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ABSTRACT  
The ability to perform very short to very long-term forecasts of distribution circuit loads at intermediate 
distribution circuit locations between customer meters and substation feeder buses using AMI (Advanced 
Metering Infrastructure) data provides significant advantages to distribution system planners and 
operators in a number of areas.  Some of the important applications of these forecasts include 
anticipation of device overloads, facilitation of switching operations, and helping with DER (Distributed 
Energy Resources) integration into system operations.  This session presents forecasting results for 
distribution circuits using SAS® Energy Forecasting, which uses methods such as GLM to generate 
forecasts.  Results for different circuit locations are derived from Ameren Illinois AMI and circuit taxonomy 
data.  Included in the presentation are details of the forecasting methodology and a discussion of 
applications to distribution system operations. 

INTRODUCTION  
Electric power transmission and distribution systems are designed to transport electric energy from 
generating units to end-use customers.  These systems consist of components such as cables, switches, 
transformers, insulators, capacitors, reclosers, and other equipment designed and connected to 
accomplish this objective.  Figure 1 provides a conceptual representation of this system and its major 
components.  This session focuses on the distribution portion of the system, but with sufficient data the 
methodologies described herein can be extended to include the transmission portion of the system. 

 

 
Figure 1: Electric Power Supply System 
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Time series forecasting of electric power distribution measures such as power (KW) and energy (KWH) is 
enabled by forecasting software such as SAS® Energy Forecasting, a solution which utilizes well-
established mathematical techniques for predicting future values based upon the historical structure of 
the series. Forecasting methods such as General Linear Models (GLM), Auto-Regressive Integrated 
Moving Average (ARIMA) and others are utilized to generate short- to long-term forecasts, which can help 
distribution planning, and operations departments maintain a high level of reliability while controlling 
costs. 

 

Prior to the installation of advanced metering infrastructure (including net meters), due to the 
unavailability of end-point use data, utilities did not have sufficient data to produce a forecast of electric 
power and energy at the distribution sub-circuit level.   

 

With the installation of advanced metering systems, end-use time series data is now widely available to 
utilities.  This data includes, but is not limited to, real and reactive power, voltage, current and various 
event flags which indicate, for example, loss of voltage and reverse rotation.  Typically collected at 15 
minute intervals, meter data can now be aggregated by time interval, transformer, device, phase, and 
circuit to use as input for forecasting total load at intermediate circuit nodes between meter points and 
substation feeder buses.  Figure 2 provides a conceptual overview of a distribution circuit and the 
information required to generate forecasts from aggregated AMI data. 

 

Figure 2: Overview of Information Flow 

 
There are many uses for distribution circuit forecasts based on AMI data.  One use would be to anticipate 
overloading of devices, substation transformers, and conductors when circuits are in their normal 
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configurations.  By forecasting potential overloads with sufficient lead times system operators could 
initiate relief actions to prevent system degradation and unplanned customer interruptions.  In this case, 
sufficient lead times can vary from very short-term (day-ahead) to very long-term (decades-ahead). 

Another use would be to predict future loads of circuit sections whenever a change of circuit state is 
anticipated.  For example, if a circuit section requires de-energization for maintenance, then customers 
behind the sectionalizing device could be transferred to an available alternate supply provided that the 
transferred customers do not overload the alternate supply during the period that maintenance is being 
performed on the primary supply.  This overload assessment would be accomplished with very short-term 
load forecasts for the sectionalized circuit and alternate supply source since the two series can be added 
together to verify an overload would not occur. 

It is important to note that SAS® Energy Forecasting enables accurate, production volume forecasting for 
all forecast horizons.  Forecast results can also be transferred to distribution load-flow models for detailed 
assessment of load impact on circuit design and protection parameters.  Furthermore, SAS® Energy 
Forecasting has the capability to reconcile hierarchal load forecasts based on AMI data with load 
forecasts at the feeder level based on SCADA measurements.  This reconciliation can offer an alternate 
approach to estimating distribution system losses. 

 

This paper illustrates application of SAS® Energy Forecasting to derive very short-term forecasts of load 
on selected devices and feeders in the Ameren Illinois distribution system.  Based on two years of AMI 
data collected at hourly intervals, forecast results will provide system operators with insights into daily 
operations. 

DATA PREPARATION AND STAGING 
Prior to building the forecast models it is necessary to subject the raw data set to a process which 
identifies and replaces missing values and outliers.  It is also necessary to add predictive variables to 
improve the forecast compared to a naïve model, then structure the data for analysis. 

Figure 3 provides an overview of the data cleansing process flow.  Each of the steps depicted are 
described in more detail below. 

 
Figure 3: Data Cleansing Process Flow 
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DATA CLEANSING STEP 1 
It is a requirement for the modeling process that the load data has a continuous time series. In step 1, 
SAS® uses PROC TIMESERIES to insert any missing date-time observations. The corresponding load 
value is left missing and this observation is marked with an indicator for a later step to use an interpolated 
value. This step also has the ability to insert any records at the beginning or end of the time series. This is 
useful if the user wants to extend the time series. The user would specify the start date and end date they 
would want to use. If no dates are specified, the data date range is used as is it currently exists. 

DATA CLEANSING STEP 2 
This step merges the load, weather, economics, and user defined variables to create one table. This table 
is then used for future steps for identifying outliers/missing values and for building the model to interpolate 
replacement values.  

Weather data is especially important for identifying outliers because load will vary significantly when the 
temperature changes. A range of load values at 60 o F looks very different than a range of load values at 
0 o F. Because of this, what an outlier is at those ranges will also vary significantly. Using weather data as 
a main indicator we can identify outliers properly.  

Other variables such as economic indicators or ‘extra’ weather variables can be used as part of step 6 
when building a model to interpolate replacement values for the outliers. This step also adds in the 
corresponding SCADA or AMI data (an option the user has). For a SCADA circuit a column is added to 
the table representing the AMI load data that matches the SCADA circuit. Similarly, if AMI data is 
available then corresponding SCADA data is added to the table. 

DATA CLEANSING STEP 3 
Using the table built in step 2, Step 3 “buckets” each observation based on temperature (and, optionally, 
month, hour, and/or year). This methodology looks at how load values which fall within a certain 
temperature range, as defined by a configurable ‘width’ value, relate to one another. A temperature value 
is required for this methodology.  

Optionally, the analyst can also further subset the temperature bucket by month, hour, and or year. 
However, it is not recommended to bucket by all additional options because this could lead to very sparse 
data and may not give the desired results in outlier identification. An example ‘bucket’ would be all load 
values that have a temperature between 68 o F and 70 o F in August. This ‘bucket’ would have a width 
value of 1 and would be further subset by month. 

DATA CLEANSING STEP 4 
Based on the “buckets” created in step 3, step 4 takes the observations for each bucket and calculates 
descriptive statistics using PROC MEANS including mean, median, min, max, standard deviation, 
variance and percentiles. For cleansing purposes, the median and standard deviation are used. After 
generating the descriptive statistics for each bucket, the data cleansing process defines the boundaries 
for outliers by bucket.  

Figure 4 below is an illustration of uncleansed data. The observations marked in red have been flagged 
as outliers by the process. 
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Figure 4: Uncleansed Data with Flagged Outliers 

 

 

DATA CLEANSING STEP 5 
After calculating the bounds for each bucket in step 4, step 5 compares each observation to the bounds 
of its bucket. If the load value exceeds the bounds then the value is flagged as an outlier. 

DATA CLEANSING STEP 6 
In this step a model is built to identify potential replacement values. 

Using the SAS® procedure PROC GLM, a model is built using the data not previously flagged as missing 
or as an outlier. SCADA/AMI data can be used (if specified) to help drive the shape of the model. If 
modeling SCADA then the variable would consist of AMI data and vice versa. 

Additional input variables could include, but are not limited to economic indicators, tariff class, and 
additional weather concepts. (The data must exist in the data set to be used). These additional variables 
can help improve the model fit and the accuracy of the interpolation of the load values. 

Temperature is a configurable variable in that the user can decide which weather concept to use (e.g. 
they could use dry bulb temperature or wet bulb temperature assuming they have the data to support it). 

The model estimates load based on a trend variable, the interaction of weekday and hour ending, month, 
interaction of month and temperature, interaction of hour and temperature, any user defined input 
variables (optional) and SCADA/AMI (optional). 

To build and train the model, the non-outlier and non-missing data is used and the parameters are saved. 
Once the model is trained, then the model is applied to the ‘bad’ data (missing values and flagged 
outliers) to calculate load value interpolations. These values are added into the dataset and the process 
moves to steps 7 and 8. 
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DATA CLEANSING STEPS 7 AND 8 
After Step 6 is completed, Steps 7 & 8 suggest replacement values for the flagged outlier and missing 
data to be used through the rest of the ETL process. 

The process determines how many flagged outlier/missing data values occur consecutively over the 
entire dataset. (For example the dataset could contain 10 good values followed by 1 flagged values 
followed by 1000 good values followed by 6 flagged values)  

For a series of five or more missing or outlier observations, the suggested value will be taken from the 
naïve model. For a series of four or fewer missing or outlier observations, the suggested value will be a 
linear interpolation between the two non-missing and non-outlier values at the beginning and end of the 
missing/outlier series. The SAS® procedure used for the linear interpolation is PROC EXPAND. The cutoff 
between the two methodologies is a configurable option. 

The final output from the cleansing process is a data set which includes all days and hours within the 
historical date range. The original load value will appear in one column. Another column will show the 
suggested value. The outlier/missing flag variable is also retained. This table may be manually edited if 
the analyst desires. 

After the analyst is satisfied with the cleansed data it is passed back to a data integration process which 
drops the original values and outlier/missing flag, keeping only the recommended value for each 
date/time. 

Figure 5 illustrates the cleansed data. Observations in red indicate values, which have been altered. 

 

 

 
Figure 5: Cleansed Data 
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DATA MANAGEMENT STRATEGY 
Data preparation for energy forecasting requires a landing area for raw input data for the forecasting 
process, a staging area for the final input data for energy forecasting, and the staging load process for 
transforming the data from the landing area to the staging area. 

The landing data is the collection of raw data tables, extracted from operational data systems, third party 
vendors, and other sources, that serve as the raw input for the forecasting process. This data at this 
stage will generally not be suitable for forecasting due to the specific organization of the data, data quality 
issues, and data consistency issues. 

The staging data is a collection of tables in a standardized format that serve as the final input to the 
forecasting process. To the extent possible, all data quality issues have been addressed in this data 
store: missing data filled in, outliers detected and replaced, inconsistencies across tables detected and 
resolved, summaries of data throughout the forecasting hierarchy generated. Any energy variables that 
are derived from measures in the raw data are created. 

The staging load process automates the task of transforming landing data tables into staging data tables. 
While this is an automated process, it is derived in part from the results of the forecasting analyst’s and 
data integration analyst’s exploratory data analysis, a manual and iterative process to detect data quality 
issues and determine the best approaches to resolve them. Once these approaches are determined, they 
are incorporated into the staging load process for automatically generating staging tables from landing 
tables. The process is designed to handle automatic updates of data, which can be based on any of 
several standard approaches, depending on data volumes and other considerations. 

ANALYSIS 
SAS® Energy Forecasting supports the forecasting process from beginning to end, using AMI and SCADA 
data-driven analytical insights to assess future loading of grid assets for all forecast horizons – from very 
short-term day-ahead to very long-term decades ahead. With best-in-class analytics, analysts are 
empowered to answer the most complex load forecasting questions that arise from utilities’ distribution 
systems. 

After the Ameren Illinois AMI data was cleansed and aggregated by time stamp and phase to the feeder 
level, SAS® Energy Forecasting was used to create models characterizing the training data set for each 
phase.  During this process multiple different models were automatically tested by the software and the 
champion model was selected based upon the mean absolute percentage error (MAPE).  

The steps followed to generate the Ameren Illinois feeder load forecasts included: 

1. Determining the best historic relationship between load and the factors that influence load – 
primarily temperature. This could be called fitting a model or creating a forecast equation. That 
model or equation is coupled with a forecast of temperature, and possibly other factors as an 
economic index or population, to create a forecast of load.  

2. Splitting the history into two pieces – a longer one to create a model and a shorter recent period 
to test the model, often referred to as a training period and a holdout period. This lets the program 
select the best model and use a second stage model to tailor the model to most recent history. 

3. Stepping through a sequence which creates many different models by successively adding new 
factors and testing that accuracy is improved.  This DIAGNOSE process actually tested multiple 
different model combinations and tested against history to find a subset of best forecasts. Some 
of those models plotted here.  

4. Selecting the champion model based on any one of over 20 available error measurements.  For 
this work, mean absolute percentage error (MAPE) was used to determine the winner. 
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DEPLOYMENT OF RESULTS 
The foundation of load forecasting work started with constructing multiple regression models where 
various independent variables and combinations of independent variables are tested sequentially for 
model improvement. Models are tested at each iteration to prevent over-fitting.  Second-stage models are 
developed using UCM (Unobserved Components Model), ARIMAX (Autoregressive Integrated Moving 
Average with Explanatory Variable), exponential smoothing and neural network model. The software also 
allows the analyst to create forecast by combining various models to improve MAPE. For this work, we 
chose the default level of automation for the forecasting process.  Model results and statistics are 
available at each step of the process and outlier files are automatically generated and can be reviewed 
and visualized within the application. Figure 6 shows error matrix for all the tested models (MAPEs). 

In this paper, forecasting models were constructed at the system level (all five feeders combined) as well 
as at individual feeder level.  In the table view of FCST_STAT, records are sorted by the type of error 
statistic that is used to judge the best or champion model. The champion model has the lowest error.  The 
error matrix shown in the FCST_STAT contains the MAE (Mean Absolute Error), MAPE (Mean Absolute 
Percentage Error), and ME (Mean Error) for annual energy, annual peak load, daily energy, daily peak 
load, monthly energy, monthly peak load, and hourly load. Based on Hourly MAPE comparison, 
GLM_ARIMAX emerged to be the best performing model for the dataset.  

 

 
Figure 6: Comparing Model Stats from Various Models 

 

Figure 7 compares output from the various forecasts.  The hierarchy is shown on the left with the 
instances of each forecast described on the bottom left. 
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Figure 7: Comparing Forecast Results 

 

The SAS Energy Forecasting software also provides ability to compare individual model results.  Figure 8 
compares GLM models and their respective MAPE values based on hourly, daily, monthly and annual 
periods. This is extremely beneficial in determining the best model and provide direction for improvement. 
In addition, SAS Energy Forecasting will identify hours (or observations) with the highest error statistics 
per model. This allows identification of data errors and model specification problems by reviewing error 
statistics, load, predicted load, and temperature for each of those hours.  These observations are 
captured in the Results OUTLIER datasets. The APE Cutoff determines which observations are put into 
the outlier table. Observations with absolute percentage error greater than this threshold will be put into 
the table (Figure 9).  

 

 
Figure 8: Comparing GLM models 
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The forecaster has the opportunity to view outliers in the forecast and view the specific data that may 
have driven the outliers so that adjustments can be made.  For each model, the hours with the highest 
error statistics are identified. This allows identification of data errors and model specification problems by 
reviewing error statistics, load, predicted load, and temperature for each of those hours. The data in the 
following sample outlier table is based on the GLM model.  It provides the actual values and the predicted 
load along with the error, absolute error and absolute error percentage.  

 

 
Figure 9: Outlier detection based on APE  

 

The SAS Energy Forecasting provides the ability to enter the percentage of observations that are to be 
considered as outliers. The default value is 0.001, which means the generated outlier table includes the 
top 0.1 percent of all observations with the largest forecast absolute error or, AE (Figure 10).  

 

 

 

 

 

 

 

 

Figure 10: Advanced Parameters 
 

The forecast results for all the models generated are provided.  The winning (“champion”) model is the 
model selected as best by diagnose.  Figure 11 show the very short term forecast results from 10 models 
produced from the project.   
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Figure 11:  Comparing All Models 

 

CONCLUSION 
SAS® Energy Forecasting was applied to Ameren Illinois AMI data to generate very short-term forecasts 
of load on distribution circuits based on usage profiles of end-point customers.  An automated process 
was developed to cleanse and stage the data, thereby enabling creation of accurate, high volume 
forecasts which can be readily visualized to help planning engineers and system operators maintain a 
high level of service reliability for customers while concurrently managing costs.  A number of applications 
for these forecasts were identified, including long-term system design planning and short-term 
assessment of day-ahead circuit performance.  These forecasts generate significant value to utilities by 
helping avoid customer interruptions, reducing the duration of interruptions, improving long-term planning, 
and offering a foundation for Integrated Distribution Planning.   
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