor analysis explicitly defines a model including measured variables, error terms, and latent constructs 
(factors or dimensions).  Factor analysis specifies underlying assumptions: a linear relationship between 
variables, normal distribution of measured variables, bivariate normality, and multivariate normality.  
 
Cluster analysis does not define a model, has no underlying assumptions about the distribution of the 
data. Selecting the appropriate clustering method depends on the data set and the intended use for the 
results.  
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  Display 5.  Three Cluster SGPLOT 

CONCLUSION 

Exploratory factor analysis identifies the underlying structure of a set of variables without imposing a 
preconceived structure on the outcome. Exploratory cluster analysis classifies and organizes data into 
meaningful clusters or groups by maximizing the similarity between observations in each cluster without 
any preconceived notion. Results from SAS® procedures PROC CORR, PROC FACTOR, PROC 
CLUSTER, PROC FASTCLUS give you the power to maximize your knowledge, answer your research 
questions, and determine business strategies. 
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