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ABSTRACT  
The Workplace Safety and Insurance Board of Ontario is an independent trust agency that administers 
compensation and no-fault insurance for Ontario workplaces. Claim risk scoring can allow claims at most 
risk of prolonged duration to be identified. Early identification of such claims helps targeting them with 
interventions and tailored claim management initiatives to improve duration and health outcomes. Claim 
risk scoring is done using a discrete time survival analysis framework. Logistic regression with spline for 
time to better estimate the hazard function and interaction of a number of factors with time spline to 
properly address proportional hazard assumption is used to estimate the hazards and the corresponding 
survival probability (very sophisticated “conventional” model). In recent years, Machine Learning 
methods, including Random Forests (RF), started to gain popularity, especially when the emphasis of the 
modelling is accurate prediction. Comparison of the existing conventional model and RF Machine 
Learning algorithm implementation is presented. SAS Enterprise Miner® high-performance procedure 
HPFOREST was used for RF. RF parameters tuning using graphical analysis was explored. Time-specific 
percent response and lift charts, accuracy and sensitivity statistics were used to evaluate the predictive 
power of the models. RF achieved better performance in early stages of the claim life-cycle and was 
implemented. 

INTRODUCTION  
The Workplace Safety and Insurance Board of Ontario (WSIB) is an independent trust agency that 
administers compensation and no-fault insurance for Ontario workplaces. Claim risk scoring was 
undertaken to allow claims at most risk of prolonged duration to be identified. Early identification of such 
claims helps targeting them with interventions and tailored claim management initiatives to improve claim 
duration and health outcomes for injured workers. 

For the purposes of the analysis, claim risk is defined as high probability of a claim to be on loss-of-
earnings (LOE) benefits in the next month. Being off LOE benefits was used as indirect proxy for 
successful return to work. We use a discrete time survival analysis framework to model time-to-event 
(claim is off benefits) and two estimation methods: conventional logistic regression, and Machine 
Learning with Random Forest (RF). We discuss some of the advanced modelling features used in logistic 
regression to achieve a fairly sophisticated “conventional” model, as well as provide details on tuning 
some of the parameters for the competing estimation approach using RF. Comparison of the conventional 
model and RF Machine Learning algorithm implementation is presented.  

METHODOLOGY 
An injured workers cohort for the analysis was constructed for injury years 2013-2015 using de-identified 
WSIB administrative data. Since the interest was in claim durations up to and including one year (52 
weeks), we used the necessary follow-up window to capture the claim outcome (on or off benefits). 

A number of predictor variables were used in the analysis (see Table 1). Time-dependent variables are 
marked with an asterisk (the concept of a time-dependent variable is discussed later in the paper). 
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Name* Description Note 
Acc_age or Age_group Injured worker’s age at accident  

Gender Injured worker’s gender  

GRP_CLM_SECTOR10 Industry sector Grouped using sector Rate group 

GRP_INJ20 Injury group Grouped Nature of Injury and Part-of-Body 
codes 

GRP_INJSTICK Grouped Injury Stickman codes  

Source1 and Event1 Injury source and event codes First digit of the code 

GRP_FIRMSIZE Grouped firm size  

Wage_grp Grouped wage Quartiles plus 90th percentile 

Prior_claims Prior claims flag Within last 3 years 

Prior_NEL Prior claims with NEL flag Non-economic loss (permanent impairment) 

eAdj e-Adjudication flag Automatic claim adjudication 

S2 Schedule 2 employer flag Individual liability, larger mostly government 
employers (do not report firm size) 

FLANGUAGE Foreign language flag English, French, or Other 

NEL* Non-economic loss (NEL) flag Permanent impairment 

NOC1 National Occupation Code (NOC) First digit of the code 

Partial_LOE* Partial LOE benefits flag Proxy for return to work on partial duties 

RTW_ref* Return-to-Work program referral flag  

SC_ref* Specialty Clinic program referral flag  

Represent* Employer or worker representative 
flag 

 

SIS Serious Injury Program flag  

HC_IP*, HC_Psych*, 
HC_other*, Pain*, 
Opioid* 

Inpatient care, Psych, other health 
care, presence of pain or opioid 
medication use 

Flags for various health care services 

*Time-dependent variables are marked with an asterisk. 

Table 1. List of predictor variables used in the analysis 
 

Categorical variables with too many levels to include (for example, industry mix with claim Rate group) 
were feature-engineered/binned into fewer levels. The problem with using too many levels in a regression 
modelling framework (for logistic regression) is that, first, it introduces too many degrees of freedom, 
which hinders the estimation, and second, some of the levels of the original categorical variable have too 
small sample sizes (issues with quasi-complete separation in logistic regression, etc.). First, we 
calculated the risk of the outcome (proportion on LOE benefits at 6 months) in each Rate group based on 
the whole study population, then we sorted the Rate groups in order of the risk, and binned Rate groups 
into 10 risk groups (GRP_CLM_SECTOR10) using quintile method (trying to keep about the same 
number of observations in each of ten groups). We employed the same method as above for grouping 
Nature of Injury and Part-of-Body codes into Injury mix groups (20 groups, GRP_INJ20). 

Analysis of claim duration is a typical time-to-event analysis: best addressed with survival analysis 
framework, in our case its discrete-time variant (Allison, 2010). Each claim survival history was broken 
down into a set of discrete time units (weeks) that were treated as distinct observations. Then we created 
an expanded data set where each claim had as many records as there were “alive” time points, until this 
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claim is off benefits (claims were censored at 57 weeks of duration). We coded an outcome variable “Dur” 
as “1” for time periods when a claim is on LOE benefits and “0” when the claim gets off benefits (it allows 
a more logical interpretation of hazard ratios from the estimation using logistic regression: hazard ratios 
more than 1 show “negative” effect on duration, and less than 1, “positive”). Survival analysis allows 
proper modelling of time-dependent factors (factors that change over time). Table 2 shows an example of 
an expanded data set for discrete time survival analysis. It shows also an example of a time-independent 
variable, Gender (does not change over time), and a time-dependent variable, Partial LOE (may change 
over time; this is a flag for partial LOE benefits, which is an indirect proxy for return to work on partial 
duties). 

 

Claim 
Time 

(weeks from 
accident) 

Gender Partial LOE 
Dur 

(outcome/target; 
on or off LOE benefits) 

1 0 F 0 1 

1 1 F 0 1 

1 2 F 0 0 

2 0 M 0 1 

2 1 M 0 1 

2 2 M 1 1 

2 3 M 1 1 

2 4 M 1 0 

Table 2. Example of an expanded data set for discrete time survival analysis 
 

First, we used a common approach to estimate whether an event did or did not occur in each time unit 
(week) using logistic regression model. In the survival model, interactions with time variable were used to 
address non-proportional hazard, as well as time itself was modelled using a spline effect to better 
estimate the hazard function. 

SAS code below shows an example call to the LOGISTIC procedure. CLASS statement declares 
categorical variables. EFFECT statement specifies that we want to fit the natural cubic spline for time 
variable. MODEL statement specifies that we are modelling claim duration against the list of our 
variables; note that we also fit a number of interactions for time-dependent variables with our time spline. 
EFFECTPLOT statement asks for the plot of our fitted spline for time (see Figure 1); as can be seen, the 
effect is clearly non-linear, so spline for time is warranted. STORE statement stores our model as a binary 
file for future scoring (we will need to use the PLM procedure to score our data, since we used spline 
effects in the model). ODDSRATIO statement asks to produce hazard ratios as an example of one of the 
dependent variables (partial LOE, or proxy for return to work on partial duties) in this case. Since this 
variable was interacted with time, we need to ask for odds ratios (in fact, these are hazard ratios due to 
the discrete time survival analysis framework we employ) at different time points (weeks of duration). 
Table 3 shows the estimated hazard ratios for this time-dependent variable and, as can be seen, the 
hazard changes over time for the Partial LOE effect (in this way we address the non-proportional hazard 
assumption). Claims that survived to a given time point and have Partial LOE (return to work on partial 
duties) have a lower hazard of being on LOE benefits in the next time period than claims that are on full 
LOE (fully off work), and this hazard decreases over time / claim life cycle. In other words, injured workers 
who are already on partial duty are likelier to fully return to work in the next time period than are workers 
who are not at work at all, which makes sense. 
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ods graphics on; 

proc logistic data=dur_surv descending; 

class Age_group(ref='1') Gender(ref='F') 

GRP_CLM_SECTOR10(ref='0') GRP_INJ20(ref='01') 

GRP_INJSTICK(ref='1') GRP_FIRMSIZE(ref='8') NOC1(ref='7') 

FLANGUAGE(ref='1') source1(ref='5') event1(ref='2') 
Wage_grp(ref='Q1') Prior_claims(ref='0') / param=ref; 

effect Time_spl = spline(Time / basis=tpf(noint) 

naturalcubic knotmethod=equal(5)); 

model Dur = Age_group Gender GRP_CLM_SECTOR10 GRP_INJ20 

GRP_INJSTICK GRP_FIRMSIZE Wage_grp Prior_claims Prior_NEL 

eAdj S2 SIS FLANGUAGE NOC1 source1 event1 NEL Partial_LOE 
RTW_ref RTW_fail SC_ref Represent HC_IP HC_other HC_Psych 

Pain Opioid 

Time_spl 

Partial_LOE*Time_spl RTW_ref*Time_spl RTW_fail*Time_spl 

SC_ref*Time_spl Represent*Time_spl HC_IP*Time_spl 
HC_other*Time_spl HC_Psych*Time_spl Pain*Time_spl 
Opioid*Time_spl SIS*Time_spl;  

  effectplot fit(x=Time) / noobs link; 

  store crs.dur_surv_model; 

  oddsratio Partial_LOE / at(time=4 8 13 17 22 26 34 42 52); 

run; 

ods graphics off; 
 

 
Figure 1. Plot of spline for time variable 
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Factor Estimate 95% Confidence 
Limits 

Partial_LOE at Time=4 0.657 0.636 0.678 

Partial_LOE at Time=8 0.551 0.538 0.564 

Partial_LOE at Time=13 0.443 0.428 0.458 

Partial_LOE at Time=17 0.384 0.367 0.4 

Partial_LOE at Time=22 0.356 0.339 0.374 

Partial_LOE at Time=26 0.361 0.334 0.389 

Partial_LOE at Time=34 0.345 0.318 0.374 

Partial_LOE at Time=42 0.336 0.301 0.375 

Partial_LOE at Time=52 0.392 0.338 0.456 

Table 3. Hazard ratios with confidence limits for time-dependent Partial LOE variable at different 
time points (weeks of claim duration) 
 

Conventional modelling with the LOGISTIC procedure allows us to provide very detailed information on 
the effect of various factors on the modelled outcome (very good for explanatory modelling). In recent 
years, Machine Learning methods, including Random Forests (James, 2014), started to gain popularity, 
especially when emphasis of the modelling is accurate prediction, and there is no particular need for the 
explanatory component. For comparative purposes we applied random forest model to our expanded 
discrete time data set to estimate the outcome. 

Classification and regression trees work by recursive partitioning of the data into groups (“nodes”) that are 
increasingly homogeneous with respect to some kind of a criterion. Usually, mean squared error is used 
for regression trees, and Entropy or the Gini index is used for classification trees. Random Forest takes 
predictions from many classification or regression trees and combines them to construct more accurate 
predictions through the following algorithm:  

 Many random samples are drawn from the original data set. Observations in the original data set that 
are not in a particular random sample are said to be “out-of-bag” (OOB) for that sample. 

 To each random sample a classification or regression tree is fitted without any pruning. Predictors for 
each tree are randomly chosen. 

 The fitted tree is used to make predictions for all the observations that are out-of-bag for the sample 
the tree is fitted to. 

 For a given observation, the predictions from the trees on all of the samples for which the observation 
was out-of-bag are combined. 

Classification Trees and Random Forests take into account all of the necessary interactions, the lack of 
which in many cases results in worse predictive power for conventional regressions. 

SAS Enterprise Miner® high-performance procedure HPFOREST was used for RF; however, actual 
implementation was done using SAS® coding in SAS Enterprise Guide®. It should be noted that PROC 
HPFOREST could be called from the programming interface of SAS Enterprise Guide only if SAS 
Enterprise Miner® is also installed on the same SAS Server. 

SAS code showing an example of discrete time survival analysis with estimation using Machine Learning 
with Random Forest is shown below. We use a number of INPUT statements to specify the variables that 
we want to include for modelling (one for interval variables, and one for nominal variables). We also 
specify our target (variable “Dur”), and state that this variable is binary. SAVE statement allows us to save 
the random forest model into a binary file for future scoring of (new) data using the HP4SCORE 
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procedure. We save a number of tables from RF modelling output for future reference using ODS 
OUTPUT statement:  

proc hpforest data=dur_surv seed=12345 maxtrees=200    

   alpha=0.05 vars_to_try=15; 

  input Time Acc_Age Wage Prior_NEL eAdj S2 SIS NEL   

   Partial_LOE RTW_ref RTW_fail SC_ref Represent HC_other 

   HC_Psych Pain Opioid HC_IP / level=interval; 

  input Gender GRP_CLM_SECTOR10 GRP_INJ20 GRP_INJSTICK   

   GRP_FIRMSIZE FLANGUAGE NOC1 source1 event1    

   Prior_claims / level=nominal; 

  target Dur / level=binary; 

  save file = "\\srvscudd2\PM 

DEV2\Projects\Claim_risk_scoring\dur_surv_model_RF.bin"; 

  performance details; 

  ods output fitstatistics = crs.RF_fit 

   VariableImportance = crs.RF_VarImportance 

   ModelInfo = crs.RF_ModelInfo; 

run; 

 

Random Forest has a number of parameters that can be tuned to improve the model accuracy. In this 
paper, we will show an example of tuning one of the most important parameters using graphical analysis: 
number of variables to try (“VARS_TO_TRY”). “VARS_TO_TRY=m | ALL” syntax specifies the number of 
input variables to consider splitting on in a node. m ranges from 1 to the number of input variables, v. The 
default value of m is √v; however, we can run a number of models trying different values for m and 
choosing the best model using “out-of-bag” (OOB) prediction error and/or misclassification rate. The 
HPFOREST procedure computes the average square error (ASE) measure of prediction error. For a 
binary or nominal target, PROC HPFOREST also computes the misclassification rate and the log-loss. 
Figure 2 shows OOB prediction error and misclassification rate for random forests with a different number 
of “variables to try” (5, 7, 9, 11, 13, or 15). Probably due to a discrete time survival analysis set-up of our 
(expanded) dataset, the OOB misclassification rate does not seem to be very informative. Based on the 
OOB prediction error, we can see that the model with 15 variables to try achieves the best performance. 

 

   
Figure 2. Out-of-bag prediction error and misclassification rate for Random Forests with a 
different number of “variables to try” 
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Figure 3 shows the final model (vars_to_try = 15) OOB vs Training (Full data) ASE Prediction error and 
Misclassification rate. 

 

  
Figure 3. Final model (vars_to_try = 15), OOB vs Training (Full data) ASE Prediction error and 
Misclassification rate 
 

Variable importance from the Random Forest final model is shown in Table 4. This table provides 
information on the number of times the variable was used to split a node, as well as Gini, Margin, Gini 
Out-of-Bag (OOB), and Margin Out-of-Bag metrics. As can be seen, the Time variable is the most 
important variable (based on Gini metric), which warrants a survival analysis framework approach to this 
data and suggests that the hazards may be not constant over time. Type of injury is the second most 
important predictor, followed by partial return to work on modified duties. In Figure 4, we also plotted the 
logit of Random Forest Prediction versus Time (holding all other variables at their corresponding means 
or the same reference levels as in the logistic regression) to compare it to Figure 1 from logistic 
regression with regard to the estimated baseline hazard. The two plots are not exactly the same, but both 
suggest that the effect of Time is clearly not linear. 
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Variable NRules Gini Margin GiniOOB MarginOOB 

Time 9154 0.00835 0.01671 0.04321 0.06701 

GRP_INJ20 4565 0.00275 0.0055 0.00501 0.00328 

Partial_LOE 1399 0.0008 0.00159 0.09813 0.10708 

SC_ref 1287 0.00047 0.00093 0.04025 0.0438 

event1 1910 0.00027 0.00053 0.01481 0.01141 

grp_injstick 1538 0.00022 0.00044 0.02222 0.0122 

ACC_AGE 2678 0.00022 0.00043 -0.0011 -0.0002 

RTW_ref 1433 0.00017 0.00034 0.00989 -0.01299 

HC_other 1297 9.9E-05 0.0002 -0.2244 -0.2139 

GRP_CLM_SECTOR10 1143 9.5E-05 0.00019 0.00069 0.00091 

NOC1 1455 9.3E-05 0.00019 0.00564 0.00249 

WAGE 1752 7.9E-05 0.00016 0.0006 0.00117 

source1 1054 7.2E-05 0.00014 -0.0017 -0.00249 

eAdj 656 6.7E-05 0.00013 -0.0048 -0.00502 

HC_IP 820 6.2E-05 0.00012 0.00223 0.00298 

GRP_FIRMSIZE 1240 4.2E-05 8.4E-05 0.00008 0.00011 

SIS 391 4.2E-05 8.4E-05 -0.0025 -0.00339 

Represent 517 3.3E-05 6.6E-05 0.00083 0.00142 

GENDER 686 1.3E-05 2.6E-05 0 0.00001 

Opioid 216 1.3E-05 2.7E-05 0.00025 0.00039 

S2 661 8E-06 1.7E-05 0 0.00003 

RTW_fail 284 6E-06 1.1E-05 -0.0007 0.0004 

HC_psych 116 4E-06 8E-06 0.00002 0.00029 

Prior_claims 45 1E-06 1E-06 0 0 

Pain 26 0 1E-06 0 0.00002 

NEL 0 0 0 0 0 

Prior_NEL 0 0 0 0 0 

FLANGUAGE 0 0 0 0 0 

Table 4. Variable Importance from Random Forest. 
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Figure 4. Logit of the Random Forest Prediction versus Time 
 

Once we have our discrete time survival analysis model estimated using these two methods (logistic 
regression and random forest), we can score (new) data and calculate the survival probability. Below is 
an example of the SAS code: 

*Score Logistic; 

proc plm restore=crs.Dur_surv_model; 

  show effects parameters; 

  score data=dur_surv_expand out=dur_surv_score predicted; 

run; 

 

*Score Random Forest; 

proc hp4score data=dur_surv_expand; 

  id _ALL_; 

  score file= "\\srvscudd2\PM 

DEV2\Projects\Claim_risk_scoring\dur_surv_model_RF.bin" 

  out=dur_surv_score(rename=(P_Dur1=Prob)); 

  performance details; 

run; 
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*Calculate survival probability; 

data dur_surv_score; 

  set dur_surv_score;  

  by clmno; 

  retain Prev_Surv_prob; 

* Prob = exp(Predicted) / (1 + exp(Predicted)); *Comment out 

for RF; 

  if first.clmno then Prev_Surv_prob = 1; 

  Surv_prob = Prev_Surv_prob * Prob; *(1 - Prob) if modelled 

Dur=0; 

  output; 

  Prev_Surv_prob = Surv_prob; 

  drop Prev_Surv_prob; 

run; 
 

Please note that we need to use a “Prob = exp(Predicted)/(1+exp(Predicted))” statement for data scored 
by PLM procedure (it produces a linear score (on a logit scale), and we need to convert it back to the 
hazard). For scoring of data using HP4SCORE procedure, this statement has to be commented out (not 
needed). 

In order to calculate the survival probability, we keep in mind that survival function at time ti can be written 
in terms of the hazard at all prior times t1, . . . , ti-1, as  

Si = (1 – h1) (1 – h2)  . . . (1 – hi-1) 

In other words, this result states that in order to survive to time ti one must first survive t1, then one must 
survive t2 given that one survived t1, and so on, finally surviving ti-1 given survival up to that point. 
(Rodríguez, 2017). We implement this calculation using DATA step with BY and RETAIN statements as 
shown in the SAS code above. Please note that we are using in the formula (Prob) (“Prob” is a variable 
for estimated hazard) and not (1-Prob) since we are estimating Dur = 1 and not Dur = 0 in our particular 
data set up. 

 

RESULTS 
Time-specific percent response and lift charts, accuracy and sensitivity statistics were used to evaluate 
the predictive power of the models. By time-specific we mean that the risk scoring is done for claims that 
survived to a certain time period (risk week, in our terminology), and we estimate a risk of being on LOE 
benefits in the next month. Time-specific slicing is possible due to our survival analysis framework 
approach to modelling. 

Figure 5 and Figure 6 show percent response and lift charts for risk weeks 8 and 12 correspondingly. As 
can be seen, the RF model achieves better performance for the riskiest claim buckets in early stages of 
life-cycle duration. As the claims mature, the two estimation methods (RF and logistic) become more and 
more similar in their predictive power (Figure 7 and Figure 8 for risk weeks 28 and 52 correspondingly). 
Probability of staying on benefits in the next month for claims that managed to survive long is very high, 
and the model becomes less and less discriminative at later stages of the claim life cycle. Looking at 
Percent Response graphs, we can see that for claims that survived to risk week 8, only 40% on average 
remain on benefits after one month (orange horizontal dotted line), while for claims that survived to risk 
week 52, almost 80% remain on benefits one month later. For the riskiest bucket of claims, the lift is 
around 2 for claims that survived to risk week 8, and only around 1.25 for claims that survived to risk 
week 52. 
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Figure 5. Percent Response and Lift charts: risk week 8 
 

  

  
Figure 6. Percent Response and Lift charts: risk week 12 
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Figure 7. Percent Response and Lift charts: risk week 28 
 

  

  
Figure 8. Percent Response and Lift charts: risk week 52 

Logistic 
regression 
with splines 
and 
interactions 
 
 
 
 
 
 
 
 
Random 
Forest 
Machine 
Learning 

Logistic 
regression 
with splines 
and 
interactions 
 
 
 
 
 
 
 
 
Random 
Forest 
Machine 
Learning 



13 

 

Time-specific calculated sensitivity and accuracy are presented in Table 5. The table also shows percent 
on benefits in the next month for claims that survived up to that time point (risk week), as well as 
arbitrarily chosen model cut-offs for survival probability to label risky claims. In many cases the model 
performance could be optimized if cutoffs corresponded to the underlying prevalence of an event of 
interest (in our case, percent on benefits). However, we modified the cut-offs to meet capacity 
requirements (i.e., how many claims could be physically followed up given available resources). In any 
case, the cut-offs are the same for both estimation methods (Random Forest and logistic regression), and 
the models could be directly compared. As we can see, the Random Forest achieves slightly better 
predictive power than logistic regression in early stages of the claims life cycle, and the performance is 
almost identical for long-surviving claims. 

 

Risk 
week 

Random Forest 
Machine Learning 

Logistic with splines 
and interactions  

Percent on 
benefits in 
one month 

Existing 
Cut-offs, Top 

Sensitivity Accuracy Sensitivity Accuracy  
8 56.5%  65.3%  55.7%  64.7%   41.1% 40.0% 

12 52.4%  62.7%  52.0%  62.2%   56.4% 40.0% 
16 51.9%  62.4%  50.7%  60.9%   61.5% 40.0% 
20 49.7%  59.6%  49.0%  58.7%   67.0% 40.0% 
24 47.1%  55.7%  46.8%  55.3%   72.6% 40.0% 
28 65.5%  63.8%  65.3%  63.5%   76.8% 60.0% 
32 63.9%  62.2%  64.0%  62.4%   79.7% 60.0% 
36 62.6%  60.5%  63.0%  61.2%   81.8% 60.0% 
40 62.1%  60.1%  62.6%  60.9%   83.2% 60.0% 
44 61.6%  59.8%  62.0%  60.5%   85.4% 60.0% 
48 80.6%  73.2%  80.7%  73.4%   87.1% 80.0% 
52 80.6%  73.7%  80.6%  73.6%   87.6% 80.0% 

Table 5. Sensitivity and Accuracy 
The following formulas are used to calculate sensitivity and accuracy of the model at different time points 
(risk weeks): 

Sensitivity = TP / (TP + FN) 

Accuracy = (TP + TN) / (P + N) 

Where TP – true positive, TN – true negative, FP – false positive, FN – false negative, P – positive, N – 
negative. 

 

In order to do the validation of the modelling approaches, we partitioned our data into the training data set 
(60%) and validation data set (40%) using cluster sampling (cluster = claim) to ensure that the whole 
claim with all its time observations, and not individual records, is being sampled. We re-trained both 
logistic regression and Random Forest models only on the training data set, and we scored the hold-out 
validation data set. Table 6 shows sensitivity and specificity on the hold-out validation data set, and as 
can be seen, the results are very similar to our full sample results shown in Table 5. Once again, the 
Random Forest achieves slightly better predictive power than logistic regression in early stages of the 
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claims life cycle, and the performance is almost identical for long-surviving claims on the hold-out 
validation data set. 

 

Risk_wk 

Random Forest 
Machine Learning 

Logistic with splines 
and interactions 

Sensitivity Accuracy Sensitivity Accuracy 

8 56.9%  65.6%  55.5%  64.4%  

12 52.8%  63.1%  51.8%  62.1%  

16 52.4%  62.9%  50.5%  60.6%  

20 50.5%  60.7%  49.2%  58.9%  

24 47.7%  56.6%  47.0%  55.6%  

28 66.3%  64.9%  65.8%  64.2%  

32 64.4%  63.0%  64.0%  62.4%  

36 62.8%  61.1%  62.7%  60.9%  

40 62.0%  59.9%  62.0%  59.9%  

44 61.5%  59.5%  61.7%  59.9%  

48 80.2%  72.5%  80.5%  73.1%  

52 80.5%  73.2%  80.6%  73.3%  

Table 6. Sensitivity and Accuracy on the hold-out validation data set 
 

CONCLUSION 
This paper presents a proof-of-concept for using Survival Analysis and Machine Learning with Random 
Forest for claim risk scoring purposes. 

Both estimation methods (conventional logistic regression and Random Forest) show very good 
goodness-of-fit across all time points (weeks of claim duration); however, the models at longer durations 
become progressively less and less useful. Claims with longer and longer durations have very low 
propensity to close in the next time period. All of such claims are effectively “very risky,” and should 
probably be subject to intensive management/interventions irrespective of any model. 

Machine Learning with Random Forest estimation is very similar in predictive power to a sophisticated 
“conventional” logistic regression with splines and interactions. However, RF achieves better prediction 
power for the riskiest claims in early stages of the claim life-cycle, so it may warrant a switch to RF as a 
primary tool for claim risk scoring for this particular data. Since Random Forest focuses on prediction and 
not explanation, it provides fewer benefits for understanding the impact of various factors on duration 
outcomes. We still need conventional modelling to understand the exact impact of individual factors for 
operational improvement initiatives. Machine Learning with Random Forest was implemented in the Claim 
Risk scoring project as a viable (and superior) alternative to conventional modelling. 

 

  



15 

 

REFERENCES 
Allison, P. D. 2010. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Cary, NC: SAS 
Institute Inc. 

James, G., Witten, D., Hastie, T., Tibshirani R. 2014. An Introduction to Statistical Learning: with 
Applications in R. Springer Publishing Company, Incorporated. 

Rodríguez G. 2017. Discrete Time Models. Princeton University. 
http://data.princeton.edu/wws509/notes/c7s6.html (accessed December 20, 2017). 

ACKNOWLEDGMENTS 
The authors would like to thank Frank Ferriola, Charles Schwab & Co., and Lorne Rothman, SAS 
Canada, for their thoughtful comments and peer review of the draft paper. 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the author at: 

Yuriy Chechulin, Statistician, Predictive Modelling 
Advanced Analytics Branch 
Corporate Business Information & Analytics Division 
Strategy & Analytics Cluster 
Workplace Safety and Insurance Board of Ontario, Canada 
Yuriy_Chechulin@wsib.on.ca  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   

Other brand and product names are trademarks of their respective companies. 

 

http://data.princeton.edu/wws509/notes/c7s6.html
mailto:Yuriy_Chechulin@wsib.on.ca

