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Abstract 

Clinical prediction models employ regression-based methods to elucidate potential predictors of 
outcomes. For a binary outcome, the LOGISTIC and HPLOGISTIC procedures offer options for 
model development, testing and validation. Several fit statistics can be used to gauge the predictive 
accuracy of a model as well as for comparisons between competing models. In the appropriate context 
these statistics include sensitivity, specificity, positive and negative predictive values, the receiver 
operating characteristic (ROC) curve and concordance indices. A similar development for survival 
models faces many challenges, including the feature of time-dependent outcome and censoring in 
accrued survival data. New options in the PHREG procedure permit calculation of some of the 
aforementioned fit statistics. We discuss their interpretation and illustrate their application with empirical 
data sets. 

 

1. Introduction 

Clinical prediction models are ubiquitous in medicine (Steyerberg, 2009). Prediction models have at their 
core a diagnostic marker based on contemporaneous and antecedent variables that can predict the 
likelihood of a future random event. Khorana et al (2008) develop a prediction rule for the risk of venous 
thromboembolism (VTE) in cancer patients on active chemotherapy. A single-index is constructed from 
baseline clinical and laboratory assessments that could help identify patients at high risk of VTE so that 
prophylaxis could be initiated. Gardiner et al (2016) report on the incidence of hospital-acquired pressure 
ulcers in a population-based retrospective cohort. The objective was to assess the relative importance of 
patient variables such as gender, race, age, comorbidities, body mass index in identifying patients who 
might be at higher risk of acquiring a pressure ulcer during their hospital stay.  

From studies in which the event outcome and its potential correlates are available, a series of prognosis 
models can be evaluated with respect to their discriminative ability. Their common structure models the 
presence of disease( 1)D = from potential predictor variables x through a logistic regression model,  

( ) 1[ 1| ] 1 exp( )P D β −′= = + −x x . From the distribution of the single index M β′= x , the sensitivity 
[ | 1]P M c D> =  and specificity [ | 0]P M c D≤ =   can be compared by varying  the cut-off  value c. 

Sensitivity is called the true positive ratio ( )TP c and 1 minus specificity, the false positive ratio ( )FP c . The 
receiver operating characteristic (ROC) curve is a display of the points ( ( ), ( ))FP c TP c  for varying cut-offs 
that could aid in a judicious choice of c.  The area under the ROC curve (AUC) is a summary statistic 
called the c-statistic. It has an interpretation as the probability that the marker for a randomly selected 
subject from the diseased population ( 1)D = is greater than the marker for a randomly selected subject 
from the non-diseased population ( 0)D = . Since these statistics depend on x, one can assess competing 
logistic models with different covariate sets in their ability to provide a relatively simpler discrimination 
between true positive and false positive ratios. For example, a c-statistic above 0.75 is considered 
excellent. Sub-models with fewer covariates may be compared with respect to their c-statistics. 
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For a binary outcome, the LOGISTIC procedure is the workhorse for estimating the logistic model. 
Options for ROC analyses of competing models and statistical comparisons between them are available. 
Both LOGISITC and HPLOGISTIC provide a scheme for development, testing and validation of the 
prediction model.  

Survival outcomes 

We begin with a time-to-event T measured from origin 0t = and a marker M measured at baseline. 
Higher values of the marker are indicative of worse prognosis for the event.  Potential predictor variables 
x of the survival distribution ( | ) [ | ]S t P T t= >x x  can be assessed using  the semiparametric Cox 
proportional hazards model (PHM)  β′= 0( | ) ( )exp( )h t h tx x  with baseline hazard function 0h  and the 
single index β′=M x . An alternative model is the parametric accelerated failure time model (AFT), 

β σε′= +logT x   with a specified distribution on ε and scale parameter σ (>0). For example, the 

extreme-value distribution for ε  corresponds to Weibull survival ( )1/( | ) exp { / ( )}S t t σθ= −x x  where

θ β′=log ( )x x . In the AFT context we use β′= −M x  to maintain the convention that higher values of 
the marker indicate poorer survival outcome. 

The next step is to define sensitivity and specificity of the diagnostic marker. Several definitions have 
been proposed (Heagerty and Zhang, 2005, Pepe et al, 2008). PHREG adopts the cumulative/dynamic 
definition: 

( , )TP c t =Sensitivity(c, t )= [ | ]P M c T t> ≤ ,  and Specificity(c, t )= [ | ]P M c T t≤ >  =1− ( , )FP c t .  (1) 

Interpreting T as the time to disease onset, the definitions are similar to those for a binary outcome, by 
taking = ≤[ ]D T t . With t fixed, the true positive ratio ( , )TP c t and false positive ratio ( , )FP c t are 
monotone decreasing functions of the cut-off c, but not necessarily strictly decreasing. As probabilities 
they are bounded on [0, 1]. It is desirable for estimators of these quantities to have the same properties. 

ROC curve and AUC 

Given ( , )TP c t and ( , )FP c t , the points of the ROC curve are ROC(t)={( ( , )FP c t , ( , )TP c t ): c∈ℜ}. 
Formally, define ROC(p, t) = 1{[ ( , )] , }TP FP p t t−  where 1[ ( , )] inf{ : ( , ) }, [0,1]}FP p t c FP c t p p− = ≤ ∈ . For 

each  t,   p→ROC(p, t) is a function on [0, 1]. The area under the ROC  is
1

0
( ) ( , )AUC t ROC p t dp= ∫ . 

From independent pairs 1 1 2 2( , ),( , )M T M T we may interpret ( )AUC t  as 

1 2 1 2( ) [ | ]AUC t P M M T t T= > ≤ <         (2) 

At time t, given that the event has occurred in subject 1, but has not yet occurred in subject 2, ( )AUC t  
is the probability that the marker 1M in subject 1 is greater than the marker 2M  in subject 2. It measures 
the ability of the markers to correctly order the event status at time t.  

Integrated AUC  

An ‘average’ ( )AUC t  for all  t  is obtained as ( )
0

( ) ( )( ( ))E AUC T AUC t dS t
∞

= −∫  
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2.  Estimation  

With survival data we must address incomplete observation of the survival outcome, that is, T might be 
(right) censored. Let {( , , ) : 1 }i i iT i nδ∗ ≤ ≤x  denote the observations from a random sample with 

observed time min( , )i i iT T C∗ = , event time iT , censoring time iC  and (right) censoring indicator 

[ ]i i iT Cδ = ≤ . Thus 1iδ =  if iT ∗ is an event time, and 0iδ = otherwise. The covariates ix  are time-
invariant and used to define the marker i iM β′= x . Estimation of β is via maximum partial likelihood in 
the Cox PHM. Minimally, we assume ( , )i iT C are conditionally independent given ix , but in much of 
what follows the censoring distribution is assumed not to depend on ix . In several applications this 
assumption may not be tenable (Blanche et al, 2013a). Following historical development of ROC 
analyses, PHREG offers four methods of estimation of the quantities ( , )TP c t , ( , )FP c t , the ROC curve, 
ROC(t) and AUC(t).  

 

Conditional Kaplan –Meier (METHOD=KM) 

Start with the definitions (1) to obtain 

( , )TP c t =
[ | ] [ ] 1 ( | )

[ | ] (1 ( ))
[ ] 1 ( ) M

P T t M c P M c S t M cP M c T t F c
P T t S t

≤ > > − >
> ≤ = = −

≤ −
 

( , )FP c t =
[ | ] [ ] ( | )

[ | ] (1 ( ))
[ ] ( ) M

P T t M c P M c S t M cP M c T t F c
P T t S t

> > > >
> > = = −

>
, 

in terms of the survival distribution ( ) [ ]S t P T t= > , the conditional survival distribution ( | )S t M c>  
and the distribution of the marker ( ) [ ]MF c P M c= ≤ . Estimation is simple plug-in with the Kaplan-
Meier (KM) estimator of ( )S t from all data, for ( | )S t M c>  using only the subsample, and ( )MF c
estimated by its empirical cumulative distribution function. This is essentially done in Lu and Liu 
(2006). 

The KM estimators of ( | )S t M c> are based on different subsamples due to varying cut-off  c.  The 
resulting estimators of ( , )TP c t and ( , )FP c t need not be monotone in c and could take values outside 
[0, 1]. The estimated ROC(t) could also be non-monotone and take values outside the unit square. 
Heagerty et al (2000) give a numerical example to illustrate this issue. It is not necessarily seen only 
with small to moderate size samples. 

 

Inverse-probability of censoring weighted (IPCW) estimator (METHOD=IPCW) 

From definitions (1), ( , )TP c t =
[ , ]

[ ]
P T t M c

P T t
≤ >

≤
 and ( , )FP c t =

[ , ]
[ ]

P T t M c
P T t
> >

>
. Use plug-in empirical 

estimates for the numerator and denominator of ( , )TP c t , but weighted by the inverse probability of 

not being censored at time iT ∗ , which is estimated by ˆ ( )C iS T ∗−  where ˆ (.)CS is the KM estimator of 
the censoring distribution, assumed independent of covariates.  
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Use the data {( , ) : 1 }i iT i nδ∗ ≤ ≤  with LIFETEST regarding censoring times as the response to obtain 
ˆ (.)CS .  The explicit formulae are (Blanche et al, 2013a): 



1

1

ˆ[ , ] / ( )
( , )

ˆ[ ] / ( )

n
i i i C ii

n
i i C ii

T t M c S T
TP c t

T t S T

δ

δ

∗ ∗
=

∗ ∗
=

≤ > −
=

≤ −
∑
∑

 and  1

1

[ , ]
( , )

[ ]

n
i ii

n
ii

T t M c
FP c t

T t

∗
=

∗
=

> >
=

>
∑
∑

.   (3) 

These IPCW estimators are monotone and bounded on [0. 1]. The weighting scheme was proposed by 
Uno et al (2007) motivated by [ | , ] ( )CP C T T M S T≥ = − which results in

[ , ]
[ , ]

( )C

T t M cE P T t M c
S T

δ ≤ >
= ≤ > 

− 
. We obtain consistency and asymptotic normality under standard 

assumptions (Uno et al, 2007, Hung and Chiang, 2010a). Assume that the censoring distribution does not 
depend on the marker M. This is sufficient to demonstrate the convergence in probability,
 ( , ) ( , ), ( , ) ( , ).TP c t TP c t FP c t FP c t→ →  From (3) we also get an estimator ( )AUC t  of ( )AUC t . Hung 
and Chiang (2010b) and Blanche et al (2013a) give an explicit expression suggested from U-statistics: 



2
1 1

[ , ] ˆ ˆ( ) ( )
( ) ˆ ˆ( )(1 ( ))

n n i
i j i ji j

C i C

T T

n T t T M M
S T S t

AUC t
S t S t

δ− ∗ ∗
∗= =

≤ < >
−

=
−

∑ ∑
    (4)  

where ˆ (.)TS  estimates the event distribution, and the interpretation of 0/0 as 0.  For inference, we 
also need estimates of standard errors. PHREG implements a sophisticated perturbation-resampling 
method to compute standard error of the estimator of ( )AUC t . The aforementioned papers 
mention the bootstrap to get estimates of standard errors. In the current version of PHREG 
(SAS/STAT® version 9.4, Analytics 14.2), the IPCW method is the best developed. Enhancements 
are planned in upcoming releases. Two other estimation methods offered by PHREG will be 
discussed later. The seminal article by the developers Guo, So and Jang (2017) is highly recommended. 

 

3. Application and Illustration 

For illustration we use a data set on the survival experience of 256 end-stage renal disease (ESRD) 
patients from the ADEMEX study (Vonesh, 2012, Paniagua et al, 2002). Patients were randomized to 
either high dose peritoneal dialysis (TRT=1) or standard dose (TRT=0).  Covariates at baseline are 
patient age in years, gender, and diabetic status. Baseline and updated values of the glomerular filtration 
rate (ml/min), serum albumin (g/dL) and normalized nitrogen appearance (g/kg/day) were assessed. For 
our purposes only baseline values of these variables will be used. Survival time (ITTtime) is in months 
from randomization and ITTdeath is the censoring indicator, value 1 for death and 0 for censoring. 
Censoring could be for any one of the following reasons: (a) patient received kidney transplant, (b) 
return of kidney function, (c) true loss to follow up, or (d) reached study termination date. We consider a 
PHM with all seven of the aforementioned covariates. We request an ROC estimation based on the 
IPCW estimators of sensitivity and specificity (METHOD=IPCW). The marker is ˆ

i iM β′= x  estimated 
from the PHM for each patient.  
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Apply the formats: 

proc format; 
 value trt 0='Control' 1='Treated'; 
 value sex 0='Male' 1='Female'; 
 value affirm 0='no' 1='yes'; 
run; 

proc phreg data=survival_ph plots=roc  
 rocoptions(method=ipcw at= 6 to 24 by 6 outroc=rocdata); 
class trt (ref='Control') sex(ref='Male') 
diabetic(ref='no')/param=ref; 
model ITTtime*ITTdeath(0)=Trt Age Sex Diabetic Albumin0 nPNA0 GFR0; 
format trt trt. sex sex. diabetic affirm.; 
output out=stats_ph xbeta=xbeta; 
run; 

The data set STATS_PH has the values of the marker XBETA. The marker is practically continuous 
with no tied values. Cut-offs c for construction of the ROC are from this support set. Summary statistics 
for XBETA are 

Analysis Variable : xbeta Linear Predictor 
N Mean Std Dev Median 25th Pctl 75th Pctl Minimum Maximum 

256 –1.8874 1.1337 –1.7475 –2.5544 –1.0783 –5.6830 1.0384 
 

From the formula (3), ROCDATA saves the computation of the estimates of sensitivity ( _Sensitivity_=
( , )TP c t ) and specificity (_Specificity_= 1−( , )FP c t ) at the distinct marker values (_Cutoff_). Because 
of the request (at= 6 to 24 by 6) we have 4 sets of calculations for each of the requested times t.  
ROCDATA has 1024=256×4 records. The name ITTtime is applied to t.  Although default ROC curves, 
ROC(t) are produced by the plots=roc request, the data set ROCDATA has the requisite 
information for customized plotting. Points on the ROC curve are in descending order of the cutoff 
values going from left to right. If interested in calculating the estimate of AUC(t) from ROCDATA, we 
must add to the calculation the area of the trapezoid at the extreme right, that is 

 

min min½(1 ( , ))(1 ( , ))FP c t TP c t− +   where minc is the minimum marker value. 

Figure 1 is obtained from the plot request plots(overlay=individual)=roc(tick). 

For each t, the estimated ROC curve ROC(t) is a step function. Sensitivity values change at event times.  

 

Estimation of AUC (t)  

Although ROCDATA has the information to compute the estimate of AUC (t) at the requested time 
points, it is far simpler to apply the options in PHREG statement: our PHM is the same.  

proc phreg data=survival_ph plots=auc rocoptions(method=ipcw iauc 
outauc=aucdata); 
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Figure 1:  ROC(t) plots at t =6, 12, 18 and 24 months from the IPCW method 

  

  

Note that the AT= option should not be used when OUTAUC= is requested. Estimates of AUC (t) 
(_AUC_) are computed at all event times (79 distinct times for 84 events) and saved in AUCDATA. 
Summary statistics are:  

Analysis Variable : _AUC_ Area Under the Curve 
N Mean Std Dev Median 25th Pctl 75th Pctl Minimum Maximum 
79 0.7813 0.0325 0.7830 0.7680 0.7893 0.6462 0.996 

 

The calculation is simply the sum of the trapezoidal areas under ROC(t). Formula (4) is not needed. A 
default plot is produced by the plots=auc request, or use AUCDATA to create a custom plot. 
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Figure 2 and the previous table show that AUC(t) is approximately constant at the median 0.7830 
(shown as a reference line) for times from 6 to 18 months. 

Figure 2:  Estimates of AUC (t) at all event times from the IPCW method 

 

A summary statistic ( )( )E AUC T  is called the integrated  (time-dependent) area under the curve (IAUC). It is 

estimated by a weighted sum of ( )AUC t with weights ˆ ˆ( ) ( ) ( )T Tw t S t S t= − − from the KM estimator of 

the event time distribution. The option iauc does the computation as a sum ( ) ( )
t
AUC t w t∑  over the 

distinct event times. The estimate is 0.7795.  The range of integration can be restricted to (0, τ) by the 
TAU= option. 

 

Confidence intervals AUC 

The IPCW method computes standard errors of the estimates of AUC(t) by a sophisticated 
perturbation-resampling method. Let { : 1 }i i nψ ≤ ≤  be independent and identically distributed (IID) 
exponential variates with mean=1. Modify formulae (3) as: 



1

1

[ , ] / ( )
( , )

[ ] / ( )

n
i i i i C ii

n
i i i C ii

T t M c S T
TP c t

T t S T

δψ

δψ

∗ ∗ ∗ ∗
=

∗ ∗ ∗
=

≤ > −
=

≤ −
∑
∑

 and     1

1

[ , ]
( , )

[ ]

n
i i ii

n
i ii

T t M c
FP c t

T t

ψ

ψ

∗ ∗
=

∗
=

> >
=

>
∑
∑

 

where i iM β∗ ∗′= x , β ∗ and CS∗ (.) are modified versions of β̂ and ˆ
CS (.). See PHREG documentation for 

details. We get the standard error ˆ( )tσ of( )AUC t based on a specified number (ITER=) of perturbed 
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samples and subsequently a 100(1−α)% confidence interval for ( )AUC t computed as 
 ( )1 ½ 1 ½ˆ ˆ( ) ( ), ( ) ( ) .AUC t z t AUC t z tα ασ σ− −− + Here 1 ½z α−  denotes the 100(1−½α)-th percentile of the 

standard  normal distribution. The following options save the calculation and produce a plot with the 
95% confidence limits (pointwise). The defaults are ALPHA=.05 and ITER=50. 

proc phreg data=survival_ph plots=auc rocoptions(method=ipcw(cl 
iter=100 seed=13118) outauc=aucdata); 

The plots=auc request generates an AUC plot similar to Figure 3 which is recreated from the 
AUCDATA set. 

proc sgplot data=aucdata noautolegend; 
series x=ITTtime y=_AUC_/lineattrs=(thickness=2); 
band x=ITTtime lower=_lowerAUC_  upper=_upperAUC_/transparency=.5; 
xaxis values=(0 to 28 by 4) label='ITTtime (months)' 
labelattrs=(weight=bold); 
yaxis labelattrs=(weight=bold); 
inset "Based on 100 perturbed samples, IPCW method" 
/position=bottomright; 
run; 

 

 Figure 3: Estimates of AUC (t) with 95% confidence intervals at all event times 
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Comparison of proportional hazards models 

Our previous discussion employed a PHM with 7 covariates (predictors). Adjusted hazard ratios and 
95% Wald confidence intervals are obtained via HAZARDRATIO statements (not shown) and 
corresponding p-values from Type3 Wald tests.  For example, a 0.25-unit increase in baseline albumin is 
associated with a reduction in the risk of death by 29%, HR=0.71, 95% CI: 0.60, 0.84.  Using the 
ASSESS statement, supremum tests for the functional form of the continuous covariates, and tests of 
the proportional hazards assumption on all covariates indicted no substantive violations of assumptions.  

 Table 1: Hazard ratios and 95% confidence intervals from the PHM 

Description Hazard  
Ratio 

95%  
Lower CL 

95%  
Upper CL  

p-value 

TRT, Treated vs Control 0.690 0.443 1.075 .1013 
SEX, Female vs Male 1.191 0.750 1.892 .4588 
DIABETIC, yes vs no 2.039 1.140 3.647 .0163 
AGE, Unit=10 1.296 1.013 1.660 .0394 
ALBUMIN0, Unit=0.5 0.708 0.595 0.843 .0001 
nPNA0, Unit=0.25 0.608 0.459 0.807 .0006 
GFR0, Unit=2 1.092 0.921 1.294 .3111 

 

Consider a PHM with the predictors diabetic age Albumin0 nPNA0 GFR0. Call it our Full Model. 
Now consider sub-models with one or more predictors removed. Multiple ROC statements allow the 
fitting of the sub-models, a simple comparison of AUC differences and a graphic displaying all the ROC 
curves. The format for diabetic is not applied, due to a glitch in the software version used here. 

proc phreg data=survival_ph plots(overlay=individual)=roc(tick)  
rocoptions(method=ipcw(cl iter=50 seed=20918) at=12 aucdiff); 
model ITTtime*ITTdeath(0)=diabetic age Albumin0 nPNA0 GFR0 
/roclabel='Full Model'; 
roc "diabetic age Albumin0 nPNA0" diabetic age Albumin0 nPNA0; 
roc "diabetic age Albumin0" diabetic age Albumin0; 
roc "diabetic Albumin0 nPNA0" diabetic Albumin0 nPNA0; 
roc "diabetic Albumin0 nPNA0 GFR0" diabetic Albumin0 nPNA0 GFR0; 
run; 

A busy Figure 4 shows ROC curves at t=12 for the 5 models. The plot options were used to insert 
the AUC values into the plot. The option aucdiff generates a table of differences in AUC for 
each pair of models. Models receive a label from their respective roc statement, and the label for the 
full model is supplied in the model statement via ROCLABEL. To suppress comparisons with the 
full model use the NOFIT option. Amongst comparisons to the Full model, a 4-variable sub-model 
without GFR0 would be sufficient. We noticed in Table 1 that GFR0 was not a significant predictor. 
This sub-model also has the highest AUC and does well in comparison with the other three sub-
models. However, when a 95% CI for each AUC difference is computed by the UNO method 
(Table 2), we find that none are significant because the 95% CI straddles the zero value. Figure 4 
says just about the same. 
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Figure 4: ROC curves at t =12 months for Full and Sub-models (IPCW method) 

 
 

Table 2: Estimate at t =12 of AUC difference and 95% confidence limits for model pairs 

PairID Pair AUC 
Estimate 

Lower 
95% CL 

Upper 
95% CL 

1 diabetic age Albumin0 nPNA0 - diabetic age Albumin0 0.0147 –0.0279 0.0572 
2 diabetic age Albumin0 nPNA0 - diabetic Albumin0 nPNA0 0.0158 –0.0507 0.0824 
3 diabetic age Albumin0 nPNA0 - diabetic Albumin0 nPNA0 

GFR0 
0.0264 –0.0303 0.0831 

4 diabetic age Albumin0 nPNA0 - Full Model 0.0071 –0.0153 0.0294 
5 diabetic age Albumin0 - diabetic Albumin0 nPNA0 0.0012 –0.0679 0.0702 
6 diabetic age Albumin0 - diabetic Albumin0 nPNA0 GFR0 0.0118 –0.0507 0.0743 
7 diabetic age Albumin0 - Full Model –0.0076 –0.0582 0.0430 
8 diabetic Albumin0 nPNA0 - diabetic Albumin0 nPNA0 

GFR0 
0.0106 –0.0206 0.0418 

9 diabetic Albumin0 nPNA0 - Full Model –0.0088 –0.0754 0.0579 
10 diabetic Albumin0 nPNA0 GFR0 - Full Model –0.0194 –0.0707 0.0319 
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ROC analysis with marker data from an external source 

As seen in formulae (3) for ( , )TP c t and ( , )FP c t we need only information on survival data 
{( , ) : 1 }i iT i nδ∗ ≤ ≤  and the marker { : 1 }iM i n≤ ≤ . The latter can be generated from another source, for 
example an accelerated failure time (AFT) model fitted in LIFEREG or a scale parameter model fitted in 
SEVERITY. The AFT is a parametric model with the form log( )T β σε′= +x  where ε has a specified 
parametric distribution. When ε has the logistic distribution we get the log-logistic survival distribution

( ) 11/( | ) 1 { / ( )}S t t σθ
−

= +x x ; when ε has the extreme-value distribution we get the Weibull survival 

distribution ( )1/( | ) exp ( / ( ))S t t σθ= −x x  where σ >0 is a shape parameter and log ( )θ β′=x x  (Gardiner 
et al, 2014). The Weibull has the proportional hazards property but the log-logistic does not. In AFT 
models a higher value of the marker M β′= x is indicative of better survival.  Therefore, we must flip the 
sign of the marker to keep in line with our previous discussion of the Cox PHM. 

The following syntax fits the log-logistic model with all 7 covariates. Change the DIST option to 
dist=Weibull to fit the Weibull.  

proc lifereg data=survival_ph; 
class trt sex diabetic; 
format trt trt. sex sex. diabetic affirm.; 
model ITTtime*ITTdeath(0)=Trt Age Sex Diabetic Albumin0 nPNA0 
GFR0/dist=llogistic; 
output out=stats_lr xbeta=xbeta_l; 
run; 
 
The Weibull shows close similarity with our previous PHM (Table 3).  
 
 Table 3: Type III Analysis of Effects 

 LOG-LOGISTIC 
MODEL 

WEIBULL MODEL Cox PH Model 

Effect DF Wald 
Chi-Square 

p-value Wald 
Chi-Square 

p-value Wald 
Chi-Square 

p-value 

Trt 1 1.8151 0.1779 3.1390 0.0764 2.6854 0.1013 
Age 1 3.5791 0.0585 3.7040 0.0543 4.2430 0.0394 
Sex 1 0.3320 0.5645 0.3487 0.5549 0.5489 0.4588 
Diabetic 1 4.8499 0.0276 6.3937 0.0115 5.7667 0.0163 
Albumin0 1 16.5919 <.0001 13.4807 0.0002 15.0446 0.0001 
nPNA0 1 9.4132 0.0022 11.3234 0.0008 11.9177 0.0006 
GFR0 1 0.2750 0.6000 0.9932 0.3190 1.0261 0.3111 
 
Create the marker data for log-logistic and Weibull models in the same data set. This may be done by (1) 
fit log-logistic and save XBETA_l, (2) use the output file to fit Weibull and save XBETA_w, (3) flip sign 
to get marker_l and marker_w in the data set stats_lr3. The now familiar syntax produces the ROC 
curves at two time points for the three models (Figure 5). 
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proc phreg data=stats_lr3 plots(overlay=individual)=roc(tick)  
rocoptions(method=ipcw at=12,18); 
class trt (ref='Control') sex(ref='Male') diabetic(ref='no') 
/param=ref; 
format trt trt. sex sex. diabetic affirm.; 
model ITTtime*ITTdeath(0)=Trt Age Sex Diabetic Albumin0 nPNA0 
GFR0/roclabel='Proportional Hazards Model'; 
roc "Log-logistic Model" pred=marker_l; 
roc "Weibull Model" pred=marker_w; 
run; 
 
Figure 5:  ROC curves at t =12, 18 months for Log-logistic, Weibull and Cox PH models 

  

 
Checking independence of the censoring distribution and marker 
 
The IPCW method assumes that the censoring distribution is not dependent on the marker M. An 
informal check of this assumption can be made by plotting the KM estimates ˆ ( )CS t  in strata defined by 
the values of M.  First, fit a PHM and save the marker data.  Second, create categories for the 
distribution of M.  We use tertiles to create 3 strata. Third, obtain KM estimates from LIFETEST with a 
STRATA statement. 

The PHM fitted is  

proc phreg data=survival_ph; 
class diabetic(ref='no')/param=ref; 
model ITTtime*ITTdeath(0)= Diabetic Age Albumin0 nPNA0; 
format diabetic affirm.; 
output out=stats_ph xbeta=xbeta; 
run; 
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Tertiles of the marker are obtained from UNIVARIATE: 
 
proc univariate data=stats_ph; 
var xbeta; 
output out=xb_pctl pctlpts=( 33 66) pctlpre=P_; 
run; 
 
Issue a format to create 3 tertiles categories T1, T2, T3: 
 
proc format; 
value trtl low-<-2.26350='T1' -2.26350-< -1.23428 ='T2' 
   -1.23428-high='T3'; 
run; 
 
Obtain KM estimates for the event time distribution and separately for the censoring time distribution:  

ods output survivalplot=surv_T; /*surv_C*/ 
proc lifetest data=stats_ph  
 plots=survival(atrisk=(0 to 30 by 6) atrisktickonly nocensor 
test); 
 strata xbeta/test=logrank; 
format xbeta trtl.; 
time ITTtime*ITTdeath(0); *ITTtime*ITTdeath(1); 
label ITTtime='ITTtime (months)'; 
run; 

For purposes of plotting, two ODS output data sets are created. Two invocations of SGPLOT will 
create an enhanced plot of the event time distribution and censoring distribution (Matange, 2016). The 
syntax for the latter is: 

ods graphics on/height=4.2in width=3.2in; 
proc sgplot data=surv_C noautolegend; 
step x=time y=survival /group=stratum lineattrs=(thickness=1); 
xaxistable atrisk/x=tatrisk class=stratum location=inside 
     colorgroup=stratum valueattrs=(size=9)  
     title=" Atrisk by Tertiles of Marker"; 
xaxis values=(0 to 30 by 6) labelattrs=(weight=bold); 
yaxis label="Survival Probability (Censoring)" 
labelattrs=(weight=bold); 
inset "Logrank p=.2858" / border textattrs=(size=9) position=s; 
run; 

The plots are in Figure 6.  To show detail, the vertical scale is different for the two plots. We expect a 
significant association of the marker with the event time (left panel), and fortunately we find no 
association of the marker with the censoring time (right panel)—at least from the informal investigation 
made here. Assessments are based on the log-rank test.  
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Figure 6:  KM estimates of event time and censoring distributions by marker categories 

  
 

When the censoring distribution is dependent on the marker, some arguments of the IPCW method for 
consistency of estimators break down. Blanche et al (2013a) offer a modification of the IPCW method 
called the conditional IPCW (CIPCW) which replaces the observation weights in formulae (3) for 
( , )TP c t by { } 1ˆ ( | )i C i iS T Mδ

−
∗−  and introduces a weight { } 1ˆ ( | )C iS t M

−
in ( , )FP c t . They suggest a Cox 

PMH or any other model be applied to estimate ( | )CS t M or preferably from the bivariate distribution 
[ , ]P C t M c> > . Via simulation studies, the CIPCW estimators show robustness to dependency of the 

censoring distribution on the marker and perform well in comparison to the nearest neighbor method 
which is the default method in PHREG. 

 

Nearest Neighbor Method (METHOD=NNE) 

PHREG offers METHOD=NNE for the nearest neighbor approach (Heagerty et al, 2000) based on a 
bivariate survival distribution for (M, T) introduced by Akritas (1994). The NNE method is not currently 
fully developed: we can get the relevant estimates for ROC analysis, but standard errors are not available 
for the estimator of ( )AUC t . Consistency and asymptotic normality have been established, but the 
difficulty lies in estimating the asymptotic variance. Resampling methods could be used (Hung and 
Chiang, 2010a, 2011). 
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Using the data {( , , ) : 1 }i i iT i nδ∗ ≤ ≤x  with the marker ˆ
i iM β′= x , estimate the bivariate survival 

distribution of ( , ) [ , ]S c t P M c T t= > >  by  1
1

ˆ ˆ( , ) ( | )[ ]
n n

n
b b i ii

S c t n S t M M M c−
=

= = >∑ . The conditional 
survival distribution is estimated by a kernel-smoothed weighted KM-estimator, 

*

*

( , )[ ]
ˆ ( | ) 1

( , )[ ]
n

n

n

b i j j jj
b i

s t b i j jj

K M M T s
S t M M

K M M T s

δ

≤

 =
 = = −

≥  

∑
∏ ∑

 

where ( , ) [| ( ) ( )| ], 0 ½i j M i M j n nK M M F M F M b b= − < < <   and (.)MF is the cumulative distribution 
function (CDF) of the marker  M.  Ties amongst observed times are allowed (just as in KM). At the 
marker value iM , *( , )[ ]

nb i j j jj
K M M T s δ=∑   counts events at time *

jT s= whose associated marker 

value jM is to close iM ; also *( , )[ ]
nb i j jj

K M M T s≥∑ is the risk set at time s,  but restricted to 

individuals whose maker value is close to iM . By default bandwidth nb =0.05, so that 10% of nearest  

neighbors are used. Use option SPAN= to change setting. A suggested choice is 1/3( )nb O n−= . 

 

True Positive Ratio (Sensitivity )and False Positive Ratio (1−Specificity) 

Directly from their definitions we get the corresponding estimators  

 

ˆ ˆ1 ( ) ( , ) ( , )
( , ) , ( , )ˆ ˆ1 ( , ) ( , )

b b

n n

M b b

b b

F c S c t S c t
TP c t FP c t

S t S t

− −
= =

− −∞ −∞
. 

These estimators are monotone in c and bounded on [0.1]. 

 

Consider the same models described in the previous section for the log-logistic, Weibull, and Cox 
PHM with covariates Trt Age Sex Diabetic Albumin0 nPNA0 GFR0. ROC analysis 
using the NNE method requires only one change in the rocoptions. 

proc phreg data=stats_lr3 plots(overlay=individual)=roc(tick)  
rocoptions(method=NNE at=12, 18 outroc=rocdata); 
class trt (ref='Control') sex(ref='Male') 
diabetic(ref='no')/param=ref; 
format trt trt. sex sex. diabetic affirm.; 
model ITTtime*ITTdeath(0)=Trt Age Sex Diabetic Albumin0 nPNA0 
GFR0/roclabel='Proportional Hazards Model'; 
roc "Log-logistic Model" pred=marker_l; 
roc "Weibull Model" pred=marker_w; 
run; 

Figure 7 plots the ROC curves. Notice that the NNE method produces smoother curves than the IPCW 
method. The AUC can be computed by the trapezoidal rule from the output data set ROCDATA. 
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Figure 7: ROC curves at t =12, 18 by the NNE method  

   

 

 Recursive Method (METHOD=RECURSIVE) 

This method proposed by Chambless and Diao (2006) for estimation of ( , ), ( , ), ( )TP c t FP c t AUC t  
follows a recursive computation using the ordered distinct survival times up to t. Explicit formulae are 
available for the three estimators. Unfortunately, the estimator of ( , )FP c t  need not be monotone in c or 
bounded in [0,1]. The ( , )TP c t estimator is however, monotone and bounded. The censoring distribution 
is assumed not to depend on the marker. 

Let 0 1 20 Kt t t t= < < < <  denote the distinct event times. At time kt , let kd =#events and kr =#at risk. 

For the set kD of subjects with events at kt , let 
1

( ) #{ : } [ , ]n
k k i i i i ki

c i D M c M c T tρ δ ∗
=

= ∈ > = > =∑ .  The 

estimators of true positive and false positive ratios at , 1, ,mt m K=   



11
ˆ( ) ( )/

( , ) ˆ1 ( )

m
k k kk

m
m

c S t r
TP c t

S t

ρ −==
−

∑ ,  11
ˆ1 ( ) ( ) ( )/

( , ) ˆ( )

m
M k k kk

m
m

F c c S t r
FP c t

S t

ρ −=
− −

= ∑  

where Ŝ is the KM estimator. We get estimates of the marker ˆ
i iM β′= x  from a survival model. Note that 

( , ) 1mTP c t ≤  follows from ( )k kc dρ ≤ and 1 1
ˆ ˆ ˆ( ) ( ) ( ) /k k k k kS t S t S t d r− −− = .  We cannot guarantee that 

( , )mFP c t  is monotone or bounded on [0, 1] although ( , ) 1mFP t−∞ =  and ( , ) 0mFP t+∞ = . Figure 8 shows 
ROC plots that are very similar to the NNE method (Figure 7) and IPCW method (Figure 5). 
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Figure 8: ROC curves at t =12, 18 by the RECURSIVE method  

   

 

Concordance Analysis 

For a binary outcome the area under the ROC curve is the c-statistic. If F and  G denote the CDFs  of 
the marginal distributions of the markers ( , )X Y from the diseased ( 1)XD = and non-diseased 

populations( 0)YD = , respectively, then [ ] (1 ( )) ( )P X Y F u dG u
∞

−∞
> = −∫ . Evaluation of the integral in 

terms of ( ), ( )TP c FP c shows that the integral is precisely ( )1 1

0
( )AUC TP FP u du−= ∫  (Vexler, 2016).  

In general, for independent pairs 1 1 2 2( , ),( , )M T M T  from survival data the concordance index is defined as 

1 2 1 2[ | ]UC P M M T T= > <  (Heagerty et al , 2005), Uno et al , 2011). For continuous distributions, IID 
random variables, 1 2[ ] ½P T T< =  and  1 2 1 2 1 2 1 22 [ , ] [( )( ) 0]UC P M M T T P M M T T= > < = − − < . 

Kendall’s Tau (K) is defined as the difference of probability of ‘concordance’ and of probability of 
‘discordance’, 1 2 1 2 1 2 1 2[( )( ) 0] [( )( ) 0]K P M M T T P M M T T= − − > − − − < 1 2 1 22 [( )( ) 0] 1P M M T T= − − > −  
for continuous distributions (Nelson, 2006). For what we call ‘concordance’ in the survival context, 

½( 1)UC K= + . 

With survival data we must address censoring which makes it impossible to order event times beyond 
the last follow up time. Uno defines a truncated version which we use in the sequel: 

1 2 1 2 1( ) [ | , ]UC P M M T T Tτ τ= > < <  where τ  is a value in the support of the censoring distribution. To 
allow for ties in the marker define (Gerds et al, 2013)

1 2 1 2 1 1 2 1 2 1( ) [ | , ] ½ [ | , ]UC P M M T T T P M M T T Tτ τ τ= > < < + = < <  and a similar modification for the area 
under the curve, 1 2 1 2 1 2 1 2( ) [ | ] ½ [ | ]AUC t P M M T t T P M M T t T= > ≤ < + = ≤ < .  
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The concordance index ( )UC τ quantifies the ability of the marker to order the events times up to τ 
whereas ( )AUC t quantifies the ability of the marker to order the event status at time t. Both measures 
can be used to inform discriminative performance of prediction models. An interesting discussion on the 
merits of these measures has been initiated by Blanche et al (2016).  
 
Uno’s method:  The censoring distribution is assumed not to depend on the marker. An estimator of 

( )UC τ  is obtained as 

( )1 1

1 1

[ , ] [ ] ½[ ]
ˆ ( )

[ , ]

n n
i j i i j i j ii j

U n n
i j i ii j

T T T M M M M w
C

T T T w

τ
τ

τ

∗ ∗ ∗
= =

∗ ∗ ∗
= =

< < > + =
=

< <

∑ ∑
∑ ∑

 where ˆ ˆ( ) ( )
i

i
C i C i

w
S T S T

δ
∗ ∗

=
−

 .  

Because ˆ ( )CS t  changes only at censoring times, and the calculation is made at event times the distinction 

in ˆ ( )C iS T ∗−  and ˆ ( )C iS T ∗  will apply only when the event time is tied with a censoring time. We also want 
ˆ ( )C iS T ∗ >0 . It is assured by ˆ ( ) 0CS τ > , if τ is in the support of the censoring distribution. If not specified 

by the option TAU=, the maximum event time is used. Asymptotic theory ensures the convergence

( ) 2ˆ (0, )U Un C C NORMAL σ− →  where 2σ can be estimated by the perturbation-resampling method 

similar to that applied to get confidence intervals for AUC (t). Table 4 assembles the results from several 
calls to PHREG. (Value-list in the option TAU= is not currently available). 

ods output auc=auc concordance=concordance; 
proc phreg data=survival_ph concordance=UNO(SE iter=100 seed=22018) 
tau=12 /* 18 24 28 */ 
rocoptions(method=ipcw(cl iter=100 seed=22018) auc at=12 18 24 
27.2039); 
class trt(ref='Control')sex(ref='Male')diabetic(ref='no') 
/param=ref; 
model ITTtime*ITTdeath(0)=Trt Age Sex Diabetic Albumin0 nPNA0 GFR0; 
format trt trt. sex sex. diabetic affirm.; 
run;  
 
Table 4: Estimates and 95% confidence intervals for the Concordance Index and AUC  

 Concordance Index  Area Under the Curve at Tau 
Tau Estimate Standard 

Error 
95% 
LCL 

95% 
UCL 

Estimate Standard 
Error 

95% 
LCL 

95% 
UCL 

12 0.7729 0.0370 0.7005 0.8454 0.7862 0.0374 0.7129 0.8594 
18 0.7665 0.0343 0.6993 0.8337 0.7879 0.0361 0.7171 0.8586 
24 0.7466 0.0311 0.6857 0.8076 0.7865 0.0321 0.7237 0.8493 

28* 0.7324 0.0326 0.6684 0.7964 0.7561 0.0393 0.6791 0.8331 
* Tau=28 is proxy for the maximum event time 27.204 months. 
 
The similarity of the results for the two measures is assuring, but this could be a characteristic of this 
data set. Just as in Table 2 for the AUC(t) we can carry out comparisons based on the concordance index 
for sub-models of the main PHM. The syntax is analogous: we will get a table of estimated differences in 
the concordance index, the standard error and p-value for testing a null difference for each of the 10 
individual pairs of the five models (results not shown). 
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proc phreg data=survival_ph concordance=uno(diff SE iter=100 
seed=22018) tau=12; 
model ITTtime*ITTdeath(0)=diabetic age Albumin0 nPNA0 
GFR0/roclabel='Full Model'; 
roc "diabetic age Albumin0 nPNA0" diabetic age Albumin0 nPNA0; 
roc "diabetic age Albumin0" diabetic age Albumin0; 
roc "diabetic Albumin0 nPNA0" diabetic Albumin0 nPNA0; 
roc "diabetic Albumin0 nPNA0 GFR0" diabetic Albumin0 nPNA0 GFR0; 
run; 
 
Harrell’s c-index ( )HC  is estimated by the option concordance=Harrell(SE), with standard 
errors but no comparisons are made between models. Harrell’s c-index is defined as the proportion of 
useable subject pairs in which the event times and markers are concordant (Harrell et al, 1996; Harrell, 
2015). Formally,  defined as 1 2 1 2 1 1 2[ | , min( , )]HC P M M T T T C C= > < <    where 1 2,C C   are the censoring 

times. An useable pair ( , )i jT T∗ ∗ comprises of either (i) distinct values with the lower value being an event 

say 1iδ =  and i jT T∗ ∗< , or (ii) tied values i jT T∗ ∗= with exactly one being an event, i.e. ( , ) (1,0)i jδ δ = or 

( , ) (0,1)i jδ δ = . Higher marker values are associated with shorter ‘survival’. A pair is concordant (or 
discordant) if the marker is larger (or smaller) for the event, than for the comparator. An estimator is 
ˆ ( ½ )/ ( )H c m c d mC n n n n n= + + + where #cn = concordant pairs, #dn = discordant pairs #mn = tied in 

marker pairs. This expression is entirely analogous to the calculation of c-statistic for a prediction model 
from logistic regression for a binary outcome in LOGISTIC or HPLOGISTIC.  
  

Concluding Remarks 

Of the four methods available in PHREG for estimating ( , ), ( , )TP c t FP c t the IPCW method is best 
developed. Estimators are monotone in the cutoff c, and bounded in [0,1]. For sub-models of the main 
PHM, we can use ROC statements to make comparisons between models based on ( )AUC t , and obtain 
confidence intervals for the differences. However, the method assumes that censoring does not depend 
on the marker. The KM method may lead to estimators of ( , ), ( , )TP c t FP c t that are not-monotone in c  or 
bounded in [0,1]. With the RECURSIVE method we can guarantee the monotonicity and boundedness 
for the estimator of ( , )TP c t only. The NNE method is based on the joint survival distribution of ( , )M T
and  produces estimators of ( , ), ( , )TP c t FP c t with the monotonicity and boundedness properties. The 
censoring distribution may depend on the marker. Finally, when censored observations are absent in our 
survival data, the IPCW, KM and RECURSIVE methods lead to the usual empirical estimators based on 
definition (1). Robustness to marker dependent censoring is a desirable property in applications to 
observational studies. With administrative censoring in trial data, the censoring distribution is plausibly 
independent of covariates, but may not be so with loss to follow up or withdrawals from study.  

Throughout, we adopted the cumulative/dynamic definition of ( , ), ( , )TP c t FP c t as implemented in 
PHREG. See Heagerty and Zheng (2005) for two other definitions, and a recent review by Kamarudin et 
al (2017). Although the focus is on a single endpoint in the time-to-failure analysis, information on the 
type or cause of failure leads to competing risks analysis (Beyersmann and Scheike, 2014, Gardiner, 
2016). PHREG offers two methods for competing risks analysis, one based on modelling the cause-
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specific hazard functions (Andersen et al, 2002, Anderson and Keiding, 2012) and another based on 
modelling the sub-distribution hazards (Fine and Gray, 1999).  Blanche et al (2013b) provide an approach 
to ROC analysis in competing risks models. Enhancements to PHREG will likely offer options to extend 
the reach of the current methodology.   
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