
1

Paper 2773-2018

PROC SORT (then and) NOW
Derek Morgan, PAREXEL International

ABSTRACT

The SORT procedure has been an integral part of SAS® since its creation. The sort-in-place paradigm
made the most of the limited resources at the time, and almost every SAS program had at least one
PROC SORT in it. The biggest options at the time were to use something other than the IBM
procedure SYNCSORT as the sorting algorithm, or whether you were sorting ASCII data versus EBCDIC
data. These days, PROC SORT has fallen out of favor; after all, PROC SQL enables merging without
using PROC SORT first, while the performance advantages of HASH sorting cannot be overstated. This
leads to the question: Is the SORT procedure still relevant to any other than the SAS novice or the
terminally stubborn who refuse to HASH? The answer is a surprisingly clear “yes". PROC SORT has
been enhanced to accommodate twenty-first century needs, and this paper discusses those
enhancements.

INTRODUCTION

The largest enhancement to the SORT procedure is the addition of collating sequence options. This is
first and foremost recognition that SAS is an international software package, and SAS users no longer
work exclusively with English-language data. This capability is part of National Language Support (NLS)
and doesn’t require any additional modules. You may use standard collations, SAS-provided translation
tables, custom translation tables, standard encodings, or rules to produce your sorted dataset. However,
you may only use one collation method at a time.

USING STANDARD COLLATIONS, TRANSLATION TABLES AND ENCODINGS

A long time ago, SAS would allow you to sort data using ASCII rules on an EBCDIC system, and vice
versa. The following list shows the standard collating sequences now available in SAS 9.4, with the newer
ones in italics:

 ASCII

 DANISH

 EBCDIC

 FINNISH

 NATIONAL

 NORWEGIAN

 REVERSE

 SWEDISH

As an example, to use the Finnish collation, you would add it to the PROC SORT statement as follows:

PROC SORT DATA=mydata FINNISH;
BY var1;
RUN;

The NATIONAL collation may not be available in your SAS installation; check with your SAS administrator
before trying to use it. The standard translation tables provided by SAS add Italian, Polish, and Spanish to
the above list as collating sequences. However, these require the use of the SORTSEQ= option. If none
of the SAS-provided translation tables work for your situation, you may even create your own translation
table. Creation of a custom translation table should be viewed as a last resort. It depends on the

2

installation of SAS, and there are very specific rules for implementing a custom translation table. Here is
an example of using a translation table:

PROC SORT DATA=mydata SORTSEQ=ITALIAN;
BY var1;
RUN;

Encoding values such as “wlatin-1” or “utf-8”, can be used in the SORTSEQ= option, which will perform a
binary collation of the character data represented in the specified encoding as follows:

PROC SORT DATA=mydata SORTSEQ=latin2; /* Central European ISO Standard */
BY var1;
RUN;

A full list of available encodings is in the National Language Support documentation.

Should you need any of this functionality, the SORTSEQ= option will provide it. You may also specify an
encoding or translation table as a system option:

OPTIONS SORTSEQ=ITALIAN;

That will set the default collating sequence throughout your SAS program.

RULES-BASED COLLATION

I believe this is the way to unleash the hidden power inside PROC SORT. It requires the use of the
SORTSEQ= option on the PROC SORT statement itself; you cannot specify it as a system option. The
keyword to invoke rules-based collation is SORTSEQ=LINGUISTIC.

The LINGUISTIC keyword causes SAS to sort characters according to the linguistic rules associated with
the language and locale in effect. However, the LINGUISTIC keyword has multiple options that modify the
linguistic collating sequence. Some of these solve problems that have required creative SAS coding for
years. You may use more than one LINGUISTIC option, but you cannot use SORTSEQ=LINGUISTIC
with a translation table or encoding.

LETTERS VERSUS SPACES, PUNCTUATION, AND SYMBOLS

The ALTERNATE_HANDLING= option example allows PROC SORT to treat the handling of differences
in spaces, punctuation and symbols as less important than differences between letters. Without this
option, differences in those characters are of equal weight as letters, which is the default:

PROC SORT DATA=mydata SORTSEQ=LINGUISTIC(ALTERNATE_HANDLING=SHIFTED);
BY var1;
RUN;

CHARACTER ORDERING

Use the COLLATION= option to specify character ordering. One advantage of specifying collation this
way, as opposed to using encoding, is the handling of multiple languages (e.g., STROKE) with a single
collation definition:

PROC SORT DATA=mydata SORTSEQ=LINGUISTIC(COLLATION=collation-value);
BY var1;
RUN;

The following table provides the valid values for this option as of SAS 9.4:

3

BIG5HAN Specifies Pinyin ordering for Latin and specifies bug5 charset ordering for
Chinese, Japanese, and Korean characters.

DIRECT Specifies a Hindi variant.

GB21312HAN Specifies Pinyin ordering for Latin and specifies gb2312han charset ordering for
Chinese, Japanese, and Korean characters.

PHONEBOOK Specifies a telephone-book style for ordering of characters. Select PHONEBOOK
only with the German language.

PINYIN Specifies an ordering for Chinese, Japanese, and Korean characters based on
character-by-character transliteration into Pinyin. This ordering is typically used
with simplified Chinese.

POSIX This option specifies a “C” locale ordering of characters.

STROKE Specifies a non-alphabetic writing style ordering of characters. Select STROKE
with Chinese, Japanese, Korean, or Vietnamese languages. This ordering is
typically used with Traditional Chinese.

TRADITIONAL Specifies a traditional style for ordering of characters.

Table 1: Valid Sequences for the COLLATION= Option

THE “ADDRESS PROBLEM”

When the NUMERIC_COLLATION option is set to ON, integer values within a character string will be
ordered by their numeric value instead of their character value. The default value is OFF, but it is easy
enough to change it:

PROC SORT DATA=mydata SORTSEQ=LINGUISTIC(NUMERIC_COLLATION=ON);
BY var1;
RUN;

As an example, the following unsorted list of addresses is stored in a single variable named ADDRESS,
without the numbers being a separate field. How would you sort it without manipulating the ADDRESS
field?

1801 Somewhere Ave.
1652 Somewhere Ave.
7137 Somewhere Ave.
10381 Somewhere Ave.
4177 Somewhere Ave.
4200 Somewhere Ave.
7262 Somewhere Ave.
12425 Somewhere Ave.
506 Somewhere Ave.

If you do a standard PROC SORT with the default options:

PROC SORT DATA=mydata;
BY address;
RUN;

You will get the result shown in Result 1. This is a logical way of sorting these addresses, unless you’re a
delivery person using this list as a delivery manifest. You’ll start at the far end of Somewhere Ave., then
go to the 1600 block, and then from the 4200 block to the 500 block before ending up in the middle again:

4

10381 Somewhere Ave.

12425 Somewhere Ave.

1652 Somewhere Ave.

1801 Somewhere Ave.

4177 Somewhere Ave.

4200 Somewhere Ave.

506 Somewhere Ave.

7137 Somewhere Ave.

7262 Somewhere Ave.

Result 1: Using Default SORT to Order Addresses

For decades, SAS programmers have either designed address datasets to store the street number and
the street name separately, or parsed street number from the street name when they receive data where
they are not separate, and then sorted by an additional field. The NUMERIC_COLLATION=ON option
removes the need for parsing the address. Use the following code:

PROC SORT DATA=mydata SORTSEQ=LINGUISTIC(NUMERIC_COLLATION=ON);
BY address;
RUN;

The above code produces Result 2 without parsing of the ADDRESS variable or any change to the data
structure:

506 Somewhere Ave.

1652 Somewhere Ave.

1801 Somewhere Ave.

4177 Somewhere Ave.

4200 Somewhere Ave.

7137 Somewhere Ave.

7262 Somewhere Ave.

10381 Somewhere Ave.

12425 Somewhere Ave.

Result 2: Sorting Addresses using the NUMERIC_COLLATION=ON Option

LOCATION-BASED SORTING

The LOCALE= option that is a part of National Language Support can also be used as an option for rule-
based sorting. All the LOCALE values can be found in the National Language Support documentation.
This setting will override the LOCALE setting in effect, allowing PROC SORT to use a different LOCALE
(and usually language) from the remainder of the program:

PROC SORT DATA=mydata SORTSEQ=LINGUISTIC(LOCALE=locale-value);
BY var1;
RUN;

WHAT DIFFERENCES DO I WANT MY SORT TO IGNORE?

The final set of LINGUISTIC options has to do with the sensitivity of the sorting algorithm. The
STRENGTH= option and the CASE_FIRST= options allow you to specify which differences are in effect
for the sort taking place:

5

PROC SORT DATA=mydata SORTSEQ=LINGUISTIC(STRENGTH=strength-value);
BY var1;
RUN;

VALUE ALIAS Explanation

PRIMARY 1 PRIMARY specifies differences between characters, but not case or accents.
For example, “a” < “b”, but “a” = “A”, and “Á” = “A”). It is the strongest
difference.

SECONDARY 2 Accents in characters are considered secondary differences (for example, "as"
< "às" < "at"). A secondary difference is ignored when there is a primary
difference anywhere in the strings. Depending on the language, other
differences between letters will also be considered secondary differences.

TERTIARY 3 This is the default sort strength for US English. Upper and lowercase
differences in characters are distinguished at the tertiary level (for example,
"ao" < "Ao" < "aò"). A tertiary difference is ignored when there is a primary or
secondary difference anywhere in the strings. A non-English example would
be the difference between large and small Kana

QUATERNARY 4 When punctuation is ignored at level 1-3, an additional level can be used to
distinguish words with and without punctuation (for example, "a-b" < "ab" <
"aB"). The quaternary level should be used if ignoring punctuation is required
or when processing Japanese text. This difference is ignored when there is a
primary, secondary, or tertiary difference.

IDENTICAL 5 When all other levels are equal, the identical level is used as a tiebreaker. The
Unicode code point values of the Normalization Form D (NFD) form of each
string are compared at this level, just in case there is no difference at levels 1-
4. This level should be used sparingly, because code-point value differences
between two strings rarely occur. For example, only Hebrew cantillation marks
are distinguished at this level.

Table 2: Options for Detecting Differences Between Records

The CASE_FIRST= option can be added to the STRENGTH= option as long as you have a STRENGTH
level of TERTIARY, QUATERNARY, or IDENTICAL. CASE_FIRST=UPPER sorts uppercase letters
before lowercase letters, while CASE_FIRST=LOWER sorts lowercase letters before uppercase letters.
This option only works in conjunction with the STRENGTH= option, and only when STRENGTH is
TERTIARY, QUATERNARY, or IDENTICAL:

PROC SORT DATA=mydata SORTSEQ=LINGUISTIC(STRENGTH=TERTIARY
 CASE_FIRST=UPPER);
BY var1;
RUN;

If the STRENGTH= value is PRIMARY or SECONDARY, the CASE_FIRST option has no effect because
upper- and lowercase differences are not detected at these levels.

Instead of using the UPPERCASE() function to create an identical-case version of the variable you want
to sort on, you can use STRENGTH=PRIMARY or SECONDARY to perform case-insensitive sorting, and
use an option to avoid modifying your data before sorting. The default strength for English-language
sorting differentiates between upper and lower case, so a simple alphanumeric sort won’t produce a
case-insensitive result:

6

PROC SORT DATA=mydata;
BY name;
RUN;

Sample Code 1: Simple Alphanumeric Sort

For decades, SAS programmers have been doing this:

DATA mydata2;
SET mydata;
uname = UPCASE(name);
RUN;

PROC SORT DATA=mydata2;
BY uname;
RUN;

Sample Code 2: Using the UPPERCASE() Function

Now you can reduce the sensitivity of the SORT to ignore case, avoiding the function call and the extra
variable:

PROC SORT DATA=mydata SORTSEQ=LINGUISTIC(STRENGTH=PRIMARY);
BY name;
RUN;

Sample Code 3: Using the STRENGTH= Option to Perform a Case-Insensitive Sort

 Original
Unsorted Order

Simple Alphanumeric
Sort

Using the
UPPERCASE()

Function

Using the STRENGTH=
Option to Perform a

Case-Insensitive Sort

OBS name name uname name

1 Macarthur MACK MACALLEN Macallen

2 Mc Grady MacCarron MACARTHUR Macarthur

3 MACK MacManus MACCARAY Maccaray

4 MacManus Macallen MACCARRON MacCarron

5 Maccarron Macarthur MACCARRON Maccarron

6 Macallen Maccaray MACK MACK

7 McAllen Maccarron MACMANUS MacManus

8 Maccaray Mc Grady MC GRADY Mc Grady

9 MacCarron McAllen MCALLEN McAllen

Result 3: Effect of Different Sorting Methods for Case-Insensitive Sorting

With very few accented characters (mostly appropriated from foreign words incorporated into the
language), TERTIARY works well as the default sorting strength for English. However, the ability to ignore
or account for accents may be very helpful in other languages.

7

ENHANCED HANDLING OF RECORDS WITH DUPLICATE KEYS

Everyone who uses PROC SORT should be familiar with the NODUPKEY option, which removes records
with identical keys. Even this has been enhanced, with the ability to choose which of the observations is
kept, and you can send the duplicates that aren’t kept to a dataset. The next set of examples will use a
dataset containing customer ID numbers and the level of ticket purchased for a given event. The
customers who have purchased tickets to more than one event are bolded in the table. The original sort
order is by customer ID and descending ticket level.

Customer
ID

Ticket
Level

10270 7

12230 3

19323 5

19323 4

22779 3

28819 6

29252 2

30457 7

30457 3

30457 2

30457 2

31918 4

31918 1

How can you find out which records are eliminated? Try this:

PROC SORT DATA=sortsamp OUT=sort1 NODUPKEY DUPOUT=dups;
BY cid;
RUN;

Dataset SORT1 Dataset DUPS

Customer
ID

Ticket
Level

 Customer
ID

Ticket
Level

10270 7 19323 4

12230 3 30457 3

19323 5 30457 2

22779 3 30457 2

28819 6 31918 1

29252 2

30457 7

31918 4

Result 4: Using the DUPOUT= Option to Remove Records with Duplicate Key Values

This is handy when you have multiple keys and a lot of records and you have to track down why you have
duplicate-keyed records; perhaps you don’t have enough keys for uniqueness or you have a different
problem with the data. Again, this is all done within PROC SORT, so you don’t have to write DATA step or
SQL code to keep your removed duplicates.

8

Another PROC SORT option lets you pull out all the duplicate keyed records. Instead of running a DATA
step like this (as SAS programmers have done for decades):

DATA inspectdups;
SET sortsamp;
BY cid;
IF NOT (FIRST.cid AND last.cid) THEN
 OUTPUT;
RUN;

Use the NOUNIQUEKEY option on PROC SORT:

PROC SORT DATA=sortsamp NOUNIQUEKEY OUT=alldups UNIQUEOUT=uniques;
BY cid;
RUN;

Dataset INSPECTDUPS
Created by DATA step

 Dataset ALLDUPS
Created by PROC SORT and

NOUNIQUEKEY option

Customer
ID

Ticket
Level

 Customer
ID

Ticket
Level

19323 5 19323 5

19323 4 19323 4

30457 7 30457 7

30457 3 30457 3

30457 2 30457 2

30457 2 30457 2

31918 4 31918 4

31918 1 31918 1

Result 5: Removing Records with Duplicate Keys

As you can see, they produce an identical result. Another benefit of using PROC SORT is that adding the
UNIQUEOUT= option in combination with the NOUNIQUEKEY options will send all your uniquely-keyed
records to their own dataset, without more DATA step code:

Dataset UNIQUES

Customer
ID

Ticket
Level

10270 7

12230 3

22779 3

28819 6

29252 2

Result 6: Removing Records with Unique Keys from a Data Set

9

What About the NODUPLICATES Option?

Surprisingly, the NODUPLICATES option is no longer documented as a part of PROC SORT, although it
is documented in the SORT() function in SAS Component Language. However, the option still functions.
The NODUPLICATES option has always come with the warning that it doesn’t test each record against all
other records for a duplicate; it only tests against adjacent records. Therefore, it doesn’t always work in
an unsorted dataset. PROC SQL provides a better way to remove duplicate records:

PROC SQL:
CREATE TABLE all_duplicates_removed AS
SELECT DISTINCT *
FROM data_with_dup_records
ORDER BY keyvar1… keyvarN
;
QUIT:

ADDITIONAL SORT OPTIONS

There are other PROC SORT options available, such as DATECOPY, which retains the date and time of
the original, unsorted dataset in the sorted version. This can be useful with version control.

The REVERSE option collates in reverse, according to the character set in use. This is also the same as
SORTSEQ=REVERSE. If you use the REVERSE option with SORTSEQ=REVERSE, they will cancel
each other out, and the dataset will be sorted in regular order.

The PRESORTED option is an efficiency aid with SAS datasets. If you think the data are already sorted,
using this option will skip the sort process if the dataset is already sorted. This ONLY applies to SAS
datasets. Do NOT use this option when using other DBMS or SAS/ACCESS®, as the records may not be
accessed in the assumed order.

CONCLUSION

PROC SORT has grown in its capabilities since the early days of SAS. Although you no longer need to
sort in order to merge, and there are much more efficient ways to sort data, version 9 of SAS has
returned PROC SORT to relevance. Many of the enhancements are linked with National Language
Support, and acknowledge that SAS is truly an international software package working with data in
multiple languages.

Several options for PROC SORT replace DATA step or SQL code. You can perform case-insensitive
sorting and/or select uniquely-keyed records while placing the eliminated records into a data set for later
inspection. Conversely, you can select all the duplicate-keyed records, eliminating the uniquely-keyed
ones.

Other options maintain the date of the unsorted data set, reverse the collating sequence (not quite the
same as sorting in descending order), and allow SAS to check the sort status of a data set before sorting
it, which can prove to be quite an efficiency boost.

While HASH sorting is undeniably more efficient, the language enhancements in PROC SORT and the
options that replace common SAS code may even those odds. PROC SORT is once again a useful tool in
the SAS programmer’s toolkit. For more in-depth detail, including how PROC SORT works with National
Language Support (NLS), refer to the technical paper from SAS Institute in the first reference below.

REFERENCES

Kiefer, Manfred and Mebust, Scott. “Linguistic Collation: Everyone Can Get What They Expect: Sensible
Sorting for Global Business Success”. http://support.sas.com/resources/papers/linguistic_collation.pdf.
Accessed 01 February 2018

Mebust, Scott and Bridgers, Michael. Creating Order out of Character Chaos: Collation Capabilities of the
SAS System. Proceedings of the SAS® Global Forum 2007 Conference, SAS Institute Inc. Cary, NC

10

RECOMMENDED READING

 National Language Support Documentation

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Derek Morgan
mrdatesandtimes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

