
How a Code-Checking Algorithm 
Can Prevent Errors

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.



How a Code-Checking Algorithm Can Prevent Errors
Thomas Hirsch

Magellan Health Inc

ABSTRACT

WHEN A COMPANY USES AN AUTOMATED PRODUCTION SYSTEM FOR REPORTING, THERE ARE ALWAYS RISKS OF 
HAVING RECURRING ERRORS DUE TO ISSUES WITH REPORTS BEING SUBMITTED INCORRECTLY. ONE WAY TO REDUCE 
THESE ERRORS IS TO UTILIZE A CODE CHECKING PROGRAM WHICH WILL ASSESS SEVERAL ASPECTS OF A PROGRAM 
BEFORE IT IS SCHEDULED, INCLUDING ITS COMPATIBILITY WITH THE PRODUCTION ENVIRONMENT, INCLUSION OF 
COMMENTS, AND NOTIFICATION OF SECURITY RISKS. IN THIS PAPER, I WILL BE DISCUSSING SOME OF THE METHODS 
THAT CAN BE INCLUDED IN A CODE CHECKING PROGRAM, AS WELL AS SOME METHODS TO IMPLEMENT THESE 
TECHNIQUES. THE FIRST AND MOST IMPORTANT WILL BE SIMULATING A RUN IN AN AUTOMATED PRODUCTION 
ENVIRONMENT. WE WILL THEN LOOK AT ANALYZING THE VOLUME AND COMPLETENESS OF COMMENTS IN THE CODE 
BEING TESTED. ALSO, WE WILL REVIEW METHODS TO HANDLE WARNINGS AND OTHER NON-CRITICAL ISSUES THAT 
COULD BE IDENTIFIED. FINALLY, WE WILL LOOK AT METHODS OF CHECKING FOR RISKY FIELDS BEING USED, INCLUDING 
PERSONAL OR FINANCIAL INFORMATION WHICH NEED TO HAVE A LIMITED DISTRIBUTION.

WRAPPER FILE

INTRODUCTION

options symbolgen;

%let myfilename=RunMe;

Filename filelist pipe "dir /b /s \\phobos\idg\CodeCheck\&myfilename.\*.sas";

Data progs;                                        

infile filelist truncover;

input path $100.;

filename = scan(path,-1,"\");

run; 

/*Code Checker Code*/

%include '\\phobos\idg\prod\code\TidalTest\CodeCheckerMacros.sas';e;

%let hdrfile= %str(\\phobos\idg\prod\code\TidalTest\StandardHeaderTemplate.sas);

%macro convert(path, filename, checkstep);

%if &checkstep = 1 %then %do;

%let inpgm = &path.;

%CC_Initialize;

%ParseTemplate(hdrfile=&hdrfile);

%ExamineSASPgm(inpgm=&inpgm,outds=Results);

%CheckHeader(inds=Results);

%CheckOther(inds=Results);

%CheckRisk(inds=Results);

%CheckComments(inds=Results);

%ReportOut;

%end;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Production errors in report services are a drag on your company, costing time, effort, and sometimes even money 
through fees or penalties. Every company has to have a system in place to ensure that bad code doesn’t make it into 
production and cause these problems. When used in conjunction with good coding standards and proper peer review, 
a code checking algorythm can further reduce the chance that mistakes can affect standard business procedures. While 
a code checker can be remarkably flexible, this paper will focus on its ability to test a program’s compatibility with the 
company’s automation system, to review the completeness of comments, and ensure high-risk variables are reviewed 
before they can be seen by the wrong people. After reading this, you should be able to take the provided framework, 
and adjust it to your own systems and the needs of your industry.

A Code checker is an automated program that will review code set up for review and identify key points for review 
before the code is put in production. Generally, you will use your company automation system to run the code checker, 
either on a set frequency, or checking for when a code has been made available for review, depending on the limits of 
the system. Once it is active, the code below is used to identify and pull in whatever code is being reviewed by the 
checker:

WHAT IS A CODE CHECKER



How a Code-Checking Algorithm Can Prevent Errors
Thomas Hirsch

Magellan Health Inc

WRAPPER (Continued)

%if &checkstep = 2 %then %do;

options noxwait;

x start/w "" "D:\Program Files\SASHome\SASFoundation\9.4\sas.exe" -sysin &path. -log 
"\\phobos\idg\CodeCheck\Completed" -config "\\phobos\idg\prod\code\TidalTest\sasv9_test.cfg" -print 
"\\phobos\idg\CodeCheck\Completed" -work "E:\SAS Temporary Files\tidaltest";

x move "&path." "\\phobos\idg\CodeCheck\Completed\&filename.";

data _null_;

logname = tranwrd("&filename.",'sas','log');

call symput("logname",logname);

run;

/*Check log for errors and send completion emails for the job*/

data checklog;

infile "\\phobos\idg\CodeCheck\Completed\&logname." truncover;

input rows $5000.;

ROWS = TRANSLATE(ROWS,' ','"', " ","'");

IF SUBSTR(ROWS,1,5)='ERROR:' OR SUBSTR(ROWS,1,7)='WARNING:'

OR INDEX(UPCASE(ROWS),"UNINITIALIZED") > 0

OR INDEX(UPCASE(ROWS),"_ERROR_") > 0

OR INDEX(UPCASE(ROWS),"REPEATS OF BY VALUES") > 0

OR INDEX(UPCASE(ROWS),"EXTRANEOUS") > 0

OR INDEX(UPCASE(ROWS),"INVALID DATA FOR") > 0

OR INDEX(UPCASE(ROWS),"SAS SYSTEM STOPPED PROCESSING") > 0

OR INDEX(UPCASE(ROWS),"INVALID ARGUMENT") > 0

OR INDEX(UPCASE(ROWS),"ODS PDF PRINTED NO OUTPUT") THEN OUTPUT;

run;

filename mymail email to = ("TPHirsch@magellanhealth.com");

subject = "&filename completed test run";

data _null_;

file mymail;

set checklog;

if _n_ = 1 then put "Log is accessible at \\phobos\idg\CodeCheck\Completed\&logname."

// " If this meets peer review approval, please attach the log to the JIRA ticket."

// "File &filename generated the following warnings and errors:" //;

if _n_ ge 1 then put @4 rows //;

run;

%end;

%mend; 

/*Step one - Code Check*/;

data _null_; 

set progs; 

call execute('%nrstr(%convert('||path||','||filename||',1))'); 

run;

/*Step two - Code Execution*/;

data _null_; 

set progs; 

call execute('%nrstr(%convert('||path||','||filename||',2))'); 

run;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.



How a Code-Checking Algorithm Can Prevent Errors
Thomas Hirsch

Magellan Health Inc

RUNNING THE CODE IN THE SYSTEM

Probably the most important step to prevent errors is to make sure that the program runs in the production 
environment. If, as was recommended in the step above, you have set up a recurring process in the production 
environment for this code checker, it is a simple process from here to run the file. You can manually start a SAS job 
which will run the code in question, and utilize the same rules as your production environment. 

Let’s break down the elements of this code. 

• We are starting a sas process, using the SAS program, which should be updated to your environment.

• The Sysin command tells the SAS session to immediately run the code in question when it opens

• Log, config, print, and work define where we want these test logs and elements to be saved. Config in particular 
should be a file that is updated to ensure that this is reflective of production rules.

RUNNING ERROR CHECK

data _null_;

logname = tranwrd("&filename.",'sas','log');

call symput("logname",logname);

run;

/*Check log for errors and send completion emails for the job*/

data checklog;

infile “C:\CodeCheck\Completed\&logname." truncover;

input rows $5000.;

ROWS = TRANSLATE(ROWS,' ','"', " ","'");

IF SUBSTR(ROWS,1,5)='ERROR:' OR SUBSTR(ROWS,1,7)='WARNING:'

OR INDEX(UPCASE(ROWS),"UNINITIALIZED") > 0

OR INDEX(UPCASE(ROWS),"_ERROR_") > 0

OR INDEX(UPCASE(ROWS),"REPEATS OF BY VALUES") > 0

OR INDEX(UPCASE(ROWS),"EXTRANEOUS") > 0

OR INDEX(UPCASE(ROWS),"INVALID DATA FOR") > 0

OR INDEX(UPCASE(ROWS),"SAS SYSTEM STOPPED PROCESSING") > 0

OR INDEX(UPCASE(ROWS),"INVALID ARGUMENT") > 0

OR INDEX(UPCASE(ROWS),"ODS PDF PRINTED NO OUTPUT") THEN OUTPUT;

run; 

x start/w "" "C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" 

-sysin &path. 

-log "C:\CodeCheck\Completed" 

-config "C:\code\TidalTest\sasv9_test.cfg" 

-print "C:\CodeCheck\Completed" 

-work "C:\SAS Temporary Files\tidaltest"; x start/w "" "C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" 

-sysin &path. 

-log "C:\CodeCheck\Completed" 

-config "C:\code\TidalTest\sasv9_test.cfg" 

-print "C:\CodeCheck\Completed" 

-work "C:\SAS Temporary Files\tidaltest";

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

RUNNING TEST CODE

ERROR CHECK CODE

After running the above code, you can add additional elements as needed. One reccomendation is the below code, 
which can be used to parse the log for errors, warnings, and other elements that should be noted by the developer.



How a Code-Checking Algorithm Can Prevent Errors
Thomas Hirsch

Magellan Health Inc

REVIEWING COMMENTS

It is important for code to have sufficient documentation, especially when you have a large team that may have to take 
on one another’s work at a moment’s notice. There are a few ways that can be monitored. Ones we will be looking at 
below are header checks and comment density. 

Most quality code will have a header at the top. This will include basic information like code name, frequency, source 
tables, etc. The below code will scan the header portion of the document, and check for key items, and verify if they 
have been filled out.

In addition to checking the header, we can also review each step of code and determine how much of it has 
commenting. While this is by no means a fool-proof check, it can at the very least serve as a warning if the developer 
sees that a large number of their statements are lacking comments

HEADER CODE (Continued)

HEADER ANALYSIS CODE

ErrorType = 'CHKHEADER';

*** Load Keywords from Standard Header Template ***;

do i = 1 to 100;

set Keywords end=last;

Keyword{i} = Key;

aType{i} = Type;

aLen{i} = Len;

if last then do;

ikey = i;

i = 101;

end;

end;

*** Compress Statement ***;

Statement = compress(Statement,'*','s');

*** Length Validation ***;

if length(statement) >= 4000 then do;

ErrorMsg = 'ERROR: Standard Header Too Long';

ERROR ErrorMsg;

rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');');

stop;

end;

WorkStatement = Statement;

LenStatement = length(Statement);

%let hdrfile= %str(C:\prod\code\TidalTest\StandardHeaderTemplate.sas);

data test;  

set results;

if _n_ > 1 then stop;

length ErrorMsg $200;

array Keyword {20} $ 50;

array aType {20} $ 1;

array aLen {20} 8;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

HEADER FILE ANALYSIS

COMMENT COUNT

file://///phobos/idg/prod/code/TidalTest/StandardHeaderTemplate.sas


How a Code-Checking Algorithm Can Prevent Errors
Thomas Hirsch

Magellan Health Inc

HEADER CODE (Continued)

do i = 1 to ikey;

CKW = keyword{i};

IsCKWFound = index(WorkStatement,trim(CKW));

LenCKW = length(CKW);

if i<ikey then do; NKW = keyword{i+1}; end;

else do; NKW = 'HIDDENKEYWORD:'; end;

IsNKWFound = index(WorkStatement,trim(NKW));

IsNKWFound = ifn(IsNKWFound = 0,LenStatement,IsNKWFound);

if IsCKWFound > 0 then do;

NKWExpPos = IsCKWFound+LenCKW+aLen{i};

if NKWExpPos > isNKWFound then do;

ErrorMsg = 

'WARNING: No Value Found for Keyword: '|| Keyword{i};

ERROR ErrorMsg;

rc=dosubl(

'%InsertError('||ErrorType||', '||ErrorMsg||');');

end;

end;

else do;

ErrorMsg = 'WARNING: Missing Keyword in Header: '|| Keyword{i};

ERROR ErrorMsg;

rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');');

end;

end;

run;

data _null_;

set &inds end=eof;

retain CommentCount StepCount 0;

ErrorType = 'INFO';

if _n_ = 1 then do;

PrevStepNum = StepNum;

PrevStepName = StepName;

end;

else do;

PrevStepNum = lag(StepNum);

PrevStepName = lag(StepName);

** Increment StepCount only for DATA and PROC **;

if PrevStepNum ne StepNum

and (StepName = 'DATA' or StepName = 'PROC') 

then StepCount = StepCount + 1;

** Increment Comment Count **;

if PrevStepName ne StepName

and PrevStepName = 'COMMENT' 

then CommentCount = CommentCount + 1;

if eof then do;

ErrorMsg = 'INFO: 9002 '||compbl(put(CommentCount,5.)||'out of '||put(StepCount,5.)||' steps had comments');

putlog ErrorMsg;

rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');');

end;

end;

run;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

COMMENT COUNT CODE



How a Code-Checking Algorithm Can Prevent Errors
Thomas Hirsch

Magellan Health Inc

CHECKING FOR HIGH RISK FIELDS

For every company, there are certain elements that are risky to release in reports. Social Security Numbers, Credit Card 
numbers, or any other personal information can be a risk on any report. While there are always exceptions that will 
need this information, you can eliminate a lot of risk by having an automated system that will let you know when these 
high-risk elements are included in release code.

HEADER CODE (Continued)

*** New Financial Fields;

if upcase(StepName) ne 'COMMENT' and 

(index(upcase(Statement),'O_TOTAL_AMT_PAID') > 0
or index(upcase(Statement),'O_DISPENSE_FEE_PAID_AMT') > 0

or index(upcase(Statement),'O_INGRED_COST_PAID_AMT')>0) then do;

if index(upcase(Statement),'O_TOTAL_AMT_PAID') > 0 then

ErrorMsg = 'WARNING: A2 Using Financial Fields with 

Internal Data: O_TOTAL_AMT_PAID, replace 

TOTAL_CLIENT_AMT_BILLED';

if index(upcase(Statement),'O_DISPENSE_FEE_PAID_AMT') > 0 then

ErrorMsg = 'WARNING: A2 Using Financial Fields with 

Internal Data: O_DISPENSE_FEE_PAID_AMT, replace with 

REPRICE_DISP_FEE_AMT';

if index(upcase(Statement),'O_INGRED_COST_PAID_AMT') > 0 then

ErrorMsg = 'WARNING: A2 Using Financial Fields with

Internal Data: O_INGRED_COST_PAID_AMT, replace with 

REPRICE_INGRED_AMT';

ERROR ErrorMsg;

rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');');

end;

run;

data testout;  

set results;

length ErrorMsg $200;

ErrorType = 'DATA RISK';

*** Compress Statement ***;

Statement = compress(compress(statement,,'kw'));

*** COB Sum Fix;

if upcase(StepName) ne 'COMMENT' and 

index(upcase(Statement),'I_OTHER_PAYER_AMT') > 0 then do;

if index(upcase(Statement),'sum(I_OTHER_PAYER_AMT)') > 0 then do; end;

else do;

ErrorMsg = 'ERROR: A1 COB Other 

Payer included without COB Sum Fix';

ERROR ErrorMsg;

rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');'

);

end;

end;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

FIELD ANALYSIS CODE



How a Code-Checking Algorithm Can Prevent Errors
Thomas Hirsch

Magellan Health Inc

SAMPLE EMAILS

CONCLUSIONS

A Code Checker can be a way to improve productivity and save time with errors and production issues. While it is 
important to ensure that you have customized the system to your own situation, this framework is flexible enough that 
it can be a boon to whatever your environment looks like.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.



SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.



1 

Paper 2798-2018 

How a Code-Checking Algorithm Can Prevent Errors 

Thomas Hirsch, Magellan Health Inc. 

ABSTRACT  

When a company uses an automated production system for reporting, there are always risks of having 
recurring errors due to issues with reports being submitted incorrectly. One way to reduce these errors is 
to utilize a code checking program which will assess several aspects of a program before it is scheduled, 
including its compatibility with the production environment, inclusion of comments, and notification of 
security risks. In this paper, I will be discussing some of the methods that can be included in a code 
checking program, as well as some methods to implement these techniques. The first and most important 
will be simulating a run in an automated production environment. We will then look at analyzing the 
volume and completeness of comments in the code being tested. Also, we will review methods to handle 
warnings and other non-critical issues that could be identified. Finally, we will look at methods of checking 
for risky fields being used, including personal or financial Information which need to have a limited 
distribution. 

INTRODUCTION  

Production errors in report services are a drag on your company, costing time, effort, and sometimes 
even money through fees or penalties. Every company has to have a system in place to ensure that bad 
code doesn’t make it into production and cause these problems. When used in conjunction with good 
coding standards and proper peer review, a code checking algorythm can further reduce the chance that 
mistakes can affect standard business procedures. While a code checker can be remarkably flexible, this 
paper will focus on its ability to test a program’s compatibility with the company’s automation system, to 
review the completeness of comments, and ensure high-risk variables are reviewed before they can be 
seen by the wrong people. After reading this, you should be able to take the provided framework, and 
adjust it to your own systems and the needs of your industry. 

WHAT IS A CODE CHECKER, AND HOW DOES IT WORK? 

A Code checker is an automated program that will review code set up for review and identify key points 
for review before the code is put in production. Generally, you will use your company automation system 
to run the code checker, either on a set frequency, or checking for when a code has been made available 
for review, depending on the limits of the system. Once it is active, the code below is used to identify and 
pull in whatever code is being reviewed by the checker: 

 

%macro setfilename(); 

%let myfilename=RunMe; 

 

Filename filelist pipe "dir /b /s C:\&myfilename.\*.sas"; 

 

Data progs;                                         

 infile filelist truncover; 

 input path $100.; 

 filename = scan(path,-1,"\"); 

run;  

%mend; 

 

%setfilename(); 

 

/*Code Checker Code*/ 

%include 'C:\TidalTest\CodeCheckerMacros.sas'; 

 



2 

After the checker has identified the code being reviewed, it will serve as a wrapper file, pulling in whatever 
macros have been identified by your team as critical for analysis. Some of these macros will be discussed 
in later sections. 

The final step for the code checker will be to provide the results of the check. This can be done through 
an automated e-mail. For our team, we send this message team-wide, so the review process can be 
collaborative as needed. See below for a sample of the output code we have used: 

filename mymail email to = ("<email_address_here>"); 

subject = "&filename completed test run"; 

 

data _null_; 

file mymail; 

set checklog; 

 

put "Log is accessible at C:\CodeCheck\Completed\&logname." 

 // " If this meets peer review approval, please attach the log to 

the JIRA ticket." 

 // "File &filename generated the following warnings and errors:" 

//; 

 

run; 

 

MACROS TO IDENTIFY CODING RISKS 

While the code checker is active, you can use different macros to identify key potential problems in code 
scheduled for production. Below we will provide some common and effective macros that can be used or 
modified as needed. Below is some sample code for integrating these macros into the overall code 
checker: 

%let myfilename=RunMe; 

 

%let inpgm = &path.; 

 %CC_Initialize; 

 %ParseTemplate(hdrfile=&hdrfile); 

 %ExamineSASPgm(inpgm=&inpgm,outds=Results); 

 

 %CheckHeader(inds=Results); 

 %CheckOther(inds=Results); 

 %CheckRisk(inds=Results); 

 %CheckComments(inds=Results); 

 %ReportOut; 

 

In the above sample, path is the file location, while the first three macros help to break out the code into 
segments. They will be included in the appendix for details. The remaining macros are the individual 
elements that can be added as needed to provide additional checks on code to be published. 

RUNNING THE CODE IN THE AUTOMATED SYSTEM 

Probably the most important step to prevent errors is to make sure that the program runs in the 
production environment. If, as was recommended in the step above, you have set up a recurring process 
in the production environment for this code checker, it is a simple process from here to run the file. You 
can manually start a SAS job which will run the code in question, and utilize the same rules as your 
production environment. We will use the code below as an example: 

x start/w "" "C:\Program Files\SASHome\SASFoundation\9.4\sas.exe"  

-sysin &path.  

-log "C:\CodeCheck\Completed"  



3 

-config "C:\code\TidalTest\sasv9_test.cfg"  

-print "C:\CodeCheck\Completed"  

-work "C:\SAS Temporary Files\tidaltest"; 

 

Let’s break down the elements of this code.  

 We are starting a sas process, using the SAS program, which should be updated to your 
environment. 

 The Sysin command tells the SAS session to immediately run the code in question when it opens 

 Log, config, print, and work define where we want these test logs and elements to be saved. 
Config in particular should be a file that is updated to ensure that this is reflective of production 
rules. 

After running the above code, you can add additional elements as needed. One reccomendation is the 
below code, which can be used to parse the log for errors, warnings, and other elements that should be 
noted by the developer: 

data _null_; 

logname = tranwrd("&filename.",'sas','log'); 

call symput("logname",logname); 

run; 

 

/*Check log for errors and send completion emails for the job*/ 

data checklog; 

infile “C:\CodeCheck\Completed\&logname." truncover; 

input rows $5000.; 

ROWS = TRANSLATE(ROWS,' ','"', " ","'"); 

IF SUBSTR(ROWS,1,5)='ERROR:' OR SUBSTR(ROWS,1,7)='WARNING:' 

OR INDEX(UPCASE(ROWS),"UNINITIALIZED") > 0 

OR INDEX(UPCASE(ROWS),"_ERROR_") > 0 

OR INDEX(UPCASE(ROWS),"REPEATS OF BY VALUES") > 0 

OR INDEX(UPCASE(ROWS),"EXTRANEOUS") > 0 

OR INDEX(UPCASE(ROWS),"INVALID DATA FOR") > 0 

OR INDEX(UPCASE(ROWS),"SAS SYSTEM STOPPED PROCESSING") > 0 

OR INDEX(UPCASE(ROWS),"INVALID ARGUMENT") > 0 

OR INDEX(UPCASE(ROWS),"ODS PDF PRINTED NO OUTPUT") THEN OUTPUT; 

run;  

 

The final element I would recommend in this portion is to have its own e-mail separate from the other 
elements, since the log will likely have its own issues which should be viewed seperately from the other 
warnings: 
 

filename mymail email to = ("<email_address_here>"); 

subject = "&filename completed test run"; 

 

data _null_; 

file mymail; 

set checklog; 

 

put @4 rows //; 

 

run; 

 

REVIEWING COMMENTS WITHIN CODE FOR COMPLETENESS 



4 

It is important for code to have sufficient documentation, especially when you have a large team that may 
have to take on one another’s work at a moment’s notice. There are a few ways that can be monitored. 
Ones we will be looking at below are header checks and comment density.  

Assessing Header Quality 

Most quality code will have a header at the top. This will include basic information like code name, 
frequency, source tables, etc. The below code will scan the header portion of the document, and check 
for key items, and verify if they have been filled out: 

 

%let hdrfile = %str(C:\prod\code\TidalTest\StandardHeaderTemplate.sas); 

data test;   

 

 set results; 

 

 if _n_ > 1 then stop; 

 

 length ErrorMsg $200; 

 

 array Keyword {20} $ 50; 

 array aType {20} $ 1; 

 array aLen {20} 8; 

 

 retain ikey 1; 

 

 ErrorType = 'CHKHEADER'; 

 

 *** Load Keywords from Standard Header Template ***; 

 do i = 1 to 100; 

  set Keywords end=last; 

  Keyword{i}  = Key; 

  aType{i}  = Type; 

  aLen{i}  = Len; 

  if last then do; 

   ikey = i; 

   i = 101; 

  end; 

 end; 

 

 *** Compress Statement ***; 

 Statement = compress(Statement,'*','s'); 

 

 *** Length Validation ***; 

 if length(statement) >= 4000 then do; 

  ErrorMsg = 'ERROR: Standard Header Too Long'; 

  ERROR ErrorMsg; 

  rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');'); 

  stop; 

 end; 

 

 WorkStatement = Statement; 

 LenStatement = length(Statement); 

 

 do i = 1 to ikey; 

 

  CKW = keyword{i}; 

  IsCKWFound  = index(WorkStatement,trim(CKW)); 

file://///phobos/idg/prod/code/TidalTest/StandardHeaderTemplate.sas


5 

  LenCKW = length(CKW); 

 

  if i<ikey then do; 

   NKW  = keyword{i+1}; 

  end; 

  else do; 

   NKW = 'HIDDENKEYWORD:'; 

  end; 

 

  IsNKWFound = index(WorkStatement,trim(NKW)); 

  IsNKWFound = ifn(IsNKWFound = 0,LenStatement,IsNKWFound); 

     

  if IsCKWFound > 0 then do; 

     NKWExpPos = IsCKWFound+LenCKW+aLen{i}; 

     if NKWExpPos > isNKWFound then do; 

   ErrorMsg =  

'WARNING: No Value Found for Keyword: '|| Keyword{i}; 

   ERROR ErrorMsg; 

   rc=dosubl( 

'%InsertError('||ErrorType||', '||ErrorMsg||');'); 

     end; 

  end; 

  else do; 

    ErrorMsg = 'WARNING: Missing Keyword in Header: '|| Keyword{i}; 

    ERROR ErrorMsg; 

    rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');'); 

  end; 

 end; 

 run; 

 

Counting Code Included for Each Step 

In addition to checking the header, we can also review each step of code and determine how much of it 
has commenting. While this is by no means a fool-proof check, it can at the very least serve as a warning 
if the developer sees that a large number of their statements are lacking comments: 

 data _null_; 

 set &inds end=eof; 

 

 retain CommentCount StepCount 0; 

 

 ErrorType = 'INFO'; 

 

 if _n_ = 1 then do; 

  PrevStepNum = StepNum; 

  PrevStepName = StepName; 

 end; 

 else do; 

  PrevStepNum = lag(StepNum); 

  PrevStepName = lag(StepName); 

 

     

  ** Increment StepCount only for DATA and PROC **; 

  if   PrevStepNum ne StepNum  

   and (StepName = 'DATA' or StepName = 'PROC')  

    then StepCount = StepCount + 1; 

 



6 

  ** Increment Comment Count **; 

  if   PrevStepName ne StepName  

   and PrevStepName = 'COMMENT'  

    then CommentCount = CommentCount + 1; 

 

  if eof then do; 

ErrorMsg = 'INFO: 9002 '||compbl(put(CommentCount,5.)||' out 

of '||put(StepCount,5.)||' steps had comments'); 

     putlog ErrorMsg; 

     rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');'); 

  end; 

 end; 

run; 

CHECKING FOR HIGH-RISK FIELDS 

For every company, there are certain elements that are risky to release in reports. Social Security 
Numbers, Credit Card numbers, or any other personal information can be a risk on any report. While 
there are always exceptions that will need this information, you can eliminate a lot of risk by having an 
automated system that will let you know when these high-risk elements are included in release code. 
data testout;   

 set results; 

 

 length ErrorMsg $200; 

 

 ErrorType = 'DATA RISK'; 

 

 *** Compress Statement ***; 

 Statement = compress(compress(statement,,'kw')); 

 

 *** COB Sum Fix; 

if upcase(StepName) ne 'COMMENT' and  

index(upcase(Statement),'I_OTHER_PAYER_AMT') > 0 then do; 

if index(upcase(Statement),'sum(I_OTHER_PAYER_AMT)') > 0 then do; 

end; 

  else do; 

   ErrorMsg = 'ERROR: A1 COB Other  

Payer included without COB Sum Fix'; 

   ERROR ErrorMsg; 

   rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');' 

); 

  end; 

 end; 

 



7 

 *** New Financial Fields; 

 if upcase(StepName) ne 'COMMENT' and  

 (index(upcase(Statement),'O_TOTAL_AMT_PAID') > 0    

    or index(upcase(Statement),'O_DISPENSE_FEE_PAID_AMT') > 0 

    or index(upcase(Statement),'O_INGRED_COST_PAID_AMT')>0) then do; 

  if index(upcase(Statement),'O_TOTAL_AMT_PAID') > 0 then 

   ErrorMsg = 'WARNING: A2 Using Financial Fields with  

Internal Data: O_TOTAL_AMT_PAID, replace  

TOTAL_CLIENT_AMT_BILLED'; 

  if index(upcase(Statement),'O_DISPENSE_FEE_PAID_AMT') > 0 then 

   ErrorMsg = 'WARNING: A2 Using Financial Fields with  

Internal Data: O_DISPENSE_FEE_PAID_AMT, replace with  

REPRICE_DISP_FEE_AMT'; 

  if index(upcase(Statement),'O_INGRED_COST_PAID_AMT') > 0 then 

   ErrorMsg = 'WARNING: A2 Using Financial Fields with 

Internal Data: O_INGRED_COST_PAID_AMT, replace with  

REPRICE_INGRED_AMT'; 

  ERROR ErrorMsg; 

  rc=dosubl('%InsertError('||ErrorType||', '||ErrorMsg||');'); 

 end; 

run; 

CONCLUSION 

A Code Checker can be a way to improve productivity and save time with errors and production issues. 
While it is important to ensure that you have customized the system to your own situation, this framework 
is flexible enough that it can be a boon to whatever your environment looks like. 

APPENDIX 

Macros used in standard practices: 

CC_Initialize 
** Delete Error Dataset if exists **; 

%if %sysfunc(exist(Error)) ne 0 %then %do; 

 proc datasets noprint; delete Error; run; 

 %put *** Error Dataset Deleted ***; 

%end; 

 

** Load Steps **; 

proc sql noprint; 

 create table StepName as 

 ( select * 

  from Steps 

 ); 

quit; 

%let nStep = &sqlobs; 



8 

%let CC_Initialize = 1; 

 
ParseTemplate 

%if &hdrfile = %str() %then %do; 

 %put ERROR: Standar Header Template was not specified; 

 %goto MacroEnd; 

%end; 

 

%if %sysfunc(fileexist(&hdrfile)) %then %do; 

 filename hdrfile "&hdrfile"; 

%end; 

%else %do; 

 %put ERROR: Standard Header Template does not exist; 

 %goto MacroEnd; 

%end; 

 

data Keywords(keep=Key Type Len);   

 

 length statement $4096; 

 length textn $200; 

 

 array Keyword {100} $ 50; 

 array aType {100} $ 1; 

 array aLen {100} 8; 

 

 retain statement; 

 retain ikey 1; 

 retain Keyword; 

 

 IsComplete = 0; 

 

 infile hdrfile truncover filename = tmp end=eof;  

* reading of the SAS code as a text file; 

 input textn $char201.;  

* the whole line is treated as one character variable;  

 

 textn = compress(textn,,'s'); 

 

 if textn = '' then delete; 

 

 IsColonFound = index(textn,':'); 

 if IsColonFound > 0 then do; 

  Keyword{ikey} = compress(substr(textn,1,IsColonFound)); 

  if index(textn,':N/A') then do; 

   aType{ikey} = 'O';  

   aLen{ikey} = 0; 

  end; 

  else do; 

   aType{ikey} = 'M'; 

   aLen{ikey} = length(compress(textn,'?','K')); 

  end; 

 

  Key = Keyword{ikey}; 

  Type = aType{ikey}; 

  Len = aLen{ikey}; 

  output Keywords; 

 



9 

  ikey = ikey+1; 

 end; 

 

 if length(statement) >= 3896 then do; 

  putlog 'ERROR: Standard Header Too Long'; 

  stop; 

 end; 

 

 endpos = index(textn,';');  

 

 if endpos = 0 then do; 

  statement = cats(statement,textn); 

 end; 

 else do; 

  statement = cats(statement,substr(textn,1,endpos)); 

  IsComplete = 1; 

 end; 

 

 if IsComplete then do; 

  stop; 

 end; 

run; 

 

ExamineSASPgm 
%if &CC_Initialize ne 1 %then %do; 

 %put ERROR: Please include/run CodeChecker Config process; 

 %goto MacroEnd; 

%end; 

 

%if &inpgm = %str() %then %do; 

 %put ERROR: Input Program Name not found; 

 %goto MacroEnd; 

%end; 

 

%if &outds = %str() %then %do; 

 %put ERROR: Output Dataset not found - Defaulted to Statements; 

 %let outds = Statements; 

%end; 

 

%if %sysfunc(fileexist(&inpgm)) %then %do; 

 filename myfiles "&inpgm"; 

%end; 

%else %do; 

 %put ERROR: Input Program does not exist; 

 %goto MacroEnd; 

%end; 

 

%let lg= 200; *declare the length of each input line; 

 

/* Identifies Steps and Statements */ 

DATA  results(keep=StepName StepNum Statement StmtNum);   

 

 *length environment $4 ffolder $15 tmp fname $80; 

 length statement $4096; 

 length textn $&lg.; * defining the length of the new string; 

 length CurrStep $30; 

 



10 

 array Step {&nStep} $ 30  Step1 - Step%eval(&nStep); 

 

 infile myfiles truncover filename = tmp end=eof;  

* reading of the SAS code as a text file; 

 

 input textn $char%eval(&lg+1).;  

* the whole line is treated as one character variable;  

 

 textn = compress(textn,,'c'); 

 

 * Initialize all flags; 

 if _n_ = 1 then do; 

  SQuote   = 0; 

  DQuote   = 0; 

  SComment  = 0; 

  DComment  = 0; 

  Statement  = ''; 

  CurrStep  = ''; 

  StepNum  = 0; 

  StmtNum  = 0; 

  LineNo = 0; 

 end; 

 

 LineNo = LineNo + 1; 

 

 * Flags that carry informatio across lines need to be retained; 

 retain Statement SQuote DQuote SComment DComment

 CurrStep StepNum StmtNum LineNo; 

 

 * Initialize counters for every line; 

 i = 1; 

 endpos = 0; 

 

 * Load StepNames; 

 do i = 1 to &nStep; 

  set StepName point=i; 

  Step{i} = StepStart; 

  *put Step{i}; 

 end; 

 

 /* Parse thru the input line and write Statements*/ 

 i = 0; 

 do while (i < length(textn)); 

 

  i = i+1; 

 

  OneChar = substr(textn,i,1); 

  TwoChar = substr(textn,i,2); 

 

*put OneChar '/' TwoChar '//' SComment '/' DComment '//' SQuote '/' DQuote; 

 

 if SComment = 0 and DComment = 0 then do; 

  if OneChar= "'" then if SQuote= 0 then SQuote= 1; else SQuote= 0; 

  if OneChar= '"' then if DQuote= 0 then DQuote= 1; else DQuote= 0; 

 end; 

 

if OneChar = '*' and TwoChar ne '*/' and SQuote = 0 and DQuote = 0 and  



11 

SComment = 0 then SComment = 1; 

 if OneChar = ';' and SComment = 1 then SComment = 0; 

 

 if DComment = 0 then if TwoChar = "/*"  

then do; DComment = 1; i=i+1; end; 

 if DComment = 1 then if TwoChar = '*/'  

then do; DComment = 0; i=i+1; end; 

 

 if SComment = 0 and DComment = 0 and SQuote = 0 and DQuote = 0 then do; 

  if ( OneChar = ';' or 

    TwoChar = '*/'  ) 

  then do; 

   endpos = i; 

   * Write Out Statement; 

   StmtNum = StmtNum + 1; 

   statement = cats(statement,substr(textn,1,i),'\n'); 

   *put Statement; 

   * Examine the Statement to identify steps; 

   FirstWord = upcase(scan(statement,1)); 

   StepName = CurrStep; 

   put FirstWord; 

   if FirstWord = 'RUN' or FirstWord = 'QUIT' then do; 

    StepNum = StepNum + 1; 

    StepName = CurrStep; 

    CurrStep = ''; 

   end; 

   else if substr(trim(statement),1,1) = '%'  

   and FirstWord = 'INCLUDE' then do; 

    StepNum = StepNum + 1; 

    StepName = 'INCLUDE'; 

    CurrStep = ''; 

   end; 

   else if substr(trim(statement),1,1) = '%' then do; 

    StepNum = StepNum + 1; 

    StepName = 'MACRO'; 

    CurrStep = ''; 

   end; 

   else if substr(statement,1,1) = '*' or  

substr(statement,1,2) = '/*' then do; 

    if CurrStep = 'DATA' or CurrStep = 'PROC' then do; 

     StepNum = StepNum + 1; 

     StepName = 'DATACOMMENT'; 

    end; 

    else do; 

     StepNum = StepNum + 1; 

     StepName = 'COMMENT'; 

     CurrStep = ''; 

    end; 

   end; 

   else do; 

    do s = 1 to &nStep; 

    if index(FirstWord,scan(Step{s},1)) > 0  

   and CurrStep = '' then do; 

      StepNum = StepNum + 1; 

      StepName = scan(Step{s},1); 

      if scan(Step{s},2) = '1' then do; 

       CurrStep = StepName; 



12 

      end; 

      else 

       CurrStep = ''; 

      leave; 

     end;  

     else do; 

       

     end; 

    end; 

   end; 

   output results; 

   statement = ''; 

  end; 

 end; 

 

 end; 

 

 if i > endpos+1 then do; 

  statement = cats(statement,substr(textn,endpos+1,i-endpos)); 

 end;  

 

 if eof then do; 

  if lengthn(trim(statement)) > 0 then do; 

   output results; 

   put 'Incomplete Last Statement Found'; 

  end; 

 end; 

run; 

 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Thomas Hirsch  
Magellan Health Inc 
Isaic16@gmail.com 
 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 


	2798-2018-eposter.pdf
	2798-2018.pdf

