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ABSTRACT  

Mining and analysis of social media text is a powerful tool for the analysis of thoughts, preferences, and 
actions of individuals and populations. While commonly used today in marketing and other business 
applications, Data for Good researchers have begun to apply these methods to the analysis of hate 
speech in social media. Different channels, including Twitter, Facebook, and Google searches, are found 
to have distinctive characteristics that affect the types of models and analyses each can support. This 
paper provides a step-by-step description of how to create and deploy a Twitter API and mine the data to 
extract tweets with user-selected search terms, including keywords and user name of the person or 
organization sending the tweet. This methodology is used to investigate hate speech, modeling the time 
series patterns with the aim of estimating the risk of subsequent acts of violence against persons targeted 
by the speech. These Data For Good analyses have been performed using SAS® University Edition, a 
free version of SAS® available to students, professors, and non-profit researchers.  

INTRODUCTION  
APIs now exist for reading social media from a number of important outlets, including Twitter and 
Facebook. Twitter considers posts on it site to be a public conversation - not exclusively between friends 
and connections – and supports some limited search capable through their website. Twitter also actively 
encourages developers to create APIs for user-written applications. A macro for using an API to search 
Twitter was described by in a paper by Isabel Litton and Rebecca Ottesen of California Polytechnic State 
University, presented at the Western Users of SAS conference in 2013. Earlier work by the author 
presented lag models analyzing hate speech on Twitter, investigating a possible connection between 
social media hate speech and subsequent acts of violence against persons targeted in the speech. While 
the earlier work focused on time series analysis using tweets sent over a period of several years. The 
present paper describes real-time analysis using maps dynamically updated at a user-selected time 
interval, with a period of 10 seconds used in the example. 

SOCIAL MEDIA DATA 
Different social media channels are found to have distinctive characteristics that affect the kinds of uses 
and questions that can be answered using the posts. Perhaps the most important distinction is between 
public and private media. Channels such as Facebook and LinkedIn are considered private because they 
require a personal connection to all parties seeing a post. This is usually mediated through the use of an 
invitation and acceptance system. By contrast, some other social media platforms are effectively public, 
allowing any subscriber on the platform to see all posts. Twitter in particular emphasizes this aspect, 
making a tweet the social media equivalent of sky writing: anyone (more exactly, any Twitter subscriber) 
can read any tweet without a personal connection to the tweeter. In this way, Facebook acts like a 
conversation with a friend in your living room: a private space, only accessible to people you have invited 
in. By contrast, Twitter is a like a conversation with a friend that occurs on a street corner: a public place 
where anyone passing by can hear everything said. 

Another important feature is the time frame of the action. This is not as absolute as the public / private 
dichotomy: while most social media platforms can be used for either rapid response or durable posts and 
extended conversations, most will have a time frame characteristic of the particular social media channel. 
For example:  

• Twitter: short duration and highly reactive to other posts and events  

• Facebook: more medium term, with extended conversation threads 

• Google Trends: Not usually thought of in this space, it has many characteristics of a public social 
media platform. While individuals are not identified, specific search counts and rates are available 



2 

to the public. Because the searches captured in Google Trends shows what people are thinking 
about, considering, and planning to do in the future, it functions as a leading indicator - the 
internet equivalent of Durable Goods – and therefore may have predictive power than other 
channels. 

At this time, most tools re able to explore only text, not images. YouTube and Instagram – the #2 and #3 
Social Media channels – have no effective means to mine images at this time 

MINING TWITTER DATA WITH SAS 
Twitter allows independent developers to create their own applications with search capability using an 
API.  available at no cost. Twitter encourages these new applications by making the API available at no 
cost to registered developers, providing a web page to register for an API, and instructions analyzed 
implementation. SAS Support has a page on importing tweets: 
http://blogs.sas.com/content/sascom/2013/12/12/how-to-import-twitter-tweets-in-sas-data-step-using-
oauth-2-authentication-style/. An excellent paper on setting up a Twitter API in a SAS program has been 
written by Isabel Litton and Rebecca Ottesen of California Polytechnic State University. The tweets 
analyzed in the following section were pulled using a modification of the Litton-Ottesen macro 
%GrabTweet. 

 

In the mining and analysis of Twitter feeds, a five-step process is recommended: 

1. Register with Twitter as a developer to get access 

2. Create an API to deploy search terms and receive tweets 

3. Create a program to deploy the API, obtain tweets, and parse the Twitter stream into a SAS dataset  

4. Perform exploratory data analysis on a few tweets to find the best search terms for the investigation 

5. Extract and analyze a large number of tweets pulled using the preferred search terms  

 

The process begins with registering with Twitter as an app developer at 
https://dev.twitter.com/oauth/overview. Twitter, which encourages users to develop and implement an API 
in their web applications, provides detailed instructions for requesting APIs, which are available at no 
financial cost to the user. Once the on-line registration process is complete, Twitter will send three 
important articles by email:  

• consumerKey – this serves as a Twitter User ID 

• consumerSecret – this is the login password to the Twitter system 

• Bearer Token:  This combines the roles of consumerKey and consumerSecret to provide a single text 
string to be deployed in SAS code to access tweets.  

It is strongly advised to keep all three highly secure. When deploying this information in SAS code, a 
FILENAME statement should be used to read this information from a secure location. These should not 
be hard-coded into SAS programs! 
 
The following code can be used to deploy a registered Twitter developer ID to obtain tweets. It includes 
the parameter TYPE, which Twitter uses to determine the type of tweets to be extracted. Options for the 
TYPE parameter include  

• Popular – the most popular tweets containing the selected search terms 

• Recent – the most recent tweets containing the selected search terms 

• Mixed – a mix of recent tweets and the most popular from further back in time 

http://blogs.sas.com/content/sascom/2013/12/12/how-to-import-twitter-tweets-in-sas-data-step-using-oauth-2-authentication-style/
http://blogs.sas.com/content/sascom/2013/12/12/how-to-import-twitter-tweets-in-sas-data-step-using-oauth-2-authentication-style/
https://dev.twitter.com/oauth/overview
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The first part of the Twitter access macro sets macro parameters extracts up to 100 tweets:  
 
%MACRO grab_tweet_100(search_term, type, target_amount); 

 

/* Location of the file with authentication information - edit this path */ 

filename auth "C:\dcorliss\SAS\Twitter\token.txt"; 

 

/* Location of the output file containing the tweets - edit this path */ 

filename twtOut "C:\dcorliss\SAS\Twitter\Tweets.txt"; 

 

/* 

   These parameters need to be set when accessing the GET search/tweets url: 

   COUNT = number of tweets to grab 

   TYPE = Popular, Recent, or Mixed 

*/ 

 

%IF &target_amount < 100 %THEN %LET num_tweet = 
%NRSTR(&count=)&target_amount; 

%ELSE %LET num_tweet = %NRSTR(&count=100); 

%LET type = %NRSTR(&result_type=&type); 

 

/* PROC HTTP to access the Twitter URL and write the output file */ 

 

PROC HTTP 

   HEADERIN = auth 

   METHOD = "get" 

 

   /* Deploy the specified search terms in the Twitter search API */ 

  URL = "https://api.twitter.com/1.1/search/tweets.json?q=&search_term&type&num_tweet" 

 

   /* Write the output to the designated location as one long text string */ 

   OUT = twtOut;  

RUN; 

 

%MEND; 
 

While the text captured using the Twitter API is comma-delimited, there is no end of line marker: the text 
is transmitted as one continuous string:  



4 

 
Figure 1: Raw Twitter Output 
 

The long text string must be parsed. The comma-delimited fields appear in the following order: 

• Timestamp at creation of original tweet 

• Tweet ID (a long integer, successive, and unique to the tweet) 

• Tweet text 

• Twitter coded User ID 

• User actual name 

• User screen name (Twitter “handle”) 

• Location of user as registered on the Twitter account 

• Timestamp for the creation of the Twitter account 

• Language in which the tweet is written 

• Retweet indicator 

 

Code for parsing the tweets should be inserted into the macro. While the Twitter API is limited to 100 
tweets, large quantities can be obtained by writing a macro to loop through repeated iterations of Twitter 
extraction.  

ANALYSIS OF HATE SPEECH IN TWITTER DATA  
To perform analysis, it is recommended first to perform exploratory data analysis on a small number of 
tweets, examining individual tweets, to identify search terms yielding tweets best suited to the desired 
analysis. For example, in extracting hate tweets, it is found the search terms Sharia, America, and Hate 
produce a very pure stream of anti-Muslim hate speech. 

Once a substantial body of tweets has been extracted, the time series of the number of tweets per day 
can be compared to either a list of discrete events or event counts. Many different methods of time series 
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analysis can be used investigate the hypothesized relationship between hate speech and subsequent 
violence against persons targeted by the speech. (Note: readers inexperienced in the analysis of hate 
speech are strongly cautioned regarding the use of language in this analysis. In order to analyze the harm 
of hate speech, the associated risks, and target appropriate responses, this paper deals with some of the 
very worst things human beings are capable of writing and saying.) 

Tweets are characterized by sharp, short-term spikes in the time series of search term counts. For 
example: 

 

 
Figure 2: Time Series of Extracted Twitter Data 
 

While the search term “Sharia” is strongly associated with hate speech, other terms can be searched as 
well, with similar results. Exploratory data analysis reveals the combination of terms “Sharia”, “America” 
and “Hate” produce a very pure stream of hate speech:  
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Figure 3: Parsed Hate Tweets  
 

Reflecting the sort duration and often highly reactive nature of the Twitter channel, other hate speech 
search can show similar results. 

 
Figure 4: Comparison of Hate Tweets With Different Targets  
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In this analysis, spikes in Twitter data are not seen to closely precede attacks on minorities and other 
groups targeted by violence. A highly reactive pattern is seen instead, with sharp spikes in hate speech 
following terrorist attacks. The size of these spikes may be predictive of the degree to which reprisal 
attacks are seen. 

 
Figure 5: Reactive Tweets – A Lagging Indicator  
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Contrasting with the time series pattern of hate speech in Twitter, preliminary evidence may indicate 
peaks hate speech search terms in Google Trends can precede attacks on targeted groups. More data 
and analysis are need to investigate this. 

CONCLUSIONS 
Social media data can be matched to event data for time series analysis using a wide variety of methods. 
Because data can be mined and analyzed at high volume, analytic methods optimized for big data 
methods may be necessary.  

Different social media channels have particular characteristics which should be remembered when 
selecting sources for analysis: 

• Twitter: a short-duration lagging medium, highly reactive to new events. In the case of hate speech, it 
may be predictive of reprisal attacks  

• Facebook is a medium-term channel with extended conversation threads. A general lack of access to 
data due to Facebook privacy terms limits its use in time series analysis on in-house threads. 

• Google Trends functions as a leading Indicator, much like a Social Media equivalent of Durable 
Goods. Google Trends data may be predictive of subsequent events. 

• YouTube and Instagram – the #2 and #3 social media channels as of this writing, offer no effective 
means to mine images at this time 

 
Twitter data can be mined and analyzed at high volume. Consequently, Analytics methods optimized for 
big data methods may be necessary. Initial analysis of Hate Crimes with social media data shows 
promise but better crime data is needed. 
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APPENDIX B: CODE USED FOR THE EXTRACTION OF TWEETS FROM TWITTER 
 

%MACRO grab_tweet_100(search_term, type, target_amount); 

 

/* Location of the file with authentication information - edit this path */ 

filename auth "C:\dcorliss\SAS\Twitter\token.txt"; 

 

/* Location of the output file containing the tweets - edit this path */ 

filename twtOut "C:\dcorliss\SAS\Twitter\Tweets.txt"; 

 

/* 

   These parameters need to be set when accessing the GET search/tweets url: 

   COUNT = number of tweets to grab 

   TYPE = Popular, Recent, or Mixed 

*/ 

 

%IF &target_amount < 100 %THEN %LET num_tweet = 
%NRSTR(&count=)&target_amount; 

%ELSE %LET num_tweet = %NRSTR(&count=100); 
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%LET type = %NRSTR(&result_type=&type); 

 

/* PROC HTTP to access the Twitter URL and write the output file */ 

 

PROC HTTP 

   HEADERIN = auth 

   METHOD = "get" 

 

   /* Deploy the specified search terms in the Twitter search API */ 

  URL = "https://api.twitter.com/1.1/search/tweets.json?q=&search_term&type&num_tweet" 

 

   /* Write the output to the designated location as one long text string */ 

   OUT = twtOut;  

RUN; 

 

%MEND; 

 

 
 

APPENDIX B: CODE USED FOR REAL-TIME UPDATES FROM A TWITTER FEED 
 
%macro timeloop(iterations); 
%local i; 
%let i=1; 
%do i=1 %to &iterations; 
 
 
%grab_tweet_100(Sharia,recent,100); 
 
 
data work.tweet; 
   set work.tweet; 
   count = 1; 
   
chardate=CATT(substr(date_time_text,9,2),substr(date_time_text,5,3),substr(da
te_time_text,27,4)); 
   timestamp=dhms(input(chardate,date9.), substr(date_time_text,12,2), 
substr(date_time_text,12,2), substr(date_time_text,18,2)); 
   date = datepart(timestamp); 
   time = timepart(timestamp); 
   ten_sec = round(time, 10); 
   ten_sec_est = ten_sec - 18000; 
   if input(chardate,date9.) = today(); 
   if upcase(text) contains 'SHARIA' and upcase(text) contains 'AMERICA' and 
upcase(text) contains 'HATE';  
run; 
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data work.graph_data; 
   set work.graph_data work.tweet; 
   *if ten_sec_est GE hms(9,0,0); 
run; 
 
proc sort data=graph_data nodupkey; 
   by time tweet_id; 
run; 
 
 
ods listing close;                                                                                                                       
ods html path='C:\dcorliss\SAS\Twitter' file='test.html';                                                                                                      
                                                                                                                                                                                                        
proc sgplot data=graph_data; 
   vbar ten_sec_est; 
   *xaxis type=time interval=minute values=(47500 to 49000); 
   xaxis type=time interval=hour; 
   format ten_sec_est hhmm.; 
   title "Tweets (10 Second Totals)"; 
run;                                                                                                                                     
              
ods html close;                                                                                                                          
ods listing; 
 
 
%end; 
%mend timeloop; 
 
 
proc delete data=work.tweet; 
proc delete data=work.graph_data; 
run; 
 
DATA work.graph_data; 
   LENGTH date_time_text $30 tweet_id $18 text $140 user_id $15 name $185 
account_created $30 lang $2 screen_name $185 location $185; 
   DELETE; 
RUN; 
 
%timeloop(20); 
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