
1

Paper 2620-2018

Troubleshooting your SAS® Grid Environment
Jason Hawkins, Amadeus Software Limited

ABSTRACT
A SAS® Grid environment provides a highly available and resilient environment for your business. The
challenge is that the more complex these environments become, the harder it can be to troubleshoot
incidents and proactively optimize the configuration. Efficient troubleshooting of the environment builds
user confidence and enables organizations to get the most value out of their investment.

This paper focuses on the strategies that should be taken to identify and resolve issues within a SAS Grid
environment. It provides a best-practice approach for making modifications to the default configuration
files to understand what parts of the environment are in effect. The interpretation of this output can then
be used to optimize or troubleshoot the environment.

This paper is for SAS administrators who wish to learn more about troubleshooting a SAS Grid
environment. It covers both Microsoft Windows and UNIX topologies using both shared and individual
configuration directories.

INTRODUCTION
As a SAS Grid Administrator, there are numerous challenges you may face when maintaining and
administering the platform over and above what may be experienced when administering a standard,
non-Grid platform. Knowing what to expect in certain situations and circumstances and being prepared
for them is key, and will make your approach as a Grid Administrator that much more efficient.

In this paper, we first familiarize ourselves with the common architectures of a Grid environment. We
then explore the common issues and challenges experienced by Grid Administrators, such as users being
unable to submit work, the platform becoming unresponsive and administering and resolving issues whilst
adhering to the high-availability policies and agreements in place.

We explore different methods for identifying issues, such as using specific LSF commands and turning up
different logging levels. We look at resolving the issues whilst maintaining Grid functionality for end
users, with a little downtime as possible.

Finally, we delve into different proactive steps which are designed to prepare your environment ahead of
possible failures by enhancing log files and SAS autoexecs.

GRID ARCHITECTURES
In order to efficiently troubleshoot any platform, it is important to understand the topology of the
environment and have a good understanding of the role that each SAS server plays. The following
section will cover the basic components of a Grid environment.

STANDARD GRID TOPOLOGY
A SAS Grid Platform consists of three tiers, a Metadata tier, a Compute tier and a Middle tier:

• Metadata Tier - controls authentication and authorization, manages information shared by all
components in a deployment.

• Compute Tier – manages and executes processing requests for work submitted to the Grid. Consists
of multiple “Grid Nodes” and a “Master Grid Controller”.

• Middle Tier – Surfaces SAS Web Applications.

A Grid platform enables SAS sessions to be distributed across multiple Grid nodes. This provides the
following key advantages:

2

• Workload Distribution; Work is split across the Grid nodes by a given set of parameters. For
example, work may be distributed by the server’s individual CPU utilization, or the number of jobs
waiting for an execution slot on a Grid node. Workloads can be distributed to specific Grid nodes by
using pre-defined queues. This guarantees an allocated amount of resources to high priority jobs.

• High Availability; A Grid environment has components which allow you to configure services that
monitor others in such a way that the platform can be considered “highly available”. Should a Grid
service or server fail, another Grid server or service should be started to maintain the platform
availability. This high availability extends to SAS jobs which, subject to the configuration, can be
configured to resume on alternative Grid nodes following a failure. This ensures as little disruption to
the end users as possible.

This can be achieved using the Enterprise Grid Orchestrator (EGO), which monitors services and in
case of a failure restarts them where possible. If unable to restart a service, EGO will bring up the
service on another machine.

• Scalability; Additional Grid Nodes can be added to the platform so that it is able to adapt to cope with
influxes of data or short term intensive analytics, ensuring that the end users have adequate power
available. If we require extra resources in a SAS Grid Platform, additional Grid nodes can be added
to the platform to facilitate this.

Grid infrastructure utilizes a third-party software component; IBM® Spectrum™ LSF®, which is the
component responsible for performing the load balancing of SAS sessions across the Grid nodes. LSF
consists of many services, but we focus on the five main services which allow LSF to work with a SAS
Grid environment:

• Platform LIM (Load Information Manager) monitors the load on each server and records information
about each of the processes sent for execution on the Grid. It includes statistics about the job, such
as the time the job was sent for execution, the node it was sent to and whether it’s running, pending
or ended. This service runs on all Grid nodes.

• Platform RES (Remote Execution Server) accepts remote requests for job execution from the Grid
Control Server. This service runs on all Grid nodes.

• Platform SBD (Slave Batch Daemon) receives requests to run jobs and manages the local execution
of each job. This service runs on all Grid nodes.

• Platform MBD (Master Batch Daemon or “mbatchd”) monitors all jobs across the system. This
service runs on the Master Grid Controller only.

• Platform MBSCHD (Master Batch Scheduler Daemon) distributes work (both interactive and
scheduled) across the Grid based on job requirements and resource information provided by LIM.
This service runs on the Master Grid Controller only.

The following figure presents the location of the SAS components on a standard Grid Topology.

3

Grid Control Server

& Grid Node 01

Object Spawner

Metadata Server

Metadata Server

Middle Tier Server
& Grid Client

Web Server

Environment Manager
Agent

Environment Manager
Agent

Environment Manager
Server

Environment Manager
Agent

Workspace Server

Stored Process Server

Pooled Workspace
Server

Foundation Products

Web Application
Server

SAS Web
Applications

Cache Locator

JMS Broker

Cache Locator

Web Infrastructure
Platform Database

Server

Web Infrastructure
Platform

Master Grid Candidate
& Grid Node 02

Object Spawner

Environment Manager
Agent

Workspace Server

Stored Process Server

Pooled Workspace
Server

Foundation Products

Grid Node n

Environment Manager
Agent

Workspace Server

Stored Process Server

Pooled Workspace
Server

Foundation Products

Platform LSF

Platform LIM

Platform RES

Platform SBD

Platform LSF

Platform LIM

Platform RES

Platform SBD

Platform LSF

Platform LIM

Platform RES

Platform SBD

Key

SAS® Software

LSF Related Software

Platform MBD

Platform MBSCHD

Figure 1. A Standard SAS Grid Platform
Each of the SAS Servers have specific jobs within the Grid:

• Grid Control Server. Monitors the load across the Grid and distributes jobs amongst the Grid Nodes.
Does not execute work submitted to the Grid unless it’s also configured as a Grid Node.

• Master Grid Candidate. Is capable of becoming the Grid Control Server in the event of Grid Control
Server failure. There would generally be multiple SAS Grid Candidates on a Grid platform, but not
necessarily every Grid Node. Each Master Grid Candidate needs to be capable of running an Object
Spawner.

• Grid Node. Executes work submitted to the Grid.

• Grid Client. Is able to submit work to the Grid, but unable to execute work submitted to the Grid.
Web Applications such as SAS Studio submit work to the Grid.

SEQUENCE OF EVENTS – GRID LAUNCHED WORKSPACE SERVER
Figure 2 shows the sequence of events that take place when an end user launches a Grid-launched
workspace server through a client application such as SAS Enterprise Guide.

4

Figure 2 – Grid-Launched Workspace Server - Sequence of Events
The following is a summary of the events that take place:

1. The client application contacts the metadata server. It authenticates the user and retrieves the
connection information for the object spawner.

2. The client application then contacts the server which is running the master object spawner. The
master object spawner knows that the Workspace Server is configured for Grid load balancing and
that it is using Grid-launched Workspace Servers. The master object spawner then:

a) Contacts LSF to identify which Grid node to start a workspace server session on.

b) LSF calculates which SAS Grid node is most suitable by using the metrics it collects and the
parameters that are set, these include the queues that are set up and which method it has
been configured to use to distribute jobs;

c) On the selected Grid node, LSF begins a workspace server session which the command
provided by the master object spawner. This workspace server reports back to the master
object spawner to confirm it has started successfully.

3. The master spawner gives the client application the information about the Workspace Server session
to which it has been assigned.

4. The client application sends the program for execution.

LOCAL VS SHARED BINARIES AND CONFIGURATION
There is more to a Grid platform than just extra components to consider! A Grid platform can have
shared binaries and configuration files, or files local to each server. The location of these SAS binaries
and SAS configuration files will determine how you go about troubleshooting a Grid environment. Table 1
shows the advantages and disadvantages of having a local file system when troubleshooting the
environment:

5

Local File System
Advantages Disadvantages
Hot Fixing can be done on individual Grid nodes
without requiring downtime for the platform; causing
less downtime for end users.

Log files can be time consuming to locate, with
administrators often having to log onto or search
multiple servers to find the correct log file.

Any configuration changes must be done
manually on each Grid node.

There is a greater overhead in adding extra Grid
nodes to the platform as each additional server
needs to be installed and configured individually.

Table 1. Advantages and Disadvantages of Local Installation and Configuration Files
Table 2 shows the advantages and disadvantages of having shared installation and configuration files.

Shared File System
Advantages Disadvantages
All logs are automatically placed in the central,
shared storage location making it less time-
consuming to find relevant log files.

Platform maintenance is centrally managed – a
change to a configuration file will automatically be
disseminated amongst all machines.

Minimal overhead in adding extra Grid nodes to the
platform as the servers can use the existing files.

Hot fixing can only be done to all binaries at once
and therefore downtime is required.

A shared storage location needs to be available
to all Grid nodes which can sustain a high level of
throughput, as well as being able to cope with
high levels of concurrency.

Table 2. Advantages and Disadvantages of Shared Installation and Configuration Files
Although both topologies are perfectly valid, it is important to be aware of which is in use, as the
troubleshooting approach will change slightly.

COMMON APPROACH - TROUBLESHOOTING
With any Enterprise Platform, hardware and software can fail. Although it is not practical to prepare for
every possible eventuality, by being aware of the most common failures you can place yourself in a better
position to resolve them. Here are some of the most common errors/failures which you might come
across in a Grid environment:

• Users unable to launch SAS sessions. For example, users are not able to connect to SAS through
SAS Studio or SAS Enterprise Guide;

• SAS jobs being unevenly distributed;

• Jobs unable to be scheduled;

• Resources running out on a specific server;

• Services failing to start;

• Errors in user code.

Depending on the type of error or failure, you might want to start troubleshooting by checking the log files
produced or use LSF commands if there are specific issues with the job distribution.

6

CHECKING LOG FILES
There are numerous log files to be aware of when troubleshooting a SAS Grid environment. LSF logs
should be checked if end users were unable to start SAS sessions. In these circumstances,
administrators can assume that LSF is struggling to launch the SAS process.

Table 3 shows the LSF logs, the components they relate to, a summary of the information they contain
and in what circumstances they would be checked.

Component Log File Contents Checked Under What
Circumstance

Platform Process
Manager (jfd)

<share>*1/pm/log/
jfd.log.<servername>*2

Process Manager
failover and error logs.

Jobs are unable to be
scheduled through
Schedule Manager or
Flow Manager.

LSF – Events <share>/lsf/work/<cluster
_name>*3/logdir/lsb.event
s

Keeps track of the state
of all current jobs across
the Grid.

Running jobs are not
executing as expected.

LSF – Previous
Events

<share>/lsf/work/<cluster
_name>/logdir/lsb.events.
n

The state of old jobs
across the Grid.

Certain jobs have failed
prior to starting or during
execution. Also used to
identify the LSF Job ID.
The BHIST command can
be used to query these
log entries.

Platform LSF –
LIM

<share>/lsf/log/lim.log.<se
rvername>

Static and dynamic
attribute information
about individual hosts.

When LIM and other
daemons working with
LIM (PEM, VEMKD) are
having issues starting.

Platform LSF –
RES

<share>/lsf/log/res.log.<s
ervername>

Status of remote
execution requests to
the local Grid node.

When sessions will not
start across the Grid. For
example, a user is unable
to launch a Workspace
Server session.

Platform LSF –
SBD (sbatchd)

<share>/lsf/log/sbatchd.lo
g.<servername>

Status of job execution
on the local Grid node.

When sessions will not
start across the Grid. For
example, a user is unable
to launch a Workspace
Server session. Issues
could relate to any of
these components. It’s
recommended to check
them in the order shown.

Platform LSF –
PEM

<share>/lsf/log/pem.log.<
servername>

Information about
remote operations of
services, for example
the starting and stopping
of services.

Platform LSF –
MBD (mbatchd)

<share>/lsf/log/mbatchd.l
og.<servername>

Status of services on
other machines.

Platform LSF –
MBSD (mbschd)

<share>/lsf/log/mbschd.lo
g.<servername>

Status of the mbschd
service.

Platform LSF –
VEMKD

<share>/lsf/log/vemkd.log.
<servername>

Aggregated host
information about the
state of individual
resources and status of
allocation requests.

To check the availability
of a server. Contains
information about servers
becoming “Closed”.

7

Component Log File Contents Checked Under What
Circumstance

Platform LSF –
EGOSC

<share>/lsf/log/esc.log.<s
ervername>

Information about
service failures and
service instance
restarts.

EGO is unable to bring up
services which have been
configured for High
Availability.

Table 3. LSF Log Contents.
*1 “<share>” resolves to the file share which presents the shared LSF and PM directories.

*2 “<servername>” resolves to the server on which the process is running.

*3 “<cluster_name>” resolves to the chosen cluster name.

Table 4 shows the common SAS logs and a summary of the information they contain. These logs would
be checked if the users are able to launch SAS sessions but then experiences errors during execution.
Note that this is not a complete list, but instead contains the “typical” components.

Component Contents Checked Under What Circumstance
SAS Metadata Server Security events, Metadata

server backups, changes
to metadata, metadata
administration events, all
client connections.

User is unable to access metadata objects that
they expect to be able to see.
Metadata has changed unexpectedly.
Metadata backups fail.

SAS Object Spawner Details of client
connections and requests
to all SAS servers.

User is unable to launch a SAS session.
User is unable to launch Stored Processes.

SAS Stored Process
Server

Information about client
connections to the Stored
Process server and SAS
code ran on the stored
process server.

Stored Processes not executing as expected.

SAS Workspace
Server

Everything that the user
has done in their SAS
session (turned off by
default).

User is not able to view libraries/items set up in
Autoexec’s that they believe they should.
SAS session is not executing as expected.

SAS Web Information about the
individual Web
Applications.

Web Applications are unavailable.
Web Applications are not executing as
expected.

SAS WebAppServer Information about the
individual Web Application
servers.

Web Applications are unavailable.

SAS WebServer Information about the Web
Server.

Web Applications are unavailable.

Table 4. SAS Log Locations

8

If using the Windows Operating System, the Event Viewer can also be useful when troubleshooting
issues. Specifically, the “Application” tab listed under “Windows Logs”.

Figure 3 shows this view. Event Viewer is most commonly used to identify failures caused by
interruptions to network connections. It can also be used to see errors relating to local services failing.

Figure 3. Windows Event Viewer
If using a Linux Operating System, there is no direct equivalent to Windows Event Viewer. LSF will write
to the LSF logs where possible, but if it’s unable to write to them or unable to read or find the “lsf.conf”
file, messages will be written to syslog.

TURNING UP LOGGING LEVELS – PLATFORM LSF
It is possible to increase or decrease the amount of information contained in the log files produced by
LSF. By default, LSF produces logs to a level of “LOG_WARNING”; only messages that are warnings or
more serious are recorded. This value is set using the “LSF_LOG_MASK” parameter in lsf.conf as shown
in Figure 4.

Figure 4. LSF Logging Parameter
When troubleshooting, it can be useful to change this logging level to increase the amount of information
recorded in the log files. This would be done if the detail currently being generated in log files was not
enough to troubleshoot the issue.

9

Level Description
LOG_WARNING Log only those messages that are warnings or more serious

messages. This is the default level of debug information.
LOG_DEBUG Extra messages appear in log files relating to DEBUG levels.

Table 5. Platform LSF Logging Levels
Changing the “LSF_LOG_MASK” value causes numerous logs created by Platform LSF to be affected.

When changes are made to “lsf.conf”, Platform LSF needs to restart LIM and re-read configuration files in
order for the changes to take effect. Table 6, below, shows these two commands.

Command Description
lsadmin reconfig Restarts Platform LIM
badmin reconfig Reloads configuration files

Table 6. LSF Reconfiguration Commands
Note that the size of the log files being generated should be monitored to ensure that the disk space used
does not become too large. The logging level should be returned to the default level once
troubleshooting is complete.

Turning Up Logging Levels Temporarily - LSF
Logging can be turned up and down on an ad-hoc bases without needing to make changes to lsf.conf by
using the “lsadmin” and “badmin” commands. This is particularly useful when you don’t want to restart
the system to alter the logging levels. The following commands set temporary message log level options
for LIM, RES, mbatchd, sbatchd and mbschd respectively:

lsadmin limdebug [-l debug_level] [-f logfile_name] [-o] [host_name]

lsadmin resdebug [-l debug_level] [-f logfile_name] [-o] [host_name]

badmin mbddebug [-l debug_level] [-f logfile_name] [-o]

badmin sbddebug [-l debug_level] [-f logfile_name] [-o] [host_name]

badmin schddebug [-l debug_level] [-f logfile_name] [-o]

Where the modifiers include:

• “debug_level” can be “1”, “2” or “3” depending on the amount of information to be included. Level 3
contains the most debug information, whereas level 1 contains the least.

• “logfile_name” is the location and name of the log file which will contain the logging information. It is
recommended that the name given is one of a new file that doesn’t already exist, in order to
appropriately isolate messages related to this period of additional logging.

• “host_name” is the host for which information will be logged.

• “-o” turns the temporary logging back off and logging resumes to normal.

This approach can be useful for capturing specific events, at a raised “debug” level in a separate log file.
For example, the following command will collect DEBUG1 level information about LIM on host
“AVSASLGN1” in a log file called “limdebug.lim.log.avsaslgn1”:

lsadmin limdebug -l 1 -f ~/limdebug avsaslgn1

This command’s successful execution can be seen in Figure 5.

10

Figure 5. Temporarily Turning up LIM Logging
The following figure shows the contents of the log file produced during this period of additional logging:

Figure 6. DEBUG Logging Example
Turning off temporary logging will return the logging to its default state as soon in Figure 7.

Figure 7. Turning Off Temporary LIM Logging

TURNING UP LOGGING LEVELS - SAS
If information included in the SAS logs is not detailed enough to aid in resolving an issue, it may be
necessary to turn up the SAS logging levels above the default settings.

When considering troubleshooting, SAS receives it’s logging instructions from different XML files. This
paper focuses on “logconfig.xml” and “logconfig.trace.xml”:

• “logconfig.xml” is the default logging instruction, and using this, SAS will produce “INFO”, “WARN”
and “ERROR” messages. It does this for all SAS components apart from the Workspace server,
whose “logconfig.xml” file instructs SAS to not save the logs to any location, in order to save on disk
space due to the number of logs it would generate.

• “logconfig.trace.xml” contains instructions to produce the same log information as previously, but with
additional “DEBUG” information. Where the Workspace server is considered, these new instructions
also tell SAS to save the logs, with the DEBUG information added.

To instruct SAS to use the “logconfig.trace.xml” set of logging instructions, administrators can modify the
sasv9_usermods.cfg file. This example uses the Workspace Server. The Workspace Server’s
sasv9_usermods.cfg file is located in the following location:

<config>/SASApp/WorkspaceServer/sasv9_usermods.cfg;

The logging level can be altered by using the “logconfigloc” option and specifying “logconfig.trace.xml” as
follows:

-logconfigloc <config>/SASApp/WorkspaceServer/logconfig.trace.xml

11

When making changes to the “usermods” files, services require a restart in order to pick up the changes.
This does not affect the Workspace server, as these are generated on a session-by-session basis.

Be warned that turning up logging levels should only be done when necessary and on a temporary basis.
By turning up the logging level, more information is generated in the log, meaning that the space taken up
by the log files is bigger. Workspace Server logs are a particular concern, as normally they would not be
retained. With this in mind, remember to:

• Monitor the amount of space that the log files are using;

• Ensure that surplus logs are regularly deleted if the logs are turned up for an extended amount of
time in hope of recording a certain event;

• Return the logging level to its original state once the issue is fixed;

• Delete remaining log files once they are no longer needed.

REDIRECTING THE LOG FILES – LOCAL CONFIGURATION ONLY
When using a local configuration, by default the log files are generated locally on each machine in its own
configuration directory. This can be time consuming when searching for specific log files. If using a
shared configuration, the log files are automatically written to a shared directory and hence, this is not an
issue.

To redirect local log files to a centralized location, the relevant “logconfig.xml” files can be modified. Note
that changes to configuration files such as this can be detrimental to the platform if done in error. It is
recommended that backups of files are taken prior to making any changes.

Let’s look into the Object Spawner logging. The following line in the Object Spawners’ “logconfig.xml” file
dictates the location where the log file is written:

<param name="FileNamePattern"

value="/opt/sas/Lev1/ObjectSpawner/Logs/ObjectSpawner_%d_%S{hostname}_%S{pi

d}.log"/>

Alter the location to point to a reserved, shared location. This example shows the file modified so that the
log is written to the following location:

 /sas_share/logs/Lev1/ObjectSpawner

Figure 8 shows these changes made in the logconfig.xml file to redirect the log files to another location.

Figure 8. Log Redirection
Remember that as each server has its own local version of the logconfig.xml file, this change should be
made on each Grid node in each individual configuration. This results in a single location for SAS
administrators to check for log files.

12

ENHANCING THE SAS LOG
One of the simplest, yet valuable ways to prepare ahead of any issues is to enhance the information
included in the log, particularly in the Workspace Server log which will be used as an example.
Workspace Server log files contain a copy of the code (and resulting log messages) produced during the
sessions’ execution. Some subtle additions to the Workspace Server’s autoexec files will aid you when
troubleshooting by making the sessions more identifiable. The following lines placed in the
“autoexec_usermods.cfg” file will tell administrators who created the log, the operating system process ID,
what server the program was executing on and importantly, the LSF job ID. Note that the code works in
both UNIX and Windows topologies:

%put NOTE: Session info: &sysuserid;

%put NOTE: Process ID: &sysjobid;

%put NOTE: Server Host: &syshostname;

%let lsfid = %sysget(LSB_JOBID);

%put NOTE: LSF Job ID: &lsfid;

Figure 9 shows an excerpt of the log produced whilst the above alterations were in place.

Figure 9. Log Output
The LSF Job ID is a unique identifier which enables administrators to investigate specific LSF jobs. It is
different from the Job ID (UNIX) or the Process ID (Windows). This LSF Job ID is useful as it a unique
identifier specific for LSF that allows administrators to track jobs from start to finish through the log files. It
can be used in conjunction with the lsb.events.n files to check job history, as well as using the “BHIST”
command as discussed in the section “Enhancing the SAS Log”.

Having all of the information readily available in each log provides the SAS administrator (and end user)
more information about the job or log file that they’re investigating.

Note that Workspace server logging must be turned on in order to retain these logs and the information
contained in them, as by default, Workspace Server does not save the created log files. These
alterations can be made to other autoexec files (for example, Stored Process Server) to ensure that this
information is captured for those components also. To benefit the most from these types of modifications,
it is recommended that you consider making these changes to the following server’s configuration files at
a minimum:

• Workspace Server

• Batch Server

• Stored Process Server

13

IDENTIFYING THE ISSUE
Troubleshooting becomes much easier when using the information gained from the previous section.
Knowing the server on which the SAS Session was executing allows us to check server-specific
measures. For example, in Windows the correct server can be investigated and Event Viewer launched.

If when troubleshooting an issue reported by a specific user, searching for the relevant username in log
files can aid in identifying the correct log file. If the log file itself doesn’t include any indicators as to the
cause of the error, the LSF Job ID along with some LSF commands can be used to gain an
understanding of why the program may have failed.

There are numerous LSF commands available to SAS Administrators.

EXAMPLE OUTPUTS FOR USEFUL LSF COMMANDS
The following section shows example output produced by some of the most useful Platform LSF
commands used when troubleshooting a SAS Grid Platform. We highlight specific output produced and
explain what it shows.

BHIST
The BHIST command displays historical information about jobs such as the master Grid controller that
submitted it, the queue to which it was submitted, the server it got sent to for execution, the user that
submitted it, reasons for job termination as well as the date and time the job was submitted. It is used to
find out job history, including any reasons for job failure. Particularly useful when jobs are scheduled.
Enables administrators to find out the reasons for terminated jobs. It reads all of this information from the
current “lsb.events” file. If a job has failed during execution and exited, the BHIST command will provide
administrators with an exit code which can then be used to determine the issue. The BHIST command
requires the LSF Job ID as an input.
Figure 10 shows the BHIST command searching for information about LSF Job ID 885. Specifically, it
shows that:

1. SAS Enterprise Guide was used to submit the job;

2. User “cowheyj” submitted the job;

3. The job was submitted at 14:22:13 on Thursday, 22nd February.

4. “AVSASLGN1” was the Master Grid Controller at the time of job submission;

5. The job was submitted to “AVSASLGN3” for execution;

6. The UNIX Process ID was “7258”;

7. The job ran successfully, finishing at 14:24:53 on Thursday 22nd February.

14

Figure 10. Example BHIST Output

BHOSTS
The BHOSTS command displays hosts and their static and dynamic resources. It can be used to check
whether hosts are “open”, “closed” or “unavailable”, the number of jobs currently running across the Grid
and number of job slots across the Grid. If the command times out, this usually means that Platform LIM
is not started. It is useful when end users are reporting that work is unable to be submitted to the Grid, or
that SAS Enterprise Guide sessions cannot be started. It could be because no nodes are available,
because the job slots across the Grid are full, or because LIM isn’t up.
If users are able to authenticate but then unable to launch a Workspace Session, it may well be because
no Grid nodes are available, or because all available job slots are full. Figure 11 shows that:

1. There are 8 jobs currently running on the Grid, 2 on AVSASLGN1 and 3 on each of AVSASLGN2 and
AVSASLGN3.

2. One job which has been sent to AVSASLGN1 for execution has been suspended by a user;

3. There are 48 job slots on each Grid node.

15

Figure 11. Example BHOSTS Output

BJOBS
The BJOBS command is used to check the status of jobs across the Grid. It is useful when you wish to
know who is using the Grid and what Grid nodes their sessions are using. It will show you the state of all
jobs across the Grid, whether jobs are running, suspended or pending. It provides details on the user
who submitted the job, what client was used to submit the job (e.g. Enterprise Guide), which Grid node
submitted the job (Master Grid Controller) and which Grid node the job is executing on. It is useful when
you wish to know who is executing work on which server. It’s also useful if you want to check what state
jobs are in: whether they are pending, suspended or waiting for a job slot. You can query all jobs sent by
a specific user by specifying their username (e.g. “bjobs -u cowheyj”). If you wish to see jobs submitted
by all users across the Grid, the “-u all” switch must be used. Figure 12 shows:
1. “cowheyj” is the user whose job has been suspended;

2. The date and time the jobs are submitted;

3. “AVSASLGN1” was the Master Grid Controller at the time of submission;

4. All jobs have been sent to the normal queue;

5. The LSF Job ID’s span from 363 to 371.

Figure 12. Example BJOBS Output

LSID
The LSID command displays the current LSF version number, the cluster name and the master host
name. It is useful when you are unsure which Master Grid Candidate is currently the Master Grid
Controller. Also, it will return “Host does not have a valid software license” if Platform LSF is not licensed.
Figure 13 shows:
1. The LSF version is 10.1.0.3;

2. The cluster name is “sas_cluster”, the Master Grid Controller is “AVSASLGN1”.

16

Figure 13. Example LSID Output

Other Useful LSF Commands
Table 7Error! Reference source not found. shows some further LSF commands most commonly used
when troubleshooting a Grid platform.

LSF
Command

Usage Aids in Resolving

lsload The LSLOAD command
displays load information for
hosts, including CPU usage.

If users are experiencing performance issues, it could
be because the CPU is over-utilized on a certain Grid
node. The LSLOAD command enables administrators
to view the CPU utilization across the Grid. The
LSLOAD command is also useful if jobs seem to be
being sent to the same node.

bsub
e.g.
bsub sleep
30

Submits a job to LSF. If users are unable to launch jobs on the Grid, the bsub
command can be used to launch jobs to quickly test
the functionality and job distribution.

bstop /
bresume
e.g.
bstop 273
bresume
273

Suspends unfinished jobs. If a job is using a lot of resources which are required
elsewhere, the job can be paused using the “bstop”
command and specifying the LSF Job. This will force
the job into a “USUSP” state – User Suspended.
Jobs that have been paused using “bstop” can be
resumed by issuing the “bresume” command.

bkill
e.g.
bkill 273

Sends signals to kill, suspend,
or resume unfinished jobs.

If a job is running on the Grid which needs to be
stopped, the “bkill” command can be issued and the
LSF Job ID specified.

Table 7 - Commonly Used LSF Commands

METHODS FOR TROUBLESHOOTING SAS ISSUES
Once you’ve submitted the LSF commands listed in the previous section and the output/results are what
you’d expect to see, if the issue persists you can assume the issue lies within SAS.

Assuming that all SAS services are running as expected, issues are most commonly caused by items in
metadata or errors in configuration files. In order to troubleshoot these, you would first try launching SAS
Enterprise Guide yourself. When launching Enterprise Guide, SAS will read all of the relevant
configuration files in order to set the correct settings for your session. It will also query metadata and
assign your access to different metadata objects based on authorizations set.

Assuming that workspace logging is already turned up to the “trace” level and that you have access to an
account with identical OS permissions to the end user reporting the issue, you can launch

17

“workspaceserver.bat” (Windows) or “WorkspaceServer.sh” (UNIX) from command prompt/PowerShell
(Windows) or bash (UNIX).

Taking this step back and launching the workspace server manually allows administrators to isolate
different settings which are normally picked up during the launching of an Enterprise Guide; configuration
settings or access to Metadata objects. A traditional workspace server command is as follows:

<config>/Lev1/SASApp/WorkspaceServer/WorkspaceServer.sh

Launching this “WorkspaceServer.sh” has a domino effect as it contains its own set of instructions which
in turn, call different files which make up the SAS configuration. Knowing this, administrators can dissect
and omit specific commands. For example, administrators can launch a Workspace Server session
without querying metadata by specifying a non-existent SAS Application Server context to the
“metaautoresources” switch as follows:

<config>/Lev1/SASApp/WorkspaceServer/WorkspaceServer.sh –

metaautoresources none

If a session is started without errors, administrators can assume that the issue lies within metadata and
can begin their investigation there, as metadata is the likely cause.

Conversely, administrators can opt to launch a workspace server session without picking up any specific
autoexec settings by specifying the “-noautoexec” switch as follows:

<config>/Lev1/SASApp/WorkspaceServer/WorkspaceServer.sh -noautoexec

If this session starts successfully without errors, administrators can assume that the issue lies within
settings specified within the autoexecs.

RESOLVING THE ISSUE
Once the issue has been identified, you can begin the task of resolving it. Sometimes this can be
something as simple as altering a configuration file, which occasionally can be done immediately without
the need to restart services.

However, if the problem lies with a specific Grid node (hardware, local files), it may be necessary to take
that Grid node out of the Grid whilst the issue is resolved. There are multiple ways of doing this.

The most straight forward way of taking a node out of the Grid is to “close” the server itself from Platform
LSF’s perspective. Once this is done, jobs will no longer be sent to that Grid node for execution.

To “close” the server from Platform LSF’s perspective, the following command should be issued from the
server which the administrator wishes to close. The command is shown, alone with the expected output:

badmin hclose
Close <avsaslgn1> done

18

The closing of this server can be checked by issuing the “bhosts” command. “closed” should appear
under the “status” column next to the desired server:

Figure 14 - Closed Grid Node
Once this has been done, no new sessions will be sent to the Grid node. However, there may be existing
sessions which need to be stopped prior to carrying out any essential work. These can be identified using
the “bjobs” command and specify information for all users using the “-u all” switch. Identified sessions
can be stopped by using the “bkill” command available through LSF followed by the LSF Job ID:

bkill 273

Once the work has been carried out and the server functionality assured, the server should be
reintroduced to the Grid. This is done by “opening” the server. The following command should be issued
on the server the administrator wishes to open. The command is shown, along with the expected output:

badmin hopen

Open <avsaslgn1> done

An LSF administrator is able to open and close servers from another server’s terminal by specifying the
name of the server after the command, for example:

badmin hclose AVSASLGN2

Close <avsaslgn2> done

Note that there are other methods for removing a server out of the Grid. If designed with high availability
in mind, queues may be available for different host groups. It would then be possible to force users into
specific queues and switch existing sessions to run in specific queues, freeing up specific hosts. For
example, queues may be created which references the specific hosts, allowing the remaining hosts to be
brought out of the Grid for maintenance.

PROACTIVE STEPS
The following section outlines steps which you should take in order to proactively monitor your Grid
platform, ahead of any errors occurring.

SAS GRID MANAGER – SAS ENVIRONMENT MANAGER
When running enterprise scale software, it is best practice to monitor the platform whenever it is in use.
This can be done for a SAS Grid Platform by utilizing the SAS Grid Manager plug-in for SAS Environment
Manager which uses the Platform Web Services component.

Not only does the Grid Manager plug-in for SAS Environment Manager enable you to monitor the Grid, it
also allows you to control certain aspects of the Grid through SAS Environment Manager, as opposed to
doing this through the configuration files.

In addition, alerts can be set which will notify you if resources exceed certain thresholds.

ENTERPRISE GRID ORCHESTRATOR (EGO)
Platform LSF’s “EGO” service (Enterprise Grid Orchestrator) should be configured to monitor and restart
services where possible. By default, EGO monitors the status of the Master Grid Controller and the
Master Grid Candidates through the Platform LSF services only. It’s recommended that this component

19

is modified to monitor the status of the Object Spawner at a minimum, however it can be modified to
monitor all SAS services.

EGO can actually be used to monitor (and commonly administer - start/stop) any service running on your
Grid nodes – even services not related to SAS!

CONCLUSION
Once an error occurs within a Grid environment, it can be challenging to track down the relevant
information without a logical methodology to follow.

Take time to familiarize yourself with the main components of the platform and have a methodology in
mind for troubleshooting ahead of time. Knowledge of log locations and LSF commands is
recommended; it ensures that troubleshooting can be performed in an efficient and safe manner.

Design and modify the Grid configuration in such a way that you are prepared for a failure. Preparing for
this at its most simple level can be done by modifying configuration files. This ensures that should an
issue arise, the information you require to resolve is easily and readily available. At a more advanced
level, EGO can be configured to monitor services and maintain high availability. Alerts and thresholds
can be set using SAS Environment Manager.

REFERENCES
IBM Knowledge Center. “IBM Platform LSF Command Reference.” Accessed February 15, 2018.
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_kc_cmd_ref.html

IBM Knowledge Center. “Logging and Troubleshooting.” Accessed February 15, 2018.
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/lsf_ego_logs_troublesho
ot.html

Platform Computing Inc. “Managing LSF on Platform EGO.” Accessed February 15, 2018.
http://capsella.ccs.yorku.ca/homepage/lsfhpc/admin/lsf_on_ego.html

IBM Knowledge Center. “Set Daemon Message Log to Debug Level.” Accessed February 15, 2018.
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_admin/troubleshooting_daemo
n_debug_level_lsf.html

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Jason Hawkins
Amadeus Software Limited
Mulberry House, 9 Church Green, Witney, Oxon OX28 4AZ
+44 (0) 1993 848010
Jason.Hawkins@amadeus.co.uk
www.amadeus.co.uk

https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_kc_cmd_ref.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/lsf_ego_logs_troubleshoot.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/lsf_ego_logs_troubleshoot.html
http://capsella.ccs.yorku.ca/homepage/lsfhpc/admin/lsf_on_ego.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_admin/troubleshooting_daemon_debug_level_lsf.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_admin/troubleshooting_daemon_debug_level_lsf.html
mailto:Jason.Hawkins@amadeus.co.uk
http://www.amadeus.co.uk/

