
Using In-Database Technology to Boost the
Efficiency of Data Analytics

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Using In-Database Technology to Boost the Efficiency of Data Analytics
Don McCarthy, Mike Santema, and Qing Yuan

Kaiser Permanente Department of Research and Evaluation

Introduction
Data volume is growing at an unprecedented pace in the health care
industry, and working with Big Data can be both time consuming and
challenging for SAS programmers. One solution to the problems of Big
Data that is offered by SAS to users with access to data within a
Relational Database Management System (RDBMS) such as Teradata®
is In-Database processing. In this paper, we use a subset of Kaiser
Permanente’s Electronic Health Record (EHR) data to test the efficiency
gains offered by In-Database processing for several popular Base SAS
procedures analytic processes within the Teradata Database. Sample
code is provided for each BASE SAS Procedure explored and the logs
from Conventional Processing and In-Database Processing are
compared.

Data

For this paper, we use a specially prepared subset of Kaiser
Permanente’s EHR data related to utilizations (e.g. encounters
between patient and healthcare providers, procedures performed by
providers, and diagnoses made by providers). Kaiser Permanente has
the largest private-sector EHR dataset in the U.S. and EHR data for
Kaiser Permanente Southern California includes more than 900 million
encounters from data inception though 2017. We selected data related
only to hospital setting encounters (100 million records) and their
related diagnoses and procedures.

References

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Conventional Processing of data located within a RDBMS involves the
SAS/ACCESS® engine generating a SQL SELECT * statement that fetches
all rows and columns from the table referenced and bringing them into
SAS where the processing occurs. With a large table; this results in
substantial network latency and can take much time. SAS offers In-
Database Processing as a solution for this problem. In-Database
processing offers advantages over Conventional Processing as the
SAS/ACCESS engine delegates more processing to the RMBS and
fetches the minimum amount of data into SAS. In SAS 9.4, the
following Base SAS Procedures are available for In-Database processing
using the SAS/ACCESS engine with BASE SAS and Teradata :

In-Database Processing

PROC FREQ, PROC MEANS, PROC REPORT, PROC SUMMARY, PROC
TABULATE. Additional SAS STAT Procedures are available for In-
Database Processing, and PROC TRANSPOSE is available for In-
Database Processing with the SAS In-Database Code Accelerator.
The SQLGENERATION system option or LIBNAME statement option
controls whether and how in-database procedures are run inside the
database. By default, the in-database procedures are run inside the
databases when possible.

Conclusion

It is useful to compare the real and CPU times of the above Procedures
as submitted Conventionally and In-Database and to consider the In-
Database Processing Times as a percentage of the Conventional
Processing times. These results are presented in tabular form below.
While we were pleasantly surprised by how quickly SAS Conventional
Processing provided results from a reasonably-large sized Teradata
table, In-Database Processing times were much faster and, as a share
of Convectional Processing times ranged from 1 to 48 percent. Clearly,
substantial gains in efficiency can be had by leveraging In-Database
processing.
PROC Conventional

Processing
In-Database
Processing

In-Database Processing as % of
Conventional

Using PROC Using Pass-Through Using PROC Using Pass-Through

EXPAND 04:04.01 n/a 00:07.68 n/a 3%

FREQ 06:20.83 00:04.46 00:05.66 1% 1%

MEANS 03:42.10 00:02.11 00:00.73 1% 1%

MEANS
(PERCENTILES) 03:38.72 03:38.10 01:15.14 100% 34%

TABULATE 06:01.21 00:03.19 n/a 1% n/a

TRANSPOSE 14:47.71 n/a 07:08.02 n/a 48%

SAS Institute. 2017. SAS/ACCESS® 9.4 for Relational Databases: Reference. 9th ed.
Cary, NC: SAS Institute.
SAS Institute. 2017. SAS Analytical Products 13.2 Documentation. Cary, NC: SAS
Institute.
SAS Institute. 2008. SAS In-Database Processing with Teradata: An Overview of
Foundation Technology. Cary, NC: SAS Institute.

Using In-Database Technology to Boost the Efficiency of Data Analytics
Don McCarthy, Mike Santema, and Qing Yuan

Kaiser Permanente Department of Research and Evaluation

Procedures

PROC EXPAND allows the programmer to convert time series data from one
frequency or time step to another (e.g. monthly to annual), to replace missing
data with several interpolation schemes, to perform certain rolling calculations,
and to generate lagging or leading values of numerical data.
PROC EXPAND is not available in SAS 9.4 for In-Database processing, however,
explicit pass though allows one to take advantage of Teradata’s massively parallel
processing to replicate certain of PROC EXPAND’s functionality. We compare
calculating two moving averages using PROC EXPAND with Conventional
Processing and explicit pass though In-Database Processing.
Our data has 20 columns including ones for: the number of procedures
performed per encounter (px_n) , the number of diagnoses made per encounter
(dx_n), the unique identifier for each encounter (util_id), a datetime admission
date (adate), and a admission year. We will make 6 month moving averages of
dx_n and px_n using data from 1980 to 2017. This is common analysis for a SAS
programmer working healthcare to perform as it can be useful in exploring
patterns of data capture and in provider behavior.
The BASE SAS Conventional Processing syntax is a combination of a PROC SQL
query that fetches the data from Teradata (libname=td_work) and makes and
monthly date and monthly means and the PROC EXPAND procedure.

Procedures (contd)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Procedures (contd)

proc sql;

create table dxpx1

as select

mdy(month(datepart(adate)),1,adyr) as dat format=mmddyy10.

,mean(dx_n) as dx_n

,mean(px_n) as px_n

from td_work.hsp_util

where adyr>1979

group by 1 order by 1;

quit;

proc expand DATA = dxpx1 OUT = dxpx;

convert dx_n = ma_dx_n / METHOD = none TRANSFORMOUT = (cmovave 6);

convert px_n = ma_px_n / METHOD = none TRANSFORMOUT = (cmovave 6);

run;

We next perform the same calculations using explicit pass through to use In-
Database Processing.

proc sql;

connect to teradata (user=&terauser password=&terapwd
connection=global mode=TERADATA);

execute (create multiset table td_work.dxpx as

(select

a.dat

,MAVG(a.dx_n,6,a.dat) as dx_n

,MAVG(a.px_n,6,a.dat) as px_n from

(

select

(adyr-1900)*10000 + extract(month from adate) * 100 + 1
(DATE) as dat

,average(dx_n) as dx_n

,average(px_n) as px_n

from td_datamart.hsp_util

where adyr>1979

group by 1

) a

)

with data no primary index ;

) by teradata; disconnect from teradata;

quit;

data util_detail;

set td_work.util_detail;

run;

Like Conventional, In-Database Processing must first make monthly dates and
monthly means; then it is able to use MAVG() to generate the moving averages.

Finally, the data are brought down to SAS using a DATASTEP. A comparison of logs
is interesting. The log for the Conventional Processing is:
NOTE: Table WORK.DXPX1 created, with 461 rows and 3 columns.

NOTE: PROCEDURE SQL used (Total process time):

real time 4:03.96

cpu time 4:22.50

NOTE: PROCEDURE EXPAND used (Total process time):

real time 0.05 seconds

cpu time 0.01 seconds

The SQL query brings down the entire table from Teradata and uses it to
calculate the 461 rows of monthly sums and takes just over four minutes: quite
good performance for a reasonably large table. The PROC EXPAND procedure
takes less than a second to return results.
The log for the In-Database Processing is:

NOTE: PROCEDURE SQL used (Total process time):

real time 2.18 seconds

cpu time 0.00 seconds

NOTE: Teradata connection: TPT FastExport has read 461 row(s).

NOTE: The data set WORK.DXPX has 461 observations and 3 variables.

NOTE: DATA statement used (Total process time):

real time 5.50 seconds

cpu time 0.38 seconds

The initial Teradata SQL query takes a bit over 2 seconds and the DATASTEP
brings down the resulting table to SAS in a bit under 6 seconds. What took 4 and
22.51 second in Conventional Processing took 7.68 seconds in In-Database
processing. While the time for Conventional Processing is not unreasonable, the
programmer can improve efficiency markedly using In-Database Processing even
with a dataset of around 100 million rows and 20 columns.

Using In-Database Technology to Boost the Efficiency of Data Analytics
Don McCarthy, Mike Santema, and Qing Yuan

Kaiser Permanente Department of Research and Evaluation

Procedures (contd) Procedures (contd)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Procedures (contd)

PROC FREQ computes descriptive statistics based on unique values in the data
set and produces n-way tabular reports. It is an essential procedure within BASE
SAS used primarily for counting, displaying and analyzing categorical type data.
These tools are used extensively by the programmer working in a healthcare
setting, as for counting, doing error checking of the data or categorizing data. It
produces one-way to n-way frequency and cross tabulation (contingency) tables.
For two-way tables, PROC FREQ computes tests and measures of association. For
n-way tables, PROC FREQ does stratified analysis, computing statistics within, as
well as across, strata.
We compare performing a two-dimensional table between care setting type and
care setting subtype to calculate the frequencies, percentages, cumulative
frequencies and cumulative percentages using the built-in intuitive syntax
present in PROC FREQ, which is already optimized in SAS 9.4 for In-Database
processing:

** FREQ **;

proc freq data=dluser.hsp_util;

table care_type * care_subtype / list;

Run;

PROC FREQ will by default add several statistics to the table when we define two
dimensions. We choose to keep the default statistics here in the example.
We next perform the same calculations using explicit pass through method:

** FREQ **;

proc sql;

connect to teradata (user=&terauser password=&terapwd
connection=global mode=TERADATA);

execute (create multiset table td_work.freq as

(select

care_type

, care_subtype

, count(*) as Frequency

, count(*) * 100.00 / sum(count(*)) over () as Percentage

** FREQ **;

, sum(count(*)) over (order by care_type, care_subtype

rows unbounded preceding) as CumulativeFrequency

, 100.00 * CumulativeFrequency / sum(count(*)) over ()

as CumulativePercent

from dl_res_user.hsp_util

group by care_type, care_subtype

)

with data no primary index;

) by teradata;

disconnect from teradata;

quit;

data util_freq;

set td_work.freq;

run;

A simple 2-dimensional table is generated. Conventional Processing must
download the data to SAS then do the counting by care_type. The log for the
Conventional Processing is:

NOTE: There were 53214875 observations read from the data set
DLUSER.hsp_util

NOTE: PROCEDURE FREQ used (Total process time):

real time 6:20.83

cpu time 3:30.78

The same code, with In-Database processing turned on showed significant
improvement for the same procedure:

NOTE: PROCEDURE FREQ used (Total process time):

real time 4.46 seconds

cpu time 0.48 seconds

NOTE: SQL generation will be used to construct frequency and
crosstabulation tables.

In-database processing is evident from the log note regarding SQL generation. The
SASTRACE option setting allows the generated SQL query to be printed to the SAS
log, as well.
TERADATA_2: Prepared: on connection 4

select COUNT(*) as "ZSQL1", case when COUNT(*) >
COUNT(TXT_1."CARE_TYPE") then ' ' else MIN(TXT_1."CARE_TYPE") end as
"ZSQL2",

case when COUNT(*) > COUNT(TXT_1."CARE_SUBTYPE") then ' ' else
MIN(TXT_1."CARE_SUBTYPE") end as "ZSQL3" from

"DL_RES_USER"."hsp_util" TXT_1 group by TXT_1."CARE_TYPE",
TXT_1."CARE_SUBTYPE“

The generated SQL query was passed to DBMS for fetching data. And bring them
back to SAS for processing.

Finally, Explicit pass through Teradata appeared to perform similarly as in-Database
processing:
NOTE: PROCEDURE SQL used (Total process time):

real time 4.76 seconds

cpu time 0.09 seconds

NOTE: The data set WORK.UTIL_FREQ has 39 observations and 6
variables.

NOTE: DATA statement used (Total process time):

real time 0.90 seconds

cpu time 0.06 seconds

Enabling in-database procedures to delegate more of the processing to the
Teradata Database by generating more complex SQL and passing it to Teradata
optimizes the PROC FREQ processing. More work is done in the database and
less data movement occurs. The SAS procedures can be modified to dynamically
generate SQL queries that reference Teradata SQL functions. This approach
provides performance improvements.

Using In-Database Technology to Boost the Efficiency of Data Analytics
Don McCarthy, Mike Santema, and Qing Yuan

Kaiser Permanente Department of Research and Evaluation

Procedures (contd) Procedures (contd)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Procedures (contd)

PROC MEANS and PROC SUMMARY are easily-recognized by most SAS
programmers as basic tools for deriving simple statistics about a dataset. These
procedures offer a wide array of arithmetic functions like means and standard
deviations, quickly calculated by basic calculators. PROC MEANS is also for
examining the distribution of data, relying on orders and to yield medians and
percentiles of numeric data.
These tools are particularly important to the programmer working in a
healthcare setting, as descriptive statistics need to be gathered on how a large
population of patients encounter the healthcare provider overall.
We compare performing means, standard deviation, and percentile calculations
on a length of stay variable, marking how many hours patients are in the hospital
(los_hrs) using the built-in intuitive syntax present in PROC MEANS, which is
already optimized in SAS 9.4 for In-Database processing (and the same code run
again with PROC SUMMARY instead of PROC MEANS):
** Mean/SD **;

proc means noprint

data=dluser.hsp_util;

var los_hrs;

output out=mean_imp

mean=mean_los

stddev=sd_los;

Run;

** Percentiles **;

proc means noprint

data=dluser.hsp_util;

var los_hrs;

output out=percentiles_imp

min=min_los

p25=p25_los

median=median_los

p75=p75_los

max=max_los;

run;

We next perform the same calculations using explicit pass through:

** Mean/SD **;

proc sql;

connect to teradata (tdpid=tdp2 user=&terauser password=&terapwd);

create table mean_exp as

select * from connection to teradata(

select avg(los_hrs) as mean_los

, stddev_samp(los_hrs) as sd_los

from dl_res_user.hsp_util

);

disconnect from teradata;

quit;

** Percentiles **;

proc sql; connect to teradata (tdpid=tdp2 user=&terauser
password=&terapwd);

create table percentiles_exp as

select * from connection to teradata(

select min(los_hrs) as min_los

, percentile_disc(0.25) within group (order by los_hrs) as p25_los

, percentile_disc(0.5) within group (order by los_hrs) as
median_los

, percentile_disc(0.75) within group (order by los_hrs) as p75_los

, max(los_hrs) as max_los

from dl_res_user.hsp_util

);

disconnect from teradata;

quit;

Explicit Teradata code also has functions built in for these simple ranges, like
AVG() for mean, and PERCENTILE_DISC() for percentiles.

A simple 1-record results table is generated in both the means and percentile
tables. Conventional Processing must download the data to SAS then do the
means. The log for the Conventional Processing is:

NOTE: The data set MEAN_IMP has 1 observations and 4 variables.

NOTE: PROCEDURE MEANS used (Total process time):

real time 3:42.10

cpu time 2:23.51

NOTE: The data set PERCENTILES_IMP has 1 observations and 7 variables

NOTE: PROCEDURE MEANS used (Total process time):

real time 3:38.72

cpu time 2:21.76

The same code, with In-Database processing turned on showed improvement
only for the means and standard deviation, percentiles was about the same:

NOTE: PROCEDURE MEANS used (Total process time):

real time 2.11 seconds

cpu time 0.31 seconds

NOTE: The data set PERCENTILES_IMP has 1 observations and 7 variables

NOTE: PROCEDURE MEANS used (Total process time):

real time 3:38.10

cpu time 2:17.45

Explicit pass through Teradata code appeared to be faster for both means and
percentile situations, although:
NOTE: Table MEAN_EXP created, with 1 rows and 2 columns.

NOTE: PROCEDURE SQL used (Total process time):

real time 0.73 seconds

cpu time 0.07 seconds

NOTE: Table PERCENTILES_EXP created, with 1 rows and 5 columns.

NOTE: PROCEDURE SQL used (Total process time):

real time 1:15.14

cpu time 0.07 seconds

Results using PROC SUMMARY instead of PROC MEANS were the same.

Using In-Database Technology to Boost the Efficiency of Data Analytics
Don McCarthy, Mike Santema, and Qing Yuan

Kaiser Permanente Department of Research and Evaluation

Procedures (contd) Procedures (contd)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Procedures (contd)

PROC TABULATE allows the programmer to display descriptive statistics in tabular
format. It computes many statistics that are computed by other procedures, such
as MEANS, FREQ, and REPORT. It then displays the results of these statistics in a
table format. It is very useful for programmers in a healthcare setting to generate
report, it can produce tables in up to three dimensions and allows, within each
dimension, multiple variables to be reported one after another hierarchically.
TABULATE is also available in SAS 9.4 for In-Database processing, however,
explicit pass though method is excessively cumbersome to generate.
We compare average and maximum length of stay variables, marking how many
hours patients are in the hospital (los_hrs) by care sub type and admission year
using PROC TABULATE with Conventional Processing and In-Database Processing.

proc tabulate data=dluser.hsp_util;

class adyr care_subtype;

var los_hrs;

keylabel N = ‘N’;

tables

adyr all = “Total” * f = comma10.,

los_hrs * care_subtype * (N Mean Max) * f = comma10. /

misstext=‘0’;

run;

NOTE: There were 53214875 observations read from the data set
DLUSER.hsp_util

NOTE: PROCEDURE TABULATE used (Total process time):

real time 6:01.21

cpu time 4:39.71

The log for conventional processing in SAS is:

Input data is stored as a table or view in a database management system
(DBMS), the PROC TABULATE procedure can use in-database processing to
perform most of its work within the database.
The log for the In-Database Processing is:

NOTE: SQL generation will be used to perform the initial
summarization.

NOTE: PROCEDURE TABULATE used (Total process time):

real time 3.19 seconds

cpu time 1.45 seconds

The results returns results in less than 5 seconds, it provides the advantages of
faster processing and reduced data transfer between the Teradata and SAS.
PROC TABULATE performs in-database processing by using SQL implicit pass-
through. The procedure generates SQL queries that are based on the
classifications and the statistics that specify in the TABLE statement. The Teradata
executes these SQL queries to construct initial summary tables, which are then
transmitted to PROC TABULATE.

The In-Database processing recorded in the log is:

TERADATA_0: Prepared: on connection 2

SELECT * FROM DL_RES_USER."hsp_util"

proc tabulate data=dluser.hsp_util;

class adyr care_subtype ;

var los_hrs;

keylabel N='N' ;

tables

adyr all="Total"*f=comma10.,

los_hrs*care_subtype * (N Mean Max)
*f=comma10./misstext='0';

run;

TERADATA: tryoeinf()

TERADATA: tryoeinf()

TERADATA: tryoeinf()

NOTE: SQL generation will be used to perform the initial
summarization.

TERADATA_1: Prepared: on connection 3

SELECT * FROM DL_RES_USER."hsp_util"

TERADATA_2: Prepared: on connection 4

select COUNT(*) as "ZSQL1", MIN(TXT_1."ADYR") as "ZSQL2",
MIN(TXT_1."CARE_SUBTYPE") as "ZSQL3", COUNT(*) as "ZSQL4",

COUNT(TXT_1."los_hrs") as "ZSQL5", MAX(TXT_1."los_hrs") as "ZSQL6",
SUM(CAST(TXT_1."los_hrs" AS DOUBLE PRECISION)) as "ZSQL7" from

"DL_RES_USER"."hsp_util" TXT_1 group by TXT_1."ADYR",
TXT_1."CARE_SUBTYPE"

TERADATA: trforc: COMMIT WORK

ACCESS ENGINE: SQL statement was passed to the DBMS for fetching
data.

TERADATA_3: Executed: on connection 4

select COUNT(*) as "ZSQL1", MIN(TXT_1."ADYR") as "ZSQL2",
MIN(TXT_1."CARE_SUBTYPE") as "ZSQL3", COUNT(*) as "ZSQL4",

COUNT(TXT_1."los_hrs") as "ZSQL5", MAX(TXT_1."los_hrs") as "ZSQL6",
SUM(CAST(TXT_1."los_hrs" AS DOUBLE PRECISION)) as "ZSQL7" from

"DL_RES_USER"."hsp_util" TXT_1 group by TXT_1."ADYR",
TXT_1."CARE_SUBTYPE"

TERADATA: trget - rows to fetch: 849

TERADATA: trforc: COMMIT WORK

TERADATA: trforc: COMMIT WORK

Explicit passthrough with Teradata SQL syntax is less attractive as it requires,
when there are a large number of categories to summarize (here our data have
39 categories and more than 30 years) a cumbersome transpose of the data
involving numerous UNION ALL joins or a complicated CROSS JOIN. Syntax for a
simpler transpose and its performance will be shown in the next section.

Using In-Database Technology to Boost the Efficiency of Data Analytics
Don McCarthy, Mike Santema, and Qing Yuan

Kaiser Permanente Department of Research and Evaluation

Procedures (contd)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Procedures (contd)

PROC TRANSPOSE allows the programmer convert rows to columns and columns
to rows (e.g. observations to variables and variables to observations). PROC
TRANSPOSE is not available in SAS 9.4 for In-Database processing, however,
explicit pass though allows one to transpose data in Teradata. We compare
transposing the variables: procedures performed per encounter (px_n) and the
number of diagnoses made per encounter (dx_n) using PROC TRANSPOSE with
Conventional Processing and explicit pass though In-Database Processing.
The BASE SAS Conventional Processing syntax is PROC TRANSPOSE and fetches
the entire table from Teradata (libname=td_work) which is then transposed in
SAS.

proc transpose data=td_work.hsp_util keep= util_id dx_n px_n)
out=util_detail (keep=util_id _label_ col1 rename= (_label_=
util_detail col1= counts));

by util_id;

run;

We next perform the same calculations using explicit pass though.
proc sql; connect to teradata (user=&terauser password=&terapwd
connection=global mode=TERADATA);

execute (create multiset table td_work.util_detail as

(select

a.util_id

,'dx_n' as util_detail

,a.dx_n as counts

from td_db.hsp_util a

union all

select

b.util_id

,'px_n' as util_detail

,b.px_n as counts

from td_db.hsp_util b

)

with data primary index(util_id) ; by teradata;

disconnect from teradata; quit;

Teradata SQL does not have a transpose function; however, it is relatively
straightforward to transpose columns using a combination of a SELECT query and
a UNION ALL. A comparison of logs is interesting. The log for the Conventional
Processing is:

NOTE: The data set WORK.UTIL_DETAIL has 106429750 observations and 3
variables.

NOTE: PROCEDURE TRANSPOSE used (Total process time):

real time 14:47.71

cpu time 8:55.98

The 3 columns needed from the table of 100 million rows are brought down to
SAS using a DATASTEP and then its transposed using PROC TRANSPOSE. It is quite
time-consuming. The log for the In-Database Processing is:

NOTE: PROCEDURE SQL used (Total process time):

real time 8.91 seconds

cpu time 0.00 seconds

NOTE: Teradata connection: TPT FastExport has read 106429750 row(s).

NOTE: The data set WORK.UTIL_DETAIL has 106429750 observations and 3
variables.

NOTE: DATA statement used (Total process time):

real time 6:59.11

cpu time 3:19.49

The SQL query returns results in less than 10 seconds, but the time to bring
down the 100 million rows of transposed data erodes the In-Database Processing
advantage to some extent as it takes almost 7 minutes.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

1

Paper 2823-2018

Using In-Database Technology to Boost the Efficiency of Data Analytics

Don McCarthy, Mike Santema, and Qing Yuan

Kaiser Permanente Department of Research and Evaluation

ABSTRACT

To gain efficiency in a big data environment, we are able to run and optimize key SAS procedures
analytic processes within the Teradata® Database. The scope of this paper is to explore the In-Database
processing advantages, the most frequently used SAS analytical and reporting In-Database procedures,
which are executed inside the Teradata database directly, and the comparison of efficiency between
direct SAS analytic processing and SAS In-Database processing with Teradata system. Finally, sample
programs are provided for each explored In-Database analytical procedures.

INTRODUCTION

Data volume is growing at an unprecedented pace in the healthcare industry, and working with big data
can be both time consuming and challenging for SAS programmers. One solution to the problems of big
data that is offered by SAS to users with access to data within a Relational Database Management
System (RDBMS) such as Teradata® is In-Database processing. In this paper, we use a subset of Kaiser
Permanente’s Electronic Health Record (EHR) data to test the efficiency gains offered by In-Database
processing for several popular Base SAS procedures analytic processes within the Teradata Database.
Sample code is provided for each BASE SAS Procedure explored and the logs from Conventional
Processing and In-Database Processing are compared.

For this paper, we use a specially prepared subset of Kaiser Permanente’s EHR data related to
utilizations (e.g. encounters between patient and healthcare providers, procedures performed by
providers, and diagnoses made by providers). Kaiser Permanente has the largest private-sector EHR
dataset in the U.S. and EHR data for Kaiser Permanente Southern California includes more than 900
million encounters from data inception though 2017. We selected data related only to hospital setting
encounters (100 million records) and their related diagnoses and procedures.

IN-DATABASE PROCESSING

Conventional Processing of data located within a RDBMS involves the SAS/ACCESS® engine generating
a SQL SELECT * statement that fetches all rows and columns from the table referenced and bringing
them into SAS where the processing occurs. With a large table; this results in substantial network latency
and can take much time. SAS offers In-Database Processing as a solution for this problem. In-Database
processing offers advantages over Conventional Processing as the SAS/ACCESS engine delegates more
processing to the RDBMS and fetches the minimum amount of data into SAS. In SAS 9.4, the following
BASE SAS Procedures are available for In-Database processing using the SAS/ACCESS engine with
Base SAS and Teradata: PROC FREQ, PROC MEANS, PROC REPORT, PROC SUMMARY, and PROC
TABULATE. Additional SAS STAT Procedures are available for In-Database Processing, and PROC
TRANSPOSE is available for In-Database Processing with the SAS In-Database Code Accelerator.

PROCEDURES: CONVENTIONAL AND IN-DATABASE

We compare the performance of PROC EXPAND, PROC FREQ, PROC MEANS, PROC SUMMARY,
PROC TABULATE, and PROC TRANSPOSE with Conventional Processing and two types of In-
Database Processing: the first using the PROC syntax with In-Database Processing enabled and the
second using Teradata SQL syntax with SAS/ACCESS explicit passthrough. For BASE SAS PROCs

2

where In-Database Processing is possible in SAS 9.4, we perform both Conventional and In-Database
Processing by editing the program OPTIONS.

Conventional: OPTIONS sqlgeneration=none;

In-Database: OPTIONS sqlgeneration=dbms;

PROC EXPAND

PROC EXPAND allows the programmer to convert time series data from one frequency or time step to
another (e.g. monthly to annual), to replace missing data with several interpolation schemes, to perform
certain rolling calculations, and to generate lagging or leading values of numerical data.

PROC EXPAND is not available in SAS 9.4 for In-Database processing, however, explicit passthrough
allows one to take advantage of Teradata’s massively parallel processing to replicate certain of PROC
EXPAND’s functionality. We compare calculating two moving averages using PROC EXPAND with
Conventional Processing and explicit passthrough In-Database Processing.

Our data has 20 columns including ones for: the number of procedures performed per encounter (px_n),
the number of diagnoses made per encounter (dx_n), the unique identifier for each encounter (util_id), a
datetime admission date (adate), and an admission year. We will make 6 month moving averages of dx_n
and px_n using data from 1980 to 2017. This is common analysis for a SAS programmer working
healthcare to perform as it can be useful in exploring patterns of data capture and in provider behavior.

The BASE SAS Conventional Processing syntax is a combination of a PROC SQL query that fetches the
data from Teradata (libname=td_work) and makes and monthly date and monthly means and the PROC
EXPAND procedure.

proc sql;

 create table dxpx1

 as select

 mdy(month(datepart(adate)),1,adyr) as dat format=mmddyy10.

 ,mean(dx_n) as dx_n

 ,mean(px_n) as px_n

 from td_work.hsp_util

 where adyr>1979

 group by 1 order by 1;

quit;

 proc expand DATA = dxpx1 OUT = dxpx;

 convert dx_n = ma_dx_n / METHOD = none TRANSFORMOUT = (cmovave 6);

 convert px_n = ma_px_n / METHOD = none TRANSFORMOUT = (cmovave 6);

run;

We next perform the same calculations using explicit passthrough to use In-Database Processing.

proc sql noerrorstop;

connect to teradata

 (user=&terauser password=&terapwd connection=global mode=TERADATA);

 execute

 (create multiset table td_work.dxpx as

 (select

 a.dat

 ,MAVG(a.dx_n,6,a.dat) as dx_n

 ,MAVG(a.px_n,6,a.dat) as px_n from

 (

 select

 (adyr-1900)*10000 +

 extract(month from adate) * 100 +

 1 (DATE) as dat

3

 ,average(dx_n) as dx_n

 ,average(px_n) as px_n

 from td_datamart.hsp_util

 where adyr>1979

 group by 1

) a

)

 with data no primary index ;

) by teradata;

disconnect from teradata;

quit;

data dxpx;

set dluser.dxpx;

run;

Like Conventional, In-Database Processing must first make monthly dates and monthly means; then it is
able to use MAVG() to generate the moving averages. Finally, the data are brought down to SAS using a
DATA step. A comparison of logs is interesting. The log for the Conventional Processing is:

NOTE: Table WORK.DXPX1 created, with 461 rows and 3 columns.

NOTE: PROCEDURE SQL used (Total process time):

 real time 4:03.96

 cpu time 4:22.50

NOTE: PROCEDURE EXPAND used (Total process time):

 real time 0.05 seconds

 cpu time 0.01 seconds

The SQL query brings down the entire table from Teradata and uses it to calculate the 461 rows of
monthly sums and takes just over four minutes: quite good performance for a reasonably large table. The
PROC EXPAND procedure takes less than a second to return results.

The log for the In-Database Processing is:

NOTE: PROCEDURE SQL used (Total process time):

 real time 2.18 seconds

 cpu time 0.00 seconds

NOTE: Teradata connection: TPT FastExport has read 461 row(s).

NOTE: The data set WORK.DXPX has 461 observations and 3 variables.

NOTE: DATA statement used (Total process time):

 real time 5.50 seconds

 cpu time 0.38 seconds

The initial Teradata SQL query takes a bit over 2 seconds and the DATASTEP brings down the resulting
table to SAS in a bit under 6 seconds. What took 4 and 22.51 second in Conventional Processing took
7.68 seconds in In-Database processing. While the time for Conventional Processing is not
unreasonable, the programmer can improve efficiency markedly using In-Database Processing even with
a dataset of around 100 million rows and 20 columns.

4

PROC FREQ

PROC FREQ computes descriptive statistics based on unique values in the data set and produces n-way
tabular reports. It is an essential procedure within BASE SAS used primarily for counting, displaying and
analyzing categorical type data.

These tools are used extensively by the programmer working in a healthcare setting, as for counting,
doing error checking of the data or categorizing data. It produces one-way to n-way frequency and cross
tabulation (contingency) tables. For two-way tables, PROC FREQ computes tests and measures of
association. For n-way tables, PROC FREQ does stratified analysis, computing statistics within, as well
as across, strata.

We compare performing a two-dimensional table between care setting type and care setting subtype to
calculate the frequencies, percentages, cumulative frequencies and cumulative percentages using the
built-in intuitive syntax present in PROC FREQ, which is already optimized in SAS 9.4 for In-Database
processing:

proc freq data= td_work.hsp_util;

table care_type * care_subtype / list;

run;

PROC FREQ will by default add several statistics to the table when we define two dimensions. We
choose to keep the default statistics here in the example.

We next perform the same calculations using explicit passthrough method:

proc sql;

connect to teradata (user=&terauser password=&terapwd connection=global

mode=TERADATA);

execute (create multiset table td_work.freq as

 (select

 care_type

 , care_subtype

 , count(*) as Frequency

 , count(*) * 100.00 / sum(count(*)) over () as Percentage

 , sum(count(*)) over (order by care_type, care_subtype

 rows unbounded preceding) as CumulativeFrequency

 , 100.00 * CumulativeFrequency / sum(count(*)) over ()

 as CumulativePercent

 from td_datamart.hsp_util

 group by care_type, care_subtype

)

 with data no primary index;

) by teradata;

disconnect from teradata;

quit;

data util_freq;

 set td_work.freq;

run;

A simple two-dimensional table is generated. Conventional Processing must download the data to SAS
then do the counting by care_type. The log for the Conventional Processing is:

NOTE: There were 53214875 observations read from the data set

TD_WORK.hsp_util

NOTE: PROCEDURE FREQ used (Total process time):

5

 real time 6:20.83

 cpu time 3:30.78

The same code, with In-Database processing enabled showed significant improvement for the same
procedure:

NOTE: PROCEDURE FREQ used (Total process time):

 real time 4.46 seconds

 cpu time 0.48 seconds

NOTE: SQL generation will be used to construct frequency and

crosstabulation tables.

In-database processing is evident from the log note regarding SQL generation. The SASTRACE option
setting allows the generated SQL query to be printed to the SAS log, as well. The generated SQL query
was passed to RDBMS for fetching data. And bring them back to SAS for processing.

Finally, Explicit pass through Teradata appeared to be similar as in-Database processing:

NOTE: PROCEDURE SQL used (Total process time):

 real time 4.76 seconds

 cpu time 0.09 seconds

NOTE: The data set WORK.UTIL_FREQ has 39 observations and 6 variables.

NOTE: DATA statement used (Total process time):

 real time 0.90 seconds

 cpu time 0.06 seconds

Enabling In-Database Procedures to delegate more of the processing to the Teradata Database by
generating more complex SQL and passing it to Teradata optimizes the PROC FREQ processing. More
work is done in the database and less data movement occurs. The SAS procedures can be modified to
dynamically generate SQL queries that reference Teradata SQL functions. This approach provides
performance improvements.

PROC MEANS AND SUMMARY

PROC MEANS and PROC SUMMARY offer a wide array of arithmetic functions like means and standard
deviations, quickly calculated by basic calculators. PROC MEANS is also useful for examining the
distribution of data, relying on orders and to yield medians and percentiles of numeric data.

We compare performing means, standard deviation, and percentile calculations on a length of stay
variable, marking how many hours patients are in the hospital (los_hrs) using the built-in intuitive syntax
present in PROC MEANS, which is already optimized in SAS 9.4 for In-Database processing (and the
same code run again with PROC SUMMARY instead of PROC MEANS).

We first calculate means and standard deviations.

proc means noprint

 data= td_work.hsp_util;

 var los_hrs;

 output out=mean_imp

 mean=mean_los

 stddev=sd_los;

run;

6

We then calculate statistics for interquartile range, median, and extreme outliers:

proc means noprint

 data= td_work.hsp_util;

 var los_hrs;

 output out=percentiles_imp

 min=min_los

 p25=p25_los

 median=median_los

 p75=p75_los

 max=max_los;

run;

As with PROC FREQ, this code can be run with Conventional and In-Database Processing. We do both.

We then perform the same calculations using In-Database Processing through explicit passthrough. First
we calculate means and standard deviations

proc sql;

connect to teradata (user=&terauser password=&terapwd connection=global

mode=TERADATA);

 create table mean_exp as

 select * from connection to teradata(

 select avg(los_hrs) as mean_los

 , stddev_samp(los_hrs) as sd_los

 from td_datamart.hsp_util

);

disconnect from teradata;

quit;

We then calculate statistics for interquartile range, median, and extreme outliers:

proc sql; connect to teradata (user=&terauser password=&terapwd

connection=global mode=TERADATA);

 create table percentiles_exp as

 select * from connection to teradata(

 select

 min(los_hrs) as min_los

 ,percentile_disc(0.25) within group (order by los_hrs) as p25_los

 ,percentile_disc(0.5) within group (order by los_hrs) as median_los

 ,percentile_disc(0.75) within group (order by los_hrs) as p75_los

 ,max(los_hrs) as max_los

 from td_datamart.hsp_util

);

disconnect from teradata;

quit;

Explicit passthrough also allows the programmer to access Teradata functions for these simple ranges,
such as AVG() for mean, and PERCENTILE_DISC() for percentiles. A simple 1-record results table is
generated in both the means and percentile tables.

Conventional Processing must download the data to SAS then calculate the means. The log for the
Conventional Processing is:

NOTE: The data set MEAN_IMP has 1 observations and 4 variables.

NOTE: PROCEDURE MEANS used (Total process time):

 real time 3:42.10

 cpu time 2:23.51

7

NOTE: The data set PERCENTILES_IMP has 1 observations and 7 variables

NOTE: PROCEDURE MEANS used (Total process time):

 real time 3:38.72

 cpu time 2:21.76

The same code, with In-Database processing enabled showed improvement only for the means and
standard deviation, percentiles was similar to Conventional Processing:

NOTE: PROCEDURE MEANS used (Total process time):

 real time 2.11 seconds

 cpu time 0.31 seconds

NOTE: The data set PERCENTILES_IMP has 1 observations and 7 variables

NOTE: PROCEDURE MEANS used (Total process time):

 real time 3:38.10

 cpu time 2:17.45

Explicit passthrough Teradata code appeared to be faster for both means and percentile situations,
however:

NOTE: Table MEAN_EXP created, with 1 rows and 2 columns.

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.73 seconds

 cpu time 0.07 seconds

NOTE: Table PERCENTILES_EXP created, with 1 rows and 5 columns.

NOTE: PROCEDURE SQL used (Total process time):

 real time 1:15.14

 cpu time 0.07 seconds

Results using PROC SUMMARY instead of PROC MEANS, in both Conventional and with In-Database
Processing environments, were the same.

PROC TABULATE

PROC TABULATE allows the programmer to display descriptive statistics in tabular format. It computes
many statistics that are computed by other procedures, such as MEANS, FREQ, and REPORT. It then
displays the results of these statistics in a table format. It is very useful for programmers in a healthcare
setting to generate reports, it can produce tables with more than two dimensions and allows, within each
dimension, multiple variables to be reported one after another hierarchically. TABULATE is also available
in SAS 9.4 for In-Database processing, however, an explicit SQL passthrough method is excessively
cumbersome to generate.

We compare average and maximum length of stay variables, marking how many hours patients are in the
hospital (los_hrs) by care sub type and admission year using PROC TABULATE with Conventional
Processing and In-Database Processing.

proc tabulate data=td_work.hsp_util;

 class adyr care_subtype;

 var los_hrs;

 keylabel N = ‘N’;

 tables

 adyr all = “Total” * f = comma10.,

 los_hrs * care_subtype * (N Mean Max) * f = comma10. /

8

 misstext=‘0’;

run;

The log for the Conventional Processing is:

NOTE: There were 53214875 observations read from the data set

DLUSER.hsp_util

NOTE: PROCEDURE TABULATE used (Total process time):

 real time 6:01.21

 cpu time 4:39.71

Input data is stored as a table or view in a database management system (DBMS), the PROC TABULATE
procedure can use in-database processing to perform most of its work within the database.

The log for the In-Database Processing is:

NOTE: SQL generation will be used to perform the initial summarization.

NOTE: PROCEDURE TABULATE used (Total process time):

 real time 3.19 seconds

 cpu time 1.45 seconds

The results return results in less than 5 seconds. It provides the advantages of faster processing and
reduced data transfer between the Teradata and SAS.

PROC TABULATE performs in-database processing by using SQL implicit pass-through. The procedure
generates SQL queries that are based on the classifications and the statistics that specify in the TABLE
statement. The Teradata executes these SQL queries to construct initial summary tables, which are then
transmitted to PROC TABULATE.

Explicit passthrough with Teradata SQL syntax is less attractive as it requires, when there are a large
number of categories to summarize (here our data have 39 categories and more than 30 years) a
cumbersome transpose of the data involving numerous UNION ALL joins or a complicated CROSS JOIN.
Syntax for a simpler transpose and its performance will be shown in the next section.

PROC TRANSPOSE

PROC TRANSPOSE allows the programmer to convert rows to columns and columns to rows (e.g.
observations to variables and variables to observations). PROC TRANSPOSE is not available in SAS 9.4
for In-Database processing, however, explicit passthrough allows one to transpose data in Teradata. We
compare transposing the variables: procedures performed per encounter (px_n) and the number of
diagnoses made per encounter (dx_n) using PROC TRANSPOSE with Conventional Processing and
explicit passthrough In-Database Processing.

The BASE SAS Conventional Processing syntax is PROC TRANSPOSE and fetches the entire table from
Teradata (libname=td_work) which is then transposed in SAS.

proc transpose

data=td_work.hsp_util

(keep= util_id dx_n px_n)

out=util_detail

(keep=util_id _label_ col1 rename=(_label_=util_detail

col1=counts));

by util_id;

run;

We next perform the same calculations using explicit passthrough.

9

proc sql noerrorstop;

connect to teradata

 (user=&terauser password=&terapwd connection=global mode=TERADATA);

 execute

 (create multiset table td_work.util_detail as

 (select

 a.util_id

 ,'dx_n' as util_detail

 ,a.dx_n as counts

 from td_datamart.hsp_util a

 union all

 select

 b.util_id

 ,'px_n' as util_detail

 ,b.px_n as counts

 from td_datamart.hsp_util b

)

 with data primary index(util_id);

) by teradata;

disconnect from teradata;

quit;

data util_detail;

 set tdwork.util_detail;

run;

Teradata SQL does not have a transpose function; however, it is relatively straightforward to transpose
columns using a combination of a SELECT query and a UNION ALL. A comparison of the logs shows a
stark contrast. The log for the Conventional Processing is:

NOTE: The data set WORK.UTIL_DETAIL has 106429750 observations and 3

variables.

NOTE: PROCEDURE TRANSPOSE used (Total process time):

 real time 14:47.71

 cpu time 8:55.98

The 3 columns needed from the table of 100 million rows are brought down to SAS using a DATASTEP
and then is transposed using PROC TRANSPOSE. It is quite time-consuming. The log for the In-
Database Processing is:

NOTE: PROCEDURE SQL used (Total process time):

 real time 8.91 seconds

 cpu time 0.00 seconds

NOTE: Teradata connection: TPT FastExport has read 106429750 row(s).

NOTE: The data set WORK.UTIL_DETAIL has 106429750 observations and 3

variables.

NOTE: DATA statement used (Total process time):

 real time 6:59.11

 cpu time 3:19.49

The SQL query returns results in less than 10 seconds, but the time to bring down the 100 million rows of
transposed data erodes the In-Database Processing advantage to some extent as it takes almost 7
minutes.

10

CONCLUSION

It is useful to compare the real and CPU times of the above Procedures as submitted Conventionally and
In-Database and to consider the In-Database Processing Times as a percentage of the Conventional
Processing times. These results are presented in tabular form below. While we were pleasantly surprised
by how quickly SAS Conventional Processing provided results from a reasonably-large sized Teradata
table, In-Database Processing times were generally much faster. In-Database using the SAS optimized
PROCs ranged, as a share of Convectional Processing times, from 100% to 1% percent. In-Database
using explicit passthrough ranged, as a share of Convectional Processing times, from 48% to 1% percent.
Clearly, substantial gains in efficiency can be had by leveraging In-Database processing.

PROC Conventional
Processing

In-Database
Processing

In-Database Processing as % of
Conventional

 Using PROC Using Passthrough Using PROC Using Passthrough

EXPAND 04:04.01 n/a 00:07.68 n/a 3%

FREQ 06:20.83 00:04.46 00:05.66 1% 1%

MEANS (Means) 03:42.10 00:02.11 00:00.73 1% 1%

MEANS (IQR) 03:38.72 03:38.10 01:15.14 100% 34%

TABULATE 06:01.21 00:03.19 n/a 1% n/a

TRANSPOSE 14:47.71 n/a 07:08.02 n/a 48%

REFERENCES

SAS Institute. 2017. SAS/ACCESS® 9.4 for Relational Databases: Reference. 9th ed. Cary, NC: SAS
Institute.

SAS Institute. 2017. SAS Analytical Products 13.2 Documentation. Cary, NC: SAS Institute.

SAS Institute. 2008. SAS In-Database Processing with Teradata: An Overview of Foundation Technology.
Cary, NC: SAS Institute.

ACKNOWLEDGMENTS

The authors would like to thanks Wansu Chen and Fagen Xie for the support and assistance.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Don McCarthy
Kaiser Permanente Department of Research and Evaluation
donald.p.mccarthy@kp.org

Mike Santema
Kaiser Permanente Department of Research and Evaluation
michael.l.santema@kp.org

Qing Yuan
Kaiser Permanente Department of Research and Evaluation
qing.yuan@kp.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:qing.yuan@kp.org

	2823-2018-eposter.pdf
	Using In-Database Technology to Boost the Efficiency of Data Analytics
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8

	2823-2018.pdf

