
1

Paper 2543-2018

SASLint: A SAS® Program Checker

Igor Khorlo, Syneos Health™

ABSTRACT

Linters are programs that carry out static source code analysis, detecting certain bugs, coding rule
deviations, and other issues. Linters also detect redundant or error-prone constructs that are nevertheless,
strictly speaking, legal. Potential performance optimizations can also be checked by linters. This paper
covers creating a modular linter for the SAS® language consisting of a parser module, an analysis module
that includes a list of rules, and a reporting module that displays issues found. It is possible to include and
exclude rules, as well as develop your own rules, all of which makes the linter very flexible for any team
with its own list of requirements regarding the source code and programming standards. The parser for
SAS language grammar is based on the ANTLR Java parser. The tool is written in Java and SAS, which is
why it can be integrated into any SAS environment.

INTRODUCTION

So what is a linter? A linter is a program which parses your source code and builds a tree of objects which
reflects what is written in the source code (which statements are used, how many spaces are used for
indentation, etc). This is called an abstract syntax tree (later AST). And afterwards it analyses the AST for
a set of rules. So, the main idea is that the linter doesn't run the input program, it directly analyses how the
program has been written. In other words, it performs a static analysis of the source code.

Figure 1: Linter architecture

OK. But what benefits does this bring, you ask. Let's consider several real-life examples.

PROGRAMMING RULES

I guess most people here have their own team rules which are written out in some document. The main
disadvantage is that you have to check all these rules manually and force yourself to comply with them
otherwise someone else may find a deviation from the rules in your code and I would say that is a
situation to be avoided. Linters can fix this. Let’s make machines do the work. Migrate all your rules to
algorithms which will detect rule deviations in your code, and it's done. Now the machine tells you what is
wrong with your program. And this saves much time and nothing will ever be missed.

2

For example you have a reporting framework for graphics in your company and you must always use it,
otherwise deviations from this rule must be marked with a comment in your program and well explained
and argued. We can write a check for this: if a program creates a graphic and contains no calls of macros
from the graphical macro library, then it must contain a comment in a specific place with, say, a minimum
length of 200 explaining why.

DANGEROUS BUT LEGAL CODE

Suppose we have the following condition:

where pcng < 90;

The issue here is that the condition may work now as expected because there are no missings in the pcng
variable, but tomorrow, when new data arrives, it will work incorrectly without generating any error or
warning and you may spend several hours identifying the issue. The safe way is:

where . < pcng < 90;

Writing a check for this sort of situation will definitely save you time and nerves in the future as well as
protect you from errors.

STYLEGUIDE

Let's consider two pieces of code:

Poorly aligned:

DATA CLASS CLASS18;
SET SASHELP.CLASS;BMI=WEIGHT/HEIGHT**2;
IF AGE > 18 THEN DO; OUTPUT CLASS18; END;
ELSE OUTPUT CLASS;
PROC FREQ DATA = CLASS18;
TABLES BMI;

and well-aligned:

data class class18;
 set sashelp.class;
 bmi = weight / height ** 2;
 if age > 18 then do;
 output class18;
 end;
 else do;
 output class;
 end;
run;

proc freq data = class18;
 tables bmi;
run;

I think most of you will agree that the second one looks better. It is even hard to understand what is going
on in the first piece of code. And we can also force users to correct their indentation as this will be
reported by the linter.

But if you don't need it you can disable this rule or modify it for your needs.

3

KNOWLEDGE SHARING PROBLEM

Let's consider that you have several teams in your company. You faced a situation in your code and want
to share this lesson learned with others. Of course, you can send an email to everyone and even if it was
read most people would forget about this quickly or even have no time to read it. Linters can help here too.
You can have a global configuration file for your linter which will be sharable across all teams. If you faced
a lesson learned and you want to share it and warn other people, write a rule for it and it will automatically
be distributed across all teams. So, you can use this global config for knowledge sharing.

The same thing concerns SAS pitfalls, dangerous code, and similar sort of things which you can find in
many papers. Unfortunately, the reality is that you cannot keep all these things in mind, but having a tool
which will automatically check your source code will resolve this problem — we should outsource to
machines this boring work.

OPTIMIZATIONS

During my programming experience, I’ve seen many strange and inexplicable things from a logical point of
view. Some of them are:

• Sorting a dataset without need to do so.
• Changing dataset attributes like variable labels, formats and informats using DATA step. However,

this can be done using the DATASETS procedure without wasting system resources rewriting a
whole dataset.

• Using IF subset statement when it is possible to use WHERE.
• One more tip about performance and the SQL procedure using DICTIONARY Tables. You can use a

WHERE clause to help restrict which libraries are searched. However, the WHERE clause will not
process most function calls such as UPCASE. For example, if where upcase(libname) = 'WORK'
is used, the UPCASE function prevents the WHERE clause from optimizing this condition. All
libraries assigned within the SAS session are searched. Searching all the libraries could cause an
unexpected increase in search time, depending on the number of libraries assigned within the SAS
session. All librefs and SAS table names are stored in upper case. If you supply values for LIBNAME
and MEMNAME in upper case, and you remove the UPCASE function, the WHERE clause will be
optimized and performance will be improved. In the previous example, the code would be changed
to where libname='WORK'. And you will be surprised that even many papers contain non-optimized
upcase(libname) or similar WHERE clause with a SAS function. More information about this can
be found in SAS® 9.4 SQL Procedure User’s Guide, Fourth Edition.

The good news is that this too can be detected by linters and even more — corrected using AST
transformations.

ANTLR INTRODUCTION

The main goal of this section is to give a general overview of ANTLR’s capabilities and to explore the
language application architecture. Once we have the big picture, we’ll continue to build an ANTLR
grammar for SAS.

WHAT IS ANTLR AND HOW DOES IT HELP IN BUILDING A LINTER?

What is ANTLR? - ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for
reading, processing, executing, or translating structured text or binary files. It's widely used to build
languages, tools, and frameworks. From a grammar perspective, ANTLR generates a parser that can
build and walk parse trees.

Programs that recognize languages are called parsers or syntax analyzers. Syntax refers to the rules
governing language membership. A grammar is just a set of rules, each one expressing the structure of a

http://documentation.sas.com/?docsetId=sqlproc&docsetTarget=n02s19q65mw08gn140bwfdh7spx7.htm&docsetVersion=9.4&locale=en

4

phrase. The ANTLR tool translates grammars to parsers that look remarkably similar to what an
experienced programmer might build by hand.

The process of grouping characters into words or symbols (tokens) is called lexical analysis or simply
tokenizing. We call a program that tokenizes the input a lexer. The lexer can group related tokens into
token classes, or token types, such as INT (integers), ID (identifiers), FLOAT (floating-point numbers), and
so on.

The second stage is the actual parser which feeds off these tokens to recognize the sentence structure, in
this case an assignment statement. By default, ANTLR-generated parsers build a data structure called a
parse tree or syntax tree that records how the parser recognized the structure of the input sentence and
its component phrases. The following diagram illustrates the basic data flow of a language recognizer
(Figure 2):

Figure 2: ANTLR produces AST

By producing a parse tree, a parser delivers a handy data structure to the rest of the application (in our
case this is a linter) containing complete information about how the parser grouped the symbols into
phrases. Trees are easy to process in subsequent steps and are a default data structure for this kind of
task.

EXAMPLE OF PARSING SAS EXPRESSIONS

The first step towards building a linter application is to create a grammar that describes a language’s
syntactic rules (the set of valid sentences). In this section, we will discover ANTLR in more detail by
building a grammar for a simplified, generic SAS expression. We’ll build a grammar which will recognize
expressions like:

• 3
• 'Tom'
• a + b
• a**2 - 4 * a * c
• 'foo' || "bar"
• rfendt - rfstdt + (rfendt >= rfstdt)
• x in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
• trim(month) || left(put(year, 8.))

For demonstration purposes we will simplify this and consider only integers as numeric literals, also we
won't cover here all operator combinations supported by SAS, like:

• 1 =>: 2
• 1 ~ ne 2
• 1 not <=: 2
• 1 ~>=: 2
• ?-y = 2 with CHARCODE SAS System Option.

http://documentation.sas.com/?cdcId=pgmmvacdc&cdcVersion=9.4&docsetId=lesysoptsref&docsetTarget=p12ulbwcvihdn8n148ho3uurhse9.htm&locale=en

5

More detailed documentation for SAS expressions grammar can be found here.

ANTLR grammar is a plain text with .g4 extension which contains a set of rules. First let's consider simple
expression with +, -, *, / and with integers and variables names only (for a simplification purpose for a
now). We will use a choice pattern when parser can choose from a set of rules:

// Expr.g4

grammar Expr;

expr: expr ('*' | '/') expr
 | expr ('+' | '-') expr
 | INT
 | ID
 | '(' expr ')'
 ;

ID : [A-Za-z_][A-Za-z_0-9]* ; // match identifiers
INT: [0-9]+ ; // match integers
NL : '\r'? '\n' ; // newlines
WS : [\t\r\n\f]+ -> skip ; // toss out whitespace

Note the precedence here — the rule with multiplication and division comes first, so will be matched first.

The next step is to compile this grammar to a parser which is basically a set of Java classes, then compile
the generated Java code to bytecode and then test the result:

antlr4 Expr.g4
javac *.java
echo 'a + b * (var3 / 2)' | grun Expr expr -gui

To make the above commands work, you need to create the aliases for antlr4 and grun and update the
CLASSPATH for Java:

export CLASSPATH=".:/usr/local/Cellar/antlr/4.7.1/antlr-4.7.1-complete.jar:$CLASSPATH
"
alias antlr4='java -jar /usr/local/Cellar/antlr/4.7.1/antlr-4.7.1-complete.jar'
alias grun='java org.antlr.v4.gui.TestRig'

The path /usr/local/Cellar/antlr/4.7.1/antlr-4.7.1-complete.jar should be replaced by the
path where your ANTLR download is located. For more details on how to set ANTLR up please see the
documentation — Getting Started with ANTLR v4.

http://documentation.sas.com/?docsetId=lrcon&docsetTarget=p00iah2thp63bmn1lt20esag14lh.htm&docsetVersion=9.4&locale=en
https://github.com/antlr/antlr4/blob/master/doc/getting-started.md

6

The result is the following parse tree for the example expression a + b * (var3 / 2):

Figure 3: Parse tree

As you may already realize from the grammar, the parser rule for expr is recursive, therefore we can split
the expression into a set of atomic rules and ANTLR will do its work and match the code accordingly.

Now let's add function support:

// Expr.g4

expr: ID '(' expr_list? ')'
 | expr ('*'|'/') expr
 | expr ('+'|'-') expr
 | INT
 | ID
 | '(' expr ')'
 ;

expr_list: expr (',' expr)* ;

7

The expr_list rule uses a sequence pattern, so it will match a sequence of expressions separated by a
comma inside a function call. Here’s the result of parsing cat(str1, 42, cat(foo, bar)) (Figure 4):

Figure 4: Parse tree

As you can see, ANTLR is a really powerful tool for parsing and building grammars.

In the following sections, we will consider how to use the generated parse tree, and how to extract useful
information from static code.

SAS GRAMMAR

In this section we will consider several cases for using SAS grammar together with a walking method as
provided by ANTLR for AST.

DATA FLOW GRAPH

I’m sure many of us have been faced with the problem of needing to become familiar with a complex
program in a short amount of time. The program may be hard to navigate — it may be very big, or you
cannot run it (data is not available, or it is legacy code). We will build a data flow graph for the program,

8

where you can easily see the flow of the data and which datasets were used for the creation of others. As
a result, we obtain the picture below (Figure 5):

Figure 5: Data flow graph for the example program

Suppose that we have a SAS Grammar (SAS.g4 from the source code, it is a simplified SAS grammar
which is enough to demonstrate the tool). Let's see how it works on a simple SAS program like this:

data class;
 set sashelp.class end=eof;
 name = catx('-', name, eof);
run;

proc sort data=class;
 by name;
run;

The resulting parse tree is as follows (Figure 6):

Figure 6: Parse tree for the program.sas

ANTLR provides you two methods to walk an AST: the listener and the visitor pattern. The listener pattern
implements the idea that for each node like a set statement, variable reference or expression two methods
(functions) will be triggered - when the parser enters the node and when it exits. So basically everything is
done automatically, whereby the appropriate methods are triggered by the parser during the tree walk,
and you just need to write the code you want to execute in the methods you need. The visitor pattern acts
differently, in that you manually call a method (function) to visit a specific node.

9

In our case we will use the listener pattern. First, we’ll generate a graph using the language called DOT.

DOT is a declarative language for describing graphs such as network diagrams, trees, or state machines.
(DOT is a declarative language because we say what the graph connections are, not how to build the
graph.) It’s a generically useful graphing tool, particularly if you have a program that needs to generate
images.

DOT code looks like:

digraph G {
 a -> b
 b -> c
 c -> a
}

Here’s the resulting diagram created using the DOT visualizer, graphviz:

Figure 7: DOT example

To visualize a data flow, we need to read in a SAS program and create a DOT file (and then view it with
graphviz). Our strategy is straightforward. When the parser finds a DATA step or a SORT procedure, our
application will create two lists with input and output datasets. When the parser sees a dataset reference
in input statements (SET/MERGE/PROC SORT DATA= option) or output statements (DATA
statement/PROC SORT OUT= option) it will add it to the appropriate list. Upon exiting a DATA step or a
procedure the application will dump all input and output datasets into a DOT output file in the following
way: suppose we have datasets a, b at input and c at output. Then next lines will be generated to DOT
file:

...
a -> c
b -> c
...

We will override the enter and exit methods for GlobalStatement and enter methods for DatasetInput
and DatasetOutput nodes:

// DataflowGraph.java

static class DataflowListener extends SASBaseListener {
 Graph graph = new Graph();
 Set<String> input = new OrderedHashSet<String>();
 Set<String> output = new OrderedHashSet<String>();

 public void enterGlobalStatement(SASParser.GlobalStatementContext ctx) {
 input.clear();
 output.clear();
 }

https://www.graphviz.org/doc/info/lang.html
graphviz

10

 public void exitGlobalStatement(SASParser.GlobalStatementContext ctx) {
 for (String i: input) {
 graph.nodes.add(i);
 for (String o: output) {
 graph.edge(i, o);
 }
 }
 }

 public void enterDatasetOutput(SASParser.DatasetOutputContext ctx) {
 output.add(ctx.dataset().ID().toString().replaceAll("\\[|\\]", "\"").replaceA
ll(", ","."));
 }

 public void enterDatasetInput(SASParser.DatasetInputContext ctx) {
 input.add(ctx.dataset().ID().toString().replaceAll("\\[|\\]", "\"").replaceAl
l(", ", "."));
 }
}

The entry point of our program will be a main method of the DataflowGraph class:

// DataflowGraph.java

public class DataflowGraph {
 ...
 public static void main(String[] args) throws Exception {
 // Read input file if present otherwise take use input
 String inputFile = null;
 if (args.length > 0) inputFile = args[0];
 InputStream is = System.in;
 if (inputFile!=null) {
 is = new FileInputStream(inputFile);
 }

 // Prepare
 ANTLRInputStream input = new ANTLRInputStream(is);
 SASLexer lexer = new SASLexer(input);
 CommonTokenStream tokens = new CommonTokenStream(lexer);
 SASParser parser = new SASParser(tokens);
 parser.setBuildParseTree(true);

 // Parse specifying the input parse rule file
 ParseTree tree = parser.file();

 // create a dataflow graph
 ParseTreeWalker walker = new ParseTreeWalker();
 DataflowListener collector = new DataflowListener();
 walker.walk(collector, tree);

 // print the result
 System.out.println(collector.graph.toDOT());
 }
}

11

So let’s try this on the following program:

/* dataflow.sas */

proc sort data=sdtm.dm out=dm;
 by usubjid;
run;

proc sort data=sdtm.ae out=ae;
 by usubjid aestdtc;
run;

proc sort data=sdtm.sv out=sv;
 by usubjid;
run;

data ae2;
 merge dm ae;
 by usubjid;
run;

data mess;
 set dm ae2 sv;
 s = '
 data abc;
 set a b c;
 set d;
 ss = ''
 data aabbcc; /* / this is a */
 set aa bb cc; /* <=| string not */
 run; /* \ a DATA step */
 '';
 run;
 ';
run;

proc sort data=ae2;
 by usubjid aestdtc aeendtc;
run;

data mess2;
 merge mess ae2;
 by usubjid;
 set ads.adlb(where=(paramcd='BACT' and visit = 'Screening')) key=keyvar / unique;
run;

data mess2;
 set mess2;
 paramcd = 'BACTERIA';
run;

proc sort data=mess2 out=result;
 by usubjid svdtc;
run;

12

Note that I specifically included the string with the DATA step code where the ss = variable is assigned in
the mess DATA step. This was done intensively to show that this text won't be recognized as a SAS code
and will be considered as a normal string by the parser — this behavior is what we expect from the parser.

After running the application we get the following output:

$ javac *.java
$ java DataflowGraph dataflow.sas
digraph G {
 ranksep=.25;
 edge [arrowsize=.5]
 "sdtm.dm"; "sdtm.ae"; "sdtm.sv"; "dm"; "ae"; "ae2"; "sv"; "mess"; "ads.adlb"; "mess
2";
 "sdtm.dm" -> "dm";
 "sdtm.ae" -> "ae";
 "sdtm.sv" -> "sv";
 "dm" -> "ae2";
 "dm" -> "mess";
 "ae" -> "ae2";
 "ae2" -> "mess";
 "ae2" -> "mess2";
 "sv" -> "mess";
 "mess" -> "mess2";
 "ads.adlb" -> "mess2";
 "mess2" -> "mess2";
 "mess2" -> "result";
}

In the output you will get the DOT source code of the data flow graph. To obtain the Figure 6 you can use
graphviz and pipe the result to it to obtain the image. Or you can use this website -
https://dreampuf.github.io/GraphvizOnline/.

Data flow graph using the SCAPROC procedure or RTRACE System Option

Similar results may be obtained using the output from the SCAPROC procedure or using the RTRACE
System Option for UNIX or Windows. This approach is easier and does not involve SAS source code
parsing but you have to adapt your program and run it to obtain the output from these procedures or
options.

SOURCE CODE FORMATTING

The topic of source code formatting, automatic alignment, and AST transformations attracted
programmers from the earliest stages of programming development. Everyone would agree it would be
great if you didn’t need to bother about for code alignment and your code became well-structured at the
press of a button.

https://dreampuf.github.io/GraphvizOnline/
http://documentation.sas.com/?docsetId=proc&docsetTarget=p1jvpkfx4equbkn1llhk2or03r0i.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetTarget=p0lyguqz566hbxn1t6y2aqyr4g2n.htm&docsetVersion=9.4&locale=en
http://support.sas.com/documentation/cdl/en/hostwin/69955/HTML/default/viewer.htm#p1stv3c5bpfplsn1g2ob6645u436.htm

13

The following screenshots (Figure 8, 9) are taken from Computerworld magazine from the 80s and I was
not even born at that time. These are source code formatting tools for the COBOL language, used at that
time:

Figure 8: Computerworld May 14,
1984, p. 24

Figure 9: Computerworld March 31, 1986, p. 59

For source code formatting, as explained in the styleguide section, we need to write formatters for the
parse tree nodes. This allows us to control the case of keywords, indentation, and general code style.
Particularly, the indentation is stored in a variable the population of which is triggered on entering and
exiting the parse rule nodes like IF-THEN/ELSE, DO-WHILE, DO-END statements.

SAS LOG PARSING AS A MACRO PARSING WORKAROUND

SAS Macro is an old language from the 80s and it's intensively used nowadays. The problem with parsing
it is that it is basically a text preprocessing language. And as a normal preprocessing language it should
not be used in such intense mixins within the language it's accompanying. Unfortunately, for SAS the
situation is the opposite and it is impossible to imagine a flexible program in SAS without SAS Macro
language. Parsing SAS Macro language is problematic. In SAS you can code as follows:

%let d = dat;
%let end_token_pointer = end_token;
%let end_token = n;
%let if = __if;

%macro __if(c);if &c%mend;

&d.a smthng;
 set sashelp.class;
 %&if(%str(age > 18))then do;
 bmi = weight / height ** 2;
 e&&&end_token_pointer..d;
run;

As can be seen here, you can use macro variables as a part of SAS keywords: &d.a => data or
e&&&end_token_pointer..d => end. But you cannot use macro calls as a part of the keywords — SAS
will treat the macro call bound as a separator and not recognize the resulting keyword.

14

In this paper we will consider a workaround which will release us from the need to parse actual SAS
Macro code. The idea is to parse the SAS Log produced with the SOURCE, SOURCE2, and MPRINT
System Options and extract the underlying SAS Program.

Using the simplified SAS log grammar, our main focus will be in identifying the following statements from a
SAS log: errors, warnings, notes, SOURCE, SOURCE2, MPRINT. All other statements will be ignored by
the tool. The grammar and extracting tool can be found in the source code attached (SASLog.g4,
LogExtractor.java, LogExtractorListener.java). The tool interface is quite simple:

$ java LogExtractor -source2 -mprint sas-log-extractor-demo.log
OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
options ls=64 mprint source2;
%include "~/source2.sas";
data _null_;
set sashelp.class;
...

What I found interesting during SAS log grammar compose is how SAS marks wrapped lines for
SOURCE, SOURCE2, and MPRINT:

Figure 10: SOURCE and SOURCE2 wrapping algorithm by SAS

Figure 11: MPRINT wrapping algorithm by SAS

Interesting is what will happen if the SAS log line number for SOURCE exceeds 9 digits...

15

CONCLUSION

The final tool, called SASLint, has a command line interface and reports the issues in the following way
(for all SAS programs in the current directory):

$ saslint
Inspecting 10 files
..E.W..N..

Offenses:

test-errors.sas:3:26: E:22-322: Missing ';' at the end of the assignment statement.
 f = cat(3, 5, 3 + 5)
 ^

test-errors.sas:4:26: E:22-322: Extra closing ')'.
 f = cat(3, 5, 3 + 5));
 ^

test-errors.sas:5:25: E:79-322: Missing closing ')'.
 f = cat(3, 5, 3 + 5;
 ^

test-warnings.sas:4:9: W: Expression is always true.
 if length(str) > 0 then do;
 ^^^^^^^^^^^^^^^

test-notes.sas:7:5: C: This DATA step uses no executable statements and can be replac
ed by the DATASETS procedure.
data class;
^^^^

10 files inspected, 5 offenses detected.

The further tool development and more demos can be found on the SASLint website https://saslint.com.

REFERENCES

ANTLR (ANother Tool for Language Recognition). (Accessed March 2018) Available at
http://www.antlr.org/

Terence Parr. 2012. The Definitive ANTLR 4 Reference. Dallas, Texas, Raleigh, North Carolina: The
Pragmatic Bookshelf. https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference

Wikipedia contributors. 2018. DOT (graph description language). (Accessed March 2018) Available at
https://en.wikipedia.org/wiki/DOT_(graph_description_language)

Andrey Sitnik. 2017. Stylelint: Why and How to Lint CSS. (Accessed March 2018) Available at
http://slides.com/ai/stylelint#/

Computerworld Vol. 18, No. 20. May 14, 1984. IDG Enterprise. (Accessed March 2018) Available at
https://books.google.de/books?id=BrEo9KtAQH4C&pg=PA24&dq=turns+spaghetti+code+cobol+into+stru
ctured+cobol+automatically&hl=en&sa=X&ved=0ahUKEwi3ufiP-
9rZAhVHy6QKHVvNDk04FBDoAQg1MAM#v=onepage&q&f=false

https://saslint.com/
http://www.antlr.org/
https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://slides.com/ai/stylelint#/
https://books.google.de/books?id=BrEo9KtAQH4C&pg=PA24&dq=turns+spaghetti+code+cobol+into+structured+cobol+automatically&hl=en&sa=X&ved=0ahUKEwi3ufiP-9rZAhVHy6QKHVvNDk04FBDoAQg1MAM#v=onepage&q&f=false
https://books.google.de/books?id=BrEo9KtAQH4C&pg=PA24&dq=turns+spaghetti+code+cobol+into+structured+cobol+automatically&hl=en&sa=X&ved=0ahUKEwi3ufiP-9rZAhVHy6QKHVvNDk04FBDoAQg1MAM#v=onepage&q&f=false
https://books.google.de/books?id=BrEo9KtAQH4C&pg=PA24&dq=turns+spaghetti+code+cobol+into+structured+cobol+automatically&hl=en&sa=X&ved=0ahUKEwi3ufiP-9rZAhVHy6QKHVvNDk04FBDoAQg1MAM#v=onepage&q&f=false

16

Computerworld Vol. 20, No. 13. March 31, 1986. IDG Enterprise. (Accessed March 2018) Available at
https://books.google.de/books?id=nvgwHu6zOfQC&pg=PA59&lpg=PA59&dq=superstructure+cobol&sour
ce=bl&ots=Tug9PazyYb&sig=N8ylbjPleyby8f3td0whqTPEANE&hl=en&sa=X&ved=0ahUKEwjn29_S3NnZ
AhUosaQKHay-CvwQ6AEILzAC#v=onepage&q&f=false

John MacFarlane. Pandoc. (Accessed March 2018) Available at http://pandoc.org/index.html

Rob Krajcik “Why Does SAS® Run Clockwise?”. NESUG 2009. (Accessed March 2018) Available at
https://www.lexjansen.com/nesug/nesug09/bb/BB10.pdf

William S. Calvert, MalIa R. Rao “A SAS® Code Formatter”. SUGI-92. (Accessed March 2018) Available
at http://www.sascommunity.org/sugi/SUGI92/Sugi-92-30%20Calvert%20Rao.pdf

SAS Institute Inc. SAS® 9.4 SQL Procedure User’s Guide, Fourth Edition. Cary, NC: SAS Institute Inc.
(Accessed March 2018) Available at
http://documentation.sas.com/?docsetId=sqlproc&docsetTarget=n02s19q65mw08gn140bwfdh7spx7.htm&
docsetVersion=9.4&locale=en

SAS Institute Inc. SAS® 9.4 Language Reference: Concepts, Sixth Edition. Cary, NC: SAS Institute Inc.
(Accessed March 2018) Available at
http://documentation.sas.com/?docsetId=lrcon&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=e
n

ACKNOWLEDGMENTS

I'd like to thank Terence Parr and all other contributors for their work on antlr as well as Rowland Hale who
gave me some hints for the rules which I used or plan to implement in the linter. Also, all other authors
listed in the References section. The original idea of creating a linter for SAS was inspired by Andrey
Sitnik's talk WebCamp:Front-End Why you need to lint CSS.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Igor Khorlo
Syneos Health™
{ igor.khorlo } at syneoshealth dot com
{ igor.khorlo } at gmail dot com

https://books.google.de/books?id=nvgwHu6zOfQC&pg=PA59&lpg=PA59&dq=superstructure+cobol&source=bl&ots=Tug9PazyYb&sig=N8ylbjPleyby8f3td0whqTPEANE&hl=en&sa=X&ved=0ahUKEwjn29_S3NnZAhUosaQKHay-CvwQ6AEILzAC#v=onepage&q&f=false
https://books.google.de/books?id=nvgwHu6zOfQC&pg=PA59&lpg=PA59&dq=superstructure+cobol&source=bl&ots=Tug9PazyYb&sig=N8ylbjPleyby8f3td0whqTPEANE&hl=en&sa=X&ved=0ahUKEwjn29_S3NnZAhUosaQKHay-CvwQ6AEILzAC#v=onepage&q&f=false
https://books.google.de/books?id=nvgwHu6zOfQC&pg=PA59&lpg=PA59&dq=superstructure+cobol&source=bl&ots=Tug9PazyYb&sig=N8ylbjPleyby8f3td0whqTPEANE&hl=en&sa=X&ved=0ahUKEwjn29_S3NnZAhUosaQKHay-CvwQ6AEILzAC#v=onepage&q&f=false
http://pandoc.org/index.html
https://www.lexjansen.com/nesug/nesug09/bb/BB10.pdf
http://www.sascommunity.org/sugi/SUGI92/Sugi-92-30%20Calvert%20Rao.pdf
http://documentation.sas.com/?docsetId=sqlproc&docsetTarget=n02s19q65mw08gn140bwfdh7spx7.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetTarget=n02s19q65mw08gn140bwfdh7spx7.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en
http://parrt.cs.usfca.edu/
https://github.com/antlr/antlr4/blob/master/contributors.txt
http://www.antlr.org/
http://sitnik.ru/en
http://sitnik.ru/en
https://www.youtube.com/watch?v=geoy-41wRQw

	ABSTRACT
	INTRODUCTION
	PROGRAMMING RULES
	DANGEROUS BUT LEGAL CODE
	STYLEGUIDE
	KNOWLEDGE SHARING PROBLEM
	OPTIMIZATIONS

	ANTLR INTRODUCTION
	WHAT IS ANTLR AND HOW DOES IT HELP IN BUILDING A LINTER?
	EXAMPLE OF PARSING SAS EXPRESSIONS

	SAS GRAMMAR
	DATA FLOW GRAPH
	Data flow graph using the SCAPROC procedure or RTRACE System Option

	SOURCE CODE FORMATTING
	SAS LOG PARSING AS A MACRO PARSING WORKAROUND

	CONCLUSION
	REFERENCES
	ACKNOWLEDGMENTS
	CONTACT INFORMATION

