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ABSTRACT  
Pediatric polypharmacy is prevalent in the both outpatient and inpatient setting, and is associated with 
increased exposure to adverse drug events (ADEs). The current definition of polypharmacy is simply a 
count of concurrent medication exposures for a given patient being equally to or greater than five, but this 
patient-level approach does not offer insights regarding the reasons why polypharmacy occurs that could 
be gained by a complementary drug-level approach, examining polypharmacy patterns not only across 
patients but also across medications. Health care administrative databases offer opportunities to examine 
drug-level relationships and patterns. Association rule mining (ARM) is a well-established data mining 
technique that has been commonly used for mining commercial transactional databases. Link Analysis 
(LA) is a popular social network analysis technique that is used to discover and visualize associations 
between different items. We transformed administrative data to a transaction data format suitable for 
mining rules and applied ARM and LA to analyze drug utilization and polypharmacy patterns in health 
care administrative database using SAS® Enterprise Miner™. Our results demonstrate how ARM can find 
co-utilization associations among drugs, thereby enabling the description of various polypharmacy 
patterns, and the subsequent detection of patient characteristics associated with these patterns. We 
believe that ARM and LA, along with their visualization graphics, provide valuable methods to analyze 
drug utilization and polypharmacy, and that this approach could be used in mining other databases such 
as administrative claims data and electronic medical records. 
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INTRODUCTION  
Polypharmacy, typically defined as exposure of a patient to 5 or more medications concurrently, is known 
to pose an increased hazard to patients of experiencing an adverse drug event (ADE) [1]. ADEs are 
major cause of increased morbidity, mortality, and health care costs: ADEs are ranked as the 4th-to-6th 
leading causes of death in inpatients [1,2], and in the United States, for every dollar spent on medication 
in 2000, more than a dollar was estimated to have been spent on direct medical costs related to drug 
misadventures [3].  Although often considered to be of most concern for the elderly, polypharmacy is 
common among pediatric patients in the United States [4-6], resulting in many patients who are treated 
with polypharmacy regimens, especially for children with complex chronic conditions, being exposed to 
multiple potential drug-drug interactions [5]. 

Currently the prevailing method of assessing polypharmacy is simply a count the number of generic drug 
concurrently used by patients [4-6]. This patient-level approach offers a limited range of insight regarding 
why polypharmacy occurs, since the combinations of particular drugs is lost by the simplicity of a single 
number for each patient.  We therefore sought to examine polypharmacy from a drug-level analytic 
approach.  Specifically, we considered how data mining could be applied, as this methodology offers 
great potential for drug safety analytics [7,9]. For example, Chen et al. applied association rule mining 
(ARM) to a linked dataset comprised of a pharmaceutical prescribing dataset and a hospital admissions 
dataset in order to identify groups of patients who are more likely to have an ADE to ACE inhibitors [8]. 
Zhu et al performed clinical trial safety data analytics using ARM [9]. Harpaz et al. mined muti-item drug 
ADEs associations in spontaneous reporting systems [10]. To date, data mining approaches have mostly 
focused on identifying associations between specific drugs and either specific ADE or specific clusters 
ADEs. 

In this paper we describe our application of ARM and LA in health care administrative databases to 
analyze and visualize polypharmacy drug utilization patterns at the drug-level en mass, and then to 
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examine the association of different polypharmacy patterns with patient demographic and clinical 
characteristics. 

ASSOCIATION RULES AND DRUG UTILIZATION 
ARM finds interesting association or correlation relationships among a large set of data items. With 
massive amounts of data continuously be stored in databases and available, many industries are 
becoming interested in mining association rules from their databases. ARM was initially used for market 
basket analysis, where interested lies in finding associations between the different items that customers 
place in their “shopping baskets” as recorded in commercial transaction databases. The discovery of such 
associations can help retailers develop marketing strategies by gaining insight into which items are 
frequently purchased together by customers. We applied ARM in clinical administrative databases to 
analyze drug utilization patterns and polypharmacy, polypharmacy associated certain medical conditions, 
or certain patient subpopulations.  

The basic concepts of AMR were established originally on transaction data. Initially AMR was 
implemented by Agarwal et al [11,12]. ARM has been divided into two phases of process as follows: 
Phase 1: Identify the sets of frequent items or itemsets or pattern within the set of transaction using user-
specified support threshold. Phase 2: Generate inferences or rules from these above patterns using user-
specified confidence threshold. The above two phases are generated strong association rules from 
dataset. The first phase is called frequent itemset construction or mining. That is extremely computational 
expensive than phase 2. The second phase is called association rule generation. That is, straight forward 
process. In a given database, denote l = {i1, i2, …, ik} as a set of k distinct items. A set of items is also 
called as an itemset. An association rule (AR) is a pair (A, B) of sets of items, denoted by A → B. A is the 
antecedent and B is the consequent of the rule A → B. The essential parameters associated to an AR are 
its support and confidence. The support measures the “prevalence” of A U B. It is defined as the fraction 
of transactions in the database which contain all items in a specific rule. This can be written as: 

 
Where #{A U B} is the number transactions (itemset) which contain both A and B and N represents the 
total number of transactions (itemset) in the database. The confidence measures the “predictability” of the 
rule: 

 
Clearly, the confidence of A → B is an estimation of probability that a record that contains the items A, 
chosen at random, will contain the items B. Where #{A} is the number transactions (itemset) which 
contain A. Another measure of the rule is lift. 

 
Lift is the ratio of the confidence of a rule to the expected confidence of the rule. The expected confidence 
is calculated under the assumption that the left hand side of a rule is independent from the right hand side 
of the rule. Consequently, lift is a measure of association between left hand side and right hand side of 
the rule. Values that are greater than one represents positive association between A and B. Values that 
are equal to one represent A and B are independent. Values that are less than one represents negative 
association between A and B. The lift serves as a reference to interpret the importance of the AR. 

In the transaction data, for the rule A → B, the itemsets A and B can be both regarded as certain events, 
and the rule describes how the event B is associated with the event A, i.e., how the occurrence of event A 
could imply the occurrence of event B. In the setting of clinical administrative data, the rule A → B can be 
mined using different aspect of the databases to answer many important pharmacoepidemiology 
questions, such as all specific drug use in specific population, specific drug polypharmacy, 
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polypharamacy associated medical conditions, procedures and ADEs. The rules should not be interpreted 
as a direct causation, but as an association between two or more drugs. AR does not create rules about 
repeating items, such as “if item A is part of an event, then another item A is also part of the event X% of 
the time.” In association analysis, it does not matter whether an individual patient takes one or multiple 
pills of drug A in the day; only the administration of drug A in the prescription is relevant. However, 
identifying creditable associations between two or more specific drugs (drug-drug combination or 
polypharmacy) can help clinicians make decisions such as when to choose which medications to adjust, 
when they intend to escalate or de-escalate medications as a patient’s condition or stage changes. 

LINK ANALYSIS 
LA, also known as Social Network Analysis, is a mathematical and graphical analysis highlighting the 
linkage between items (objects), including drugs, medical conditions, organizations, people and 
transactions. LA is used to identify and visualize the associations (links) between different items and 
discover item clusters and has been used for investigation of criminal activity (fraud detection, 
counterterrorism, and intelligence), computer security analysis, search engine optimization, market 
research, medical research, and art [13]. The Link Analysis node in SAS Enterprise Miner provides a very 
powerful but easy to use platform for performing LA and visualize the results in a succinct manner. The 
Link Analysis node processes transactional data in the following steps [14,15]:  

1. The node first discovers association or sequence rules computing confidence, support, expected 
confidence and lift using equations stated above.  

2. The link analysis node then transforms the rules data into a network graph data in the form of 
nodes and links where the support of each item becomes the node weight and the strength of the 
association (confidence of the rule) becomes the link weight. The two-item sequence rules are 
transformed into a directed graph data and the association rules into an undirected graph data. 

3. The node calculates several centrality measures and detects item clusters from the link graph. 
4. Finally, it scores the transactional data. There are two score properties under the link analysis 

node. The node can either produce a next-best-offer list using the association /sequence rules or 
produce customer segmentation information for scoring using the item clusters.  

There are some overlaps on association or sequence rules discovery between AR and LA. For more 
information, see the SAS Enterprise Miner: References Help. In this paper, we applied ARM to analyze 
drug utilization and polypharmacy and used LA to visualize the drug-drug combination patterns. 

METHODS  

DATA SOURCES 
This study used the Pediatric Health Information System (PHIS) database, a national health care 
administrative database containing resource utilization data for pediatric inpatient, emergency 
department, ambulatory surgery, and observation unit patient encounters from 49 not-for-profit, tertiary 
care pediatric hospitals in the US, representing most major U.S. metropolitan areas and approximately 
85% of freestanding pediatric acute care hospital admissions in the United States [16]. These 
participating hospitals are located in 32 US states and the District of Columbia. All these hospitals are 
affiliated with the Children’s Hospital Association (CHA, Kansas City, KS), a national business alliance of 
children’s hospitals. The PHIS database includes patient demographics, diagnosis, and procedures as 
well as detailed pharmacy information, including ICD-9-CM (International Classification of Diseases, Ninth 
Revision, Clinical Modification) codes, CPT (Current Procedural Terminology) codes, and CTC (Clinical 
Transaction Classification) codes for each diagnosis, procedure, generic drug entity dispensed, and 
clinical services for each day of hospital stay of each patient (Figure 1). Each patient in PHIS is assigned 
a unique identifier allowing records to be linked among different datasets and longitudinally linked. Details 
about the PHIS database have been reported previously [4,5]. A joint effort between participating 
hospitals, a data manager (Truven Health Care Analytics, IBM), and the CHA ensures maintenance of 
data quality and reliability. PHIS is a relational database and all data in PHIS are deidentified. Our study 
included all children <18 years of age, who admitted to ED, and were discharged from participating 
hospitals between 1 January 2014, and 31 December 2014. 
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Figure 1. PHIS Databases 
 

DATA PREPARATION 
In this project, we used only two datasets in the databases. One is Patient Abstract, which contains 
demographic characteristics, up to 41 diagnosis codes, and up to 25 procedure codes; the other one is 
Pharmacy which contains detail daily drug use including service date, drug name, dose, route of 
administration, and charges. We first cleaned the data, corrected data errors, removed some duplicates, 
and made service day variable consistent cross all hospitals. For these two data, we selected only 
variables we needed. Then we mapped the administrative datasets to transactional data formats. The 
process consisted of three steps. (1). drug names were mapped to their corresponding generic names to 
reduce drug naming redundancy and reduce computing time. We implemented this by using previously 
developed PHIS drug dictionary [4]. There are 28 variables in the pharmacy data, we kept only 
Patient_ID, Service_Day, Generic_Name (Table 1). The variable Service_Day identifies the sequence in 
which the drugs were used. In this example, all the drugs were used at the same day. We do not know 
the order in which the drugs were administered by nurses. When the sequence is taken into account, 
association analysis is known as sequence analysis. Sequence analysis is not demonstrated in this 
paper. (2). For the purpose of this study, we selected only Patient ID, age, and up to 41 diagnoses from 
the Patient Abstract data (Table 2). Patient records data were then transformed into transactional format 
(Table 3). (3). Create the work dataset by combining all generated data (Table 1 and Table 3). All data 
management were conducted by using SAS version 9.4 (SAS Institute Inc., Cary, NC). 

 

Table 1: Pharmacy Data 

Patient ID Service Day Generic Name 

P00000001 1 Acetaminophen 

P00000001 1 Albuterol sulfate 

P00000001 1 Amoxicillin trihydrate 
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P00000001 1 Ceftriaxone sodium 

P00000001 1 Dexamethasone 

P00000001 1 Prednisolone 

P00000002 1 Acetaminophen 

P00000002 1 Heparin sodium 

P00000002 1 Lidocaine HCl 

P00000002 1 Morphine sulfate 

P00000003 1 Albuterol sulfate 

P00000003 1 Ibuprofen 

…   

P00010000 1 Ibuprofen 

 

 
Table 2: Patient Diagnosis (Administrative data format) 

Patient ID Count_DX DX1 DX2 DX3 … DX41 

P00000001 3 Asthma Otitis Media Vomiting   

P00000002 3 Headache Abdominal pain Acute lymphoid 
leukemia 

  

P00000003 2 Acute 
bronchitis 

Unspecified viral 
infection 

   

… ..      

P00010000 1 Pharyngitis     

 

 
Table 3: Patient Diagnosis (Transactional data format) 

Patient ID DX 

P00000001 Asthma 

P00000001 Otitis Media 

P00000001 Vomiting 

P00000002 Headache 

P00000002 Abdominal pain 

P00000002 Acute lymphoid leukemia 

P00000003 Acute bronchitis 

P00000003 Unspecified viral infection 

…  

P00010000 Pharyngitis 
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Table 4: Patient Diagnosis and Drug Use (work data) 

Patient ID Rx DX 

P00000001 Acetaminophen 

P00000001 Albuterol sulfate 

P00000001 Amoxicillin trihydrate 

P00000001 Ceftriaxone sodium 

P00000001 Dexamethasone 

P00000001 Prednisolone 

P00000001 Acetaminophen 

P00000001 Asthma 

P00000001 Otitis Media 

P00000001 Vomiting 

P00000002 Acetaminophen 

P00000002 Heparin sodium 

P00000002 Lidocaine HCl 

P00000002 Morphine sulfate 

P00000002 Acetaminophen 

P00000002 Abdominal pain 

P00000002 Acute lymphoid leukemia 

P00000003 Albuterol sulfate 

P00000003 Ibuprofen 

P00000003 Acute bronchitis 

P00000003 Unspecified viral infection 

…  

P00010000 Ibuprofen 

P00010000 Pharyngitis 

 

RUN THE ASSOCIATION NODE AND THE LINK ANALYSIS NODE 
Observe the Association properties subgroup of the Association node (SAS® Enterprise Miner™14.2, SAS 
Institute Inc., Cary, NC). These properties determine how large each association can be and how 
association rules are formed. Set the value of the Maximum Items property to 5. This indicates that only 
associations among up to five drugs are generated. In many drug safety reports, some specific drug led 
to clinical side effects or one or more ADEs. ADEs can involve single or multiple drugs and describe 
single or multiple adverse drug interactions. Our previous studies that ≥3 drug combinations are very 
common [4,5]. A greater number of drugs used concurrently may have a potentially multiplicative increase 
in the number of ADEs, especially for specific drug classes such as sedation [17] or QT-prolonging 
medications [18].In the absence of a gold standard (the set of all true multi-drug combinations and the 
frequency of the combinations are unknown) which would have enabled us to calibrate or determine the 
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most appropriate thresholds in a quantitative manner, we resorted to a data driven and heuristic approach 
guided by clinical expert knowledge. The support threshold was set high enough value to highlight the 
more frequent drug-drug combination patterns. Setting the threshold to a lower value resulted in a much 
larger set of associations. We set the threshold as support ≥ 0.01% in this example. As we discussed in 
previous section, The Confidence for the rule is the conditional probability that drug B is in the 
prescription given that drug A is present. Rules with highest confidence and support percentages are 
recommended to discover high correlation items. Our objective is to find more specific drug-drug 
combinations which may pose a risk for ADEs, so we set Confidence threshold as 1% in this example. 

We set the thresholds for both support and confidence same as running the Association Node. The 
remaining properties are set to the default. Once the settings are completed, connect the input data node 
with the Association node and the Link Analysis node respectively and run the project. 

RESULTS 
The Results window of the Association node shows the association statistics (Display 1). When one click 
any square (color coded based on the number of drug-drug combination, brown means 2 drugs 
combination, green 3, blue 4, red 5), the window displays the rule and the two association parameters: 
support and confidence.  

 

 
Display 1. The Association Statistics 
 

In the Results window of the Association node, select View  Rules   Rule Table from the main menu, 
it will display the Rules Table (Display 2). The Rules Table displays information about each rule that was 
created. This includes the rule, support, confidence, expected confidence, lift, number of occurrence, and 
the items in the rule. For this project, the rule is the drug-drug combination (polypharmacy). The number 
of occurrence is the number of patients, who were exposed to the drug-drug combination. The support 
can be used as proportion or prevalence of the drug combination exposed in the population. The Rule 
Table can be used to screen the drug-drug combinations which have a risk for drug-drug interactions and 
lead to ADEs. We listed top 5 most common two to five drugs combination exposed among pediatric 
patients in ED visits in the U.S.A. 2014 (Table 5).  
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Display 2. Table of association rules from ARM 
 
Table 5. Top 5 most common two to five drug-drug combinations exposed among Sick Children in 
ED Visits in the US Children’s Hospitals, 2014 

Drug-drug Combinations Number of Patients 
Exposed 

%, Exposed 

Two drug combinations (D2)   

Albuterol sulfate & Ipratropium bromide 72,956 2.37 

Albuterol sulfate & Prednisolone 43,769 1.42 

Albuterol sulfate & Dexamethasone 42,171 1.37 

Ibuprofen + Ondansetron HCl 40,070 1.30 

Acetaminophen + Ibuprofen 39,488 1.28 

Three drug combinations (D3)   

Albuterol sulfate & Ipratropium bromide & Prednisolone 26,805 0.87 

Albuterol sulfate & Dexamethasone & Ipratropium bromide 26,175 0.85 

Lidocaine HCl & Ondansetron HCl & Sodium chloride 11,376 0.37 

Albuterol sulfate & Ibuprofen & Ipratropium bromide 9,292 0.27 

Acetaminophen & Ibuprofen & Ondansetron HCl 6,959 0.23 

Four drug combinations (D4)   

Diphenhydramine & Ketorolac tromethamine & 
Prochlorperazine & Sodium chloride 

3,326 0.11 

Albuterol sulfate & Ipratropium bromide & Prednisolone & 3,017 0.10 
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Sodium chloride 

Albuterol sulfate & Ibuprofen & Ipratropium bromide & 
Prednisolone 

2,901 0.10 

Albuterol sulfate & Ipratropium bromide & Ibuprofen & 
Dexamethasone 

2,587 0.09 

Albuterol sulfate & Acetaminophen & Dexamethasone & 
Ipratropium bromide 

2,341 0.08 

Five drug combinations (D5)   

Diphenhydramine & Ketorolac tromethamine & Lidocaine 
HCl & Prochlorperazine & Sodium chloride 

1,433 0.05 

Fentanyl & Midazolam HCl & Mult electrolyte solutn & 
Ondansetron HCl & Propofol 

601 0.03 

Fentanyl & Lidocaine HCl & Midazolam HCl & Ondansetron 
HCl & Propofol 

580 0.02 

Fentanyl & Lidocaine HCl & Midazolam HCl & Mult 
electrolyte solutn & Ondansetron HCl  

574 0.02 

Fentanyl & Lidocaine HCl & Mult electrolyte solutn & 
Ondansetron HCl & Propofol 

566 0.02 

 

In the Results window the Link Analysis node, select View Plots  Node Frequency Histogram (by 
item cluster) from the main menu, it will display the Node Frequency Histogram (Display 3), which shows 
frequency of specific drug utilization. The weight represents number of patients who took the particular 
drug. One can see that ibuprofen is the most common drug used among pediatric patients in ED visits.  

 

 
Display 3: Node Frequency Histogram 
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The prevalence of drug use can be calculated by dividing the number of patients who had used the 
certain drug by total number of patients in the cohort. The top 12 most commonly used drugs listed in 
Table 6.   

 

Table 5. Top dozen most common drug used among Sick Children in ED Visits in the US 
Children’s Hospitals, 2014 

Generic Drug Name Number of Patients Exposed %, Exposed 

Ibuprofen 474,589 15.43 

Acetaminophen 265,448 8.63 

Ondansetron HCl 265,355 8.62 

Albuterol sulfate 174,998 5.69 

Sodium chloride 169,930 5.52 

Dexamethasone 123,520 4.02 

Lidocaine HCl 120,244 3.91 

Ipratropium bromide 73,605 2.39 

Diphenhydramine 72,182 2.34 

Prednisolone 66,408 2.16 

Ceftriaxone sodium 39330 1.28 

Morphine sulfate 33429 1.09 

 

In the results window of the Link Analysis node, users can find view a table of association rules. Below is 
a screenshot of part of the rule table (Display 4). We will take rule 6 as example to illustrate how to read 
this table. The expected confidence of rule 6 is 8.01%, indicating that epinephrine will be exposed to 
8.01% of the patients who have ED visits and a support of 0.72% indicates that epinephrine and 
dexamethasone are used together by 0.72% of patients during the ED visit. When a patient already took 
epinephrine, he/she has a 63.76% of chance to also take dexamethasone as shown by the confidence, 
which is 7.69 times the chance of taking dexamethasone within the population, shown by the lift value of 
7.69. This information can be useful to understanding drug utilization patterns. LA can generate only two 
item (drug) association rules. This table is similar to the Rules Table (Relations = 2) in the results window 
of the Association Node (Display 2), which can generate two or more item association rules. 
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Display 4. Table of association rules from LA 
 

In the Results window of the Link Analysis node, select View   Plots  Items Constellation Plot from 
the main menu, it will display the link graph (Display 5), which represents associations between all drugs 
and visualizes drug-drug combinations. The plot provides better understanding for clinicians who want to 
know prescription patterns of certain medical condition. The rules data yield nodes and links data in the 
plot, each drug is represented by a circle called node and the association is represented by a line called 
edge or link. The larger the node is, the more frequently the drug had been used. The thicker the link is, 
the more frequently the two drugs had been used concurrently. In this example, Ibuprofen was the most 
commonly used drug. We found that there were 1507 two drug combinations. The top 5 most common 
drug combinations are listed in Table 6. One can see the detail drug combinations in the link data 
(Display 6). 
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Display 5. Items Constellation Plot.  
 

 
Display 6. Link Data Screenshot 
 
If one is interested in particular node (for example, fentanyl in this case), select the node from the Node 
list. Any drug of interest can be selected. Once selected, all nodes connected to the selected node you 
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are displayed, as shown in Display 7. The plot shows fentanyl concurrently used with 34 other drugs 
respectively. 

 

 
Display 7. Drug Fentanyl Concurrently Used With  
 

We subset the link data with fentanyl involved (Display 8) and identified that three of the drug 
combinations (Fentanyl + Midazolam HCI, Fentanyl + Morphine sulfate, fentanyl + Hydromorphone HCl) 
may cause adverse drug-drug interactions and ADEs (additive respiratory depression) using DRUG-
REAX® system (Thomson Micromedex®, Truven Health Analytics Inc., Greenwood Village, Co, USA) [5]. 
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Display 8. Link Data Fentanyl 
 

In the Results window the Link Analysis node, select View   Plots  Exploratory Plot from the main 
menu, it will display the Exploratory Plot (Display 9, Display 10) for Transactional Data to gain insight 
about each individual patient’s drug utilization, or find each individual drug’s users. For example, when 
one selects DIM_DISCHARGE_ID from the Group list and ID 72957679 from the Node list, one can see 
the various drugs that the patient took. In this example, the patient had 10 specific drugs during the ED 
visit (Display 9). 
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Display 9. Exploratory Plot for Individual Patient Drug Utilization 
 
When one selects GENERIC_GRUG_DESC from the Group list and Albuterol Sulfate from the Node list, 
one sees all the individual patients who were exposed to the drug during the ED visit (Display10).  

 

 
Display 10. Exploratory Plot for Individual Drug’s Patient List 
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CONCLUSION 
ARM is a powerful tool to analyze health care administrative data, and could provide additional insight 
into the data and detect important patterns that cannot be identified by traditional statistical methods. LA 
provides various graphs to visualize data. This paper shows how to use Association Node and Link 
Analysis Node in SAS Enterprise Miner to analyze and visualize health care administrative data. PHIS 
data is modified as an example of transactional data. We have shown how AMR and LA can be used to 
detect drug utilization and polypharmacy (drug-drug combinations) patterns and specific generic 
polypharmacy among sick children in emergency department visits. This application of ARM techniques 
has been used to analyze specific medical condition, procedure, or laboratory data associated 
polypharmacy in inpatient setting too (data not shown in this paper). We believe the same approach could 
be used in mining other databases such as administrative claims data and electronic medical records. 
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