Paper 2444-2018
Excelling to Another Level with SAS®

Arthur S. Tabachneck, Ph.D., AnalystFinder, Inc.; Tom Abernathy, Pfizer, Inc.; Matthew
Kastin, NORC at the University of Chicago

ABSTRACT

Have you ever wished that with one click (or submitting one macro call) you could copy any SAS®
dataset, include or exclude variable names or labels, automagically create or modify Excel workbooks, or
paste tables into files? Or how about doing any of the above but, at the same time, create Pivot Tables
and/or, if desired, base new worksheets on existing Excel templates or preformatted workbooks so that
you don’t have to spend time duplicating such things as font usage, effects, formulas, highlighting and/or
graphs? You can and, with just base SAS, there are some little known but easy to use methods that are
available for automating many of your (or your users) common tasks.

BACKGROUND

With the introduction of 64-bit computers, and the XLSX Excel Workbook, the task of exporting SAS®
datasets to Excel became more difficult, typically requiring the purchase of additional products (like
SAS/Access for PC File Formats) and/or installing the PC Files Server. Running macros that
automatically write and run the necessary Visual Basic script, and take advantage of your system’s
clipboard, not only provides a free alternative, but one that runs faster and brings in capabilities that
simply aren’t available with other methods.

In 2014 the current paper’s authors took on the challenge of writing a SAS macro that could do all of the
things that PROC EXPORT can do with Excel workbooks, but do them without needing a SAS/Access
product, and do them faster than using either PROC EXPORT or any of the available ODS or tagset
alternatives (Tabachneck, Abernathy and Kastin, 2014). The macro and paper were so well received that
we were encouraged to expand the macro’s capabilities even further. However, the current version of the
macro ended up having so many new capabilities that we felt a new publication was in order.

Since some like point-and-click environments, while others don’t, the macro was written so that it can be
run both ways (i.e., either submit code that closely resembles what one would submit to run PROC
EXPORT, or right click on a dataset name in SAS Explorer, and select a task from the menu). In addition
to the actions you currently see when right clicking on a dataset, SAS Explorer lets users add their own
actions to the menu. This paper provides step-by-step instructions regarding how to add hundreds of
different export actions designed to your own specifications.

SAS EXPLORER

Many SAS users may not know about the Copy Contents to Clipboard because it is only briefly mentioned
in the documentation. We discovered it while writing the original paper which, initially, was only going to
offer a PROC EXPORT alternative using the CLIPBOARD Access Method. In the documentation’s
description of the CLIPBOARD Access Method, the following statement can be found: You can also copy
data to the clipboard by using the Explorer pop-up menu item Copy Contents to Clipboard.

Any attempt to explain features of the SAS Windowing environment is complicated by the fact that users
can alter the placement and presence of the various windows that will appear on their monitors when they
open an interactive SAS session. A screenshot of a typical SAS Windowing environment is shown, on
the following page, in Figure 1.

The SAS Explorer window, shown on the lower left side of the configuration shown in Figure 1, is the
window from which one can view all active SAS libraries and their contents. The screenshot shown in
Figure 1, specifically, is the way the screen would appear if one has traversed through the SAS Explorer

menu to show all of the tables (i.e., SAS datasets) and catalogs that exist in the Sashelp library. Right
clicking on the name of any table shown in that window will cause the pop-up menu, like the one shown in
Figure 2, to appear.

Moving one’s mouse up and down through the pop-up menu makes the various options active. In our
example, Copy Contents to Clipboard is active and, if one left-clicks while an option is active, they will
cause the action to occur. This particular action creates an HTML version of the dataset and places that
version within one’s clipboard so that it can be pasted into an Excel workbook or any other program that
includes a paste feature.

Figure 1

One Way a SAS Windowing Environment May Appear

5=

Dlops (ot | Clisg et | Peter umsen ||
St

Figure 2
An Explorer Pop-up Menu

[= =TSN

s Calumns

wisw in Excel
(50 e ey
Ein Cape

e

e, o

FPropertiss

ADDING YOUR OWN MENU ACTIONS

As mentioned earlier, we discovered the Copy Contents to Clipboard action during our review of the
documentation pertaining to the Clipboard Access Method. We could have stopped as soon as we
discovered that the action was already available, but we didn’t as the feature didn’t quite meet our
specifications. Specifically, the existing action runs quite slowly, produces HTML files that include
possibly undesired header records and highlighted borders around the cells, and only copies the files to
your system’s clipboard. We were interested in creating actions that could create Excel workbooks and
provide more capabilities than Proc Export currently provides, including:

producing Excel workbooks with variable names in the first row

producing Excel workbooks with variable names in the first row and letting you indicate the upper left
cell where the tables should begin

producing Excel workbooks without including variable names in the first row

producing Excel workbooks, without variable names in the first row, and letting you indicate the upper
left cell where the table should begin

letting you indicate whether formatted values should or shouldn’t be used

producing Excel workbooks that are based on either Excel templates or other workbooks
including Pivot Tables in any workbooks that are created

copying SAS datasets, with or without variable names or labels, to your system’s clipboard

modifying existing worksheets leaving all formatting intact and not altering non-affected cells

The current paper’s authors were already familiar with adding SAS Explorer menu options (Tabachneck,
et al, 2010). However, other than our own paper, and excellent papers by Richard DeVenezia and Art
Carpenter, little documentation even mentions the capability. However, creating a pop-up action is fairly
straight forward:

From the Explorer window, select Tools = Options = Explorer
Left click on Members

Double left click on Table

Left click on Add.

Enter a name for the action (i.e., the name you want to appear on the pop-up menu). Including an
ampersand before one of the letters will cause the letter to be a shortcut one can use to select the
action

Enter the command you want run whenever the action is selected
Select OK to exit the Add Action screen.

Select OK to exit the Table Options screen

CREATING AN ACTION COMMAND

An easy way to declare an action command is to use the gsubmit command. That is, if the action begins
with the string gsubmit, followed by a space, followed by a single quote, everything after the quote (until
the next single quote is found) will be submitted. You can submit any SAS code as long as the code uses
255 or fewer characters, uses two % signs whenever one is normally needed and, if quotation marks are
needed, either uses masking functions or very carefully balanced double quotation marks.

However, since one can use the gsubmit command to submit a SAS macro, the 255 character limitation
can be easily circumvented as only the characters used in calling the macro are counted. Of course,
calling a macro in such a manner can only work if you had saved the macro in a directory that has been
specified in your system’s autocall path. A nice description of the various ways that one can ensure that
their macros will be found is described in the following paper by Harry Droogendyk:
http://analytics.ncsu.edu/sesug/2008/SBC-126.pdf).

An easy way to accomplish that task is described in the Knowledge Base Samples & SAS Notes’ Usage
Note 24451: http://support.sas.com/kb/24/451.html. Quoting from that note, “An AUTOCALL library on the
PC is simply a directory that contains non-compiled MACRO code. The directory does not need to be in a
specific location or to have a specific name. However, the MACRO code that is stored in the directory
needs to be stored in a file that has the same name as the MACRO, and it needs to have a sas
extension.” Using that method, you only have to modify the

—SET SASAUTOS line in your SASV9.CFG file to point to the directory.

THE EXPORTXL MACRO

The macro uses Visual Basic Script (i.e., VBS) to achieve actions that currently aren’t available with
PROC EXPORT or any of the Excel-related DBMS engines, ODS methods, or tagsets. Specifically, the
macro provides the means to accomplish such tasks as: (1) creating a new workbook without confronting

http://analytics.ncsu.edu/sesug/2008/SBC-126.pdf
http://support.sas.com/kb/24/451.html

32/64 bit collisions; (2) adding a new worksheet to an existing workbook; (3) adding a data table to an
existing worksheet; (4) exporting a table to a specific but not predefined range within a worksheet; (5)
including or excluding a variable name header record; (6) enabling the choice of variable names or
variable labels in any variable name header record; (7) using an Excel template or workbook to preformat
the resulting worksheets from any of the above operations; (8) creating pivot tables during any export; (9)
the ability to work on both stand alone and server environments; and (10) exporting to your system’s
clipboard so that you can paste any file into a Word document, Powerpoint, or any software that includes
paste functionality.

Named Parameters. The macro uses named parameters. We attempted, as closely as possible, to
use the same option names and statements as those used for PROC EXPORT. When calling the macro,
the default values will be used unless you include the parameter and desired value. The macro’s
declaration is shown in the following statement:

$macro exportxl (data=, outfile=, sheet=, type=N, usenames=Y, range=Al,

template=, templatesheet=, useformats=N, usenotepad=N, pivot=);

data is the parameter to which you would assign the one or two-level filename of the dataset that you
want to export. Like with PROC EXPORT, dataset options can be included. If you assign a one-level
filename, the libname work will be used. When the macro is called as an action from a SAS Explorer
window, this parameter should be set to equal: data=%8b.%32b which the macro will interpret as
libname.filename of the file that was selected.

outfile is the parameter to which you would assign the name of the file that you want the macro to
either create or modify. The file’s path must exist before the macro is run. Any one of the following
values can be used:

Any valid filename (including path) for which you have write access

Null The output file will be created using the selected data file’s pathname, a back slash, the
selected data file’s filename, and the xlsx extension

W Provide window for user input during run

sheet is the parameter to which you would assign the name of the worksheet that you want to either
create or modify. Any one of the following values can be used:

Any valid worksheet name
Null The filename of the data parameter
W Provide window for user input during run

type is the parameter you would use to indicate the type of process that you want to run. The default
value of this parameter is: N. Any one of the following values can be used:

N Create a new workbook

A Add a new worksheet to an existing workbook
M Modify an existing worksheet

C Copy the dataset to your system’s clipboard

usenames is the parameter you would use to indicate whether you want the first row of the range to
contain the first data record, the variable names, or the variable labels. The default value of this
parameter is: Y. Any one of the following values can be used:

N Don’t include a variable name row

Y You want the top most row to contain variable names
L You want the top most row to contain variable labels
W

Provide window for user input during run

range is the parameter you would use to indicate the upper left cell where you want the table to begin.
The default value is: A1 Any one of the following values can be used:

Any valid Excel cell name
W Provide window for user input during run

template If you have a preformatted Excel template(or workbook) that matches the dataset you are
exporting, use this parameter to specify the template’s path and filename (e.g.,
template=d:\art\template.xltx). Any one of the following values can be used:

Any existing workbook or template filename (including path)
Null No template is to be used
W Provide window for user input during run

templatesheet If you include the template parameter you must use this parameter to specify the
Worksheet that contains the template you want to apply (e.g., templatesheet=template). Any one of the
following values can be used:

Any existing worksheet name
W Provide window for user input during run

useformats is the parameter you would use to indicate whether you want a dataset’s formats applied
when you are exporting its data. The default value of this parameter is: N. Any one of the following values
can be used:

Y You want a dataset’s formats to be applied
N You don’t want a dataset’s formats to be applied
W Provide window for user input during run

usenotepad If you're running this macro on a system that doesn’t provide direct access to your
computer’s clipboard (e.g., a server), or have an Excel configuration that clears the clipboard upon
opening, set this parameter to equal 'Y'. You should only use this parameter if you meet one of the above
conditions, as it is less efficient than the method used for this parameter’s default value (i.e., N). Any one
of the following values can be used:

N Don’t use Notepad
Y Use your system’s or server’s version of Notepad

pivot If you want a pivot table created, this parameter should contain a space separated list of all of
the class variables you want to use as class variables, followed by another space, and the name of the
analysis variable. Any one of the following values can be used:

Space separated list of variable names

W Provide window for user input during run

Of course, some of the options might be meaningless for some of the types. For example, it would be
meaningless to define a range if the task were to copy a dataset to your computer’s clipboard. The
following call would create a Workbook called c:\temp\class.xIsx, from sashelp.class, including a
worksheet called class:

%exportxl (data=sashelp.class, outfile=c:\temp\class.xlsx)

USING EXCEL TEMPLATES

An Excel template worksheet is shown, below, in Figure 3. As you can see, an Excel template is simply
an Excel workbook that has been saved as an Excel template, thus either has an xltx or xltm extension.
With the exportxl macro you can specify any Excel template, or existing Excel workbook (i.e., xIs or xlsx
file), as a template The template shown in Figure 3, which we created as c:\art\template.xltx, has variable
names formatted using a different font than the cells under them, as well as a different color for each
variable name, and various highlighting to better differentiate each row.

Cells H19:J20 contain formulas that calculate the average age, height and weight for males and females,
respectively. Finally, cells F14:LG15 contain formulas, while cells D1:G10 and cells J1:M10 contain line
charts that will compare the average heights and weights of the males and females included in the data.

Figure 3 Figure 4
An Excel Template Desired Resulting Workbook

3 3 g 5 E i &l i 7 r A 0 c o G G s Tw] X w g
name Height weight 1 name Height Weigh

Average Height) Average Weight 2 Altred M & Average Height Ci2s Average Weight
3 Alice 8

4 garnara F 5.3 E

B[[[~ | [&[] | o |2
=

/
]

10 Jefrey " 625 Males Females u
u

12 Joyce F 513 505
Gender AvgHelght Avg Weight 1 [Gender AvgHeight Avg Weight

males " sowvior T soiviol 14 Louise F 563 Males 6.9 10835

Females " ool T morv/ol 15 6 Females 60.5083889 801111111

16 Philip " n 150
17 Robert

18 Ronald " &7 m
19 Thomas " 25 5
20 william " 565 m2
F

7]

]
2
5
%

If your requirement was to produce a workbook (c:\temp\class_stats) that contained one worksheet
labeled Jan_2015, using the template shown in Figure 3 and populated with the sashelp.class dataset,
the two calls to the exportxl macro shown below would readily accomplish the result shown in Figure 4.

%exportxl (data=sashelp.class (keep=name sex height),
template=c:\temp\template.x1ltx,
templatesheet=Template,
outfile=c:\temp\class stats.xlsx,
type=N, usenames=N,
range=A2,
sheet=Jan 2015)

$exportxl (data=sashelp.class (keep=weight),
outfile=c:\temp\class stats.xlsx,
type=M, usenames=N, range=I12,
sheet=Jan 2015)

In the above code the first call of the macro uses the sashelp.class dataset with the Template worksheet
in the file c:\\temp\template.xltx to create a new workbook (type=N) called c:\temp\class_stats, with one
worksheet labeled Jan_2015, copying the students’ names, sex and heights beginning at cell A2
(range=A2) and without including a variable name header row (usenames=N).

The second call of the macro modifies (type=M) the worksheet by adding the students’ weights beginning
at cell 12 (range=I2), again without including variable names.

As you can see, in Figure 4, the template’s highlighting, formatting, and charts were retained, and the
worksheet was populated with the desired data.

Exporting a Pivot Table. A tutorial on pivot tables is well beyond the scope of the present paper.
Besides, numerous and extremely good explanations can be easily found doing a simple web search.
Thus, instead, we’ll show how the macro can be used to create one, and explain the resulting file. Of
course, the macro’s ability to create pivot tables is not the only way to accomplish the task in SAS. If one
licenses SAS/Access to Microsoft Office, Excel’s SAS menu will have an option to open a SAS dataset as
a Pivot table. Alternatively, without SAS/Access to Microsoft Office you could download, modify and apply
the ODS tagsets.tableeditor.

We included the capability to create pivot tables because we prefer extensible code driven solutions. Both
of the above mentioned options require manual point-and-click steps to accomplish the task. To get the
macro to create a pivot table one only has to include the pivot parameter as described in the parameter
section earlier in this paper. As an example, if we wanted to create a Pivot Table based on the
sashelp.cars file including the origin, type and make variables as classification columns and the MSRP
variable as the column being analyzed, the entire task would be accomplished with the following macro
call:

$exportxl (data=sashelp.cars,outfile=c:\cars.xlsx,pivot=0rigin Type Make
MSRP)

The first few rows of the resulting workbook are shown in Figure 5, below.

Figure 5

Workbook Created using the Pivot Parameter

) carsxisx o B =
A [} ® D

1 Sum of MSRP
2 origin ~ [Type[- [Make ~ [Total |
3 2Asia =HybriHonda 39250]

4 Toyota 20510|
5 Hybrid_Total 59760]
6 sedar|Acura 173860|
7 Honda 225770
8 Hyundai 169390
9 Infiniti 217270|
10 Kia 143095
1 Lexus 241020

12 Mazda 80720
13 Mitsubishi 122870|
1 Nissan 202140|
15 scion 12965
16 Subaru 154070
17 Suzuki 72483
18 Toyota 324160|

19 sedan_Total 2139813
20 =Sport{Acura 89765
21 Honda 33260 +
W 4> M| PivotTable ‘cars ~ ¥J]« [

As you can see, the table automatically created two worksheets, one called cars, and the other called
Pivot Table. The cars worksheet is simply a worksheet version of the sashelp.cars dataset. The
PivotTable worksheet's rows are sums of the MSRPs for each Origin/Type/Make combination, as well
rows tabulating the total MSRPs for each Origin/Type combination, total MSRPs for each Origin
combination, and one for the grand total.

If you right click on cell A1 (Sum of MSRP), you can select whether the summarized measures of MSRP
will reflects sums, counts, averages, maximum values, minimum values, products, counts, standard
deviations or variances.

Figure 6

Example of Pivot Table Summary Options

Total
39250)
20510)
55760)

173860
25770
169390

W] PrvotTable G

If you left click on a down arrow immediately to the right of any of the categorical variables, you can select
which values you want to either include or exclude, as well as how you want that variable sorted.

Figure 7

Example of Pivot Table Sort and Selection Options

A B c D
1 |Sum of MSRP

e 23l | 2 [origin ~ [Type[~ [Make - [Total
4] sotAtez =Hybri{Honda 39250
%l setzton Toyota 20510
KT IOT o Hybrid Total 59760
=sedar|Acura 173360
Honda 225770
Hyundai 163230
Value Flters Infiniti 217270
Search s Kia 143095
(Select A Lexus 241020
Pirsis Mazda 80720
E“s':PE Mitsubishi 122870
Nissan 202140
Scion 12965
Subaru 154070
Suzuki 72483
Toyota 324160
Sedan Total 2139813
o E— =SportyAcura 89765
Honda 33260

Additionally, if you or your users insert a graph, the graph will automatically adjust to the included
classification values and type of summary selected.

Figure 8
Example of Pivot Table Graph

Average of MSRP

Origin ~[Type A|Make ~ [Total
SAsia SSUV [Acura 36945 T
Honda 22036.66667]
Hyundai 21589) Average MISRP
isuzu 26149
Kia 19635| 7000
Lexus 49898.33333, 60000 JAN
Mazda 21087 s0000

Mitsubishi 2749866667 10000 |
Nissan 27372.66667) \
30000

ki
suzuki 20431 oo _/\l \/—\/ v

Toyota 33278
SUV_Total 29569) 10000 o
Asia_Total 29563) o
= Europe SSUV (MW 245975
Land Rover | 4583166667
Mercedes-Benz 61670)
porsche 56665
Volkswagen 35515
Volvo 41250)
SUV_ Total aﬁ‘
Europe Total 48345 T —
EIYY [=suv Teuick 32220|

We totally agree that Pivot Tables don’t provide anything you can’t already do with SAS, but it does give
those same capabilities to others who either aren’t proficient in or don’t have access to SAS, or are more
comfortable working with Excel.

HOW THE MACRO WORKS

The macro’s declaration line was shown, earlier, in the Named Parameters section. The initial lines of the
macro’s code are shown on the following page. These lines accomplish five tasks. First, if a two-level
filename is provided for the data parameter, the macro variable is parsed into two new macro variables,
namely libnm and filenm. Conversely, if the data parameter contains a one-level filename, that name is
assigned to the filenm macro variable and the libnm macro variable will be set to equal work.

The code also inspects the data parameter’s value to determine if it contains a left parenthesis. If it does,
any data step options that were included are parsed out of the data parameter, and used as the value of a
macro variable called &dsoptions.

Then, if the outfile parameter isn’t specified, the outfile macro variable is set to equal the path of libname,
followed by a backslash, followed by the filenm, and ending with an .xlsx extension:

%let lp=%sysfunc(findc (%$superqg(data), $str(%()));

%if &lp. Sthen %do;
%let rp=%sysfunc(findc ($superqg(data),%$str(%)),b));
%let dsoptions=%gsysfunc(substrn (%nrstr ($superqg(data)), &lp+l, &rp-&lp-1));
$let data=%sysfunc(substrn(snrstr (ssuperqg(data)),l,seval (&lp-1)));

%end;

%else %let dsoptions=;

%$if %$sysfunc (countw(&data.))
$let libnm=%scan (&data.,l);
$let filenm=%scan (&data.,?2);

%end;

%else %do;
$let libnm=work;
$let filenm=&data.;

%end;

eqg 2 %then %do;

%$1f %$length (&outfile.) 1t 1 %then
$let outfile=%sysfunc(pathname (&libnm.))\&filenm..xlsx;;
%1if %length(&sheet.) 1t 1 %$then %let sheet=&filenm.;;

The next section of the code gives end users a way to enter the outfile, sheet name, range, template,
templatesheet, useformats, usenotepad, and pivot parameters, interactively, after the macro has been
called. For example, the following code is used to produce a window that lets end users interactively
specify the range parameter:

3else %do;
%$1f Supcase(&range.) eq W $then %do;

data null ;

window range rows=8 columns=80

irow=1l icolumn=2 color=black

#2 @3 'Enter the upper left cell where range should begin (e.g. D5): '
color=gray range $41. required=yes
attr=underline color=yellow;

DISPLAY range blank;
call symputx('range',range);
stop;
run;
send;
%else %if S$length(&range.) 1t 2 %then %do;
%let range=Al;
%end;

The above code, if invoked with the specified parameter values, will cause the macro to display windows
like the one shown in Figure 9, below. The window will appear on the user’'s monitor and wait until a cell
name has been entered and the Enter key has been pressed.

Figure 9
User Input Window Created by Window Statement

range

Enter the uvpper left cell where range should begin (e.qg. D5): |

The next section of the macro checks to ensure that the data dataset exists and, if it doesn’t, stops the
macro from proceeding any further:

data null ;
dsid=open (catx('.',"&libnm.","&filenm."));
if dsid eqg 0 then do;
rc=close (dsid) ;
link err;
end;
rc=close (dsid) ;
err:
do;
m = sysmsg();
put m;
stop;
end;
run;

If the data dataset exists the macro then creates a one-record version of the file, and uses PROC SQL to
create a number of macro variables from dictionary.columns:

data t e m p;
set &libnm..&filenm. (%unquote(&dsoptions.) obs=1l);
run;

proc sql noprint;
select name, length, type, format, label
into :vnames separated by "~"
:vlengths separated by "~",
:vtypes separated by "~"

10

:vformats separated by "~",
:vlabels separated by "~"
from dictionary.columns
where libname="WORK" and
memname="T E M P"
quit;
%let nvar=&sqglobs.;

The following section of code serves as a code generator to incorporate all of the information obtained
from the macro variables within an include file that will be called in the macro’s main data step:

filename code2inc temp;
data null ;
file code2inc;
length script $80;
length fmt $32;
do i=1 to é&nvar;
if 1 gt 1 then put 'rc=fput(fid,"09"x);';

%$1f Supcase(&useformats.) eq Y S$then %do;
fmt=scan("&vformats.",i,"~","M");

%end;

%else call missing(fmt);;

if scan("&vtypes.",i,"~") eq 'char' then do;

if missing(fmt) then
fmt=catt('S$', scan("&vlengths.”,i,"~","M"),".");
script=catt('rc=fput (fid, putc(put (',
scan (" &vnames.",i,"~","M"),"', "', fmt, "), 'Schar",
scan("&vlengths.",i,"~","M"),"."));");
put script;
end;
else do;
if missing(fmt) then fmt='best32.';
script=catt('rc=fput (fid, putc(put (',

scan (" &vnames.",1i,"~","M"), "', ", fmt, "), "Schar32."));");
put script;
end;
end;
put 'rc=fwrite(fid);';
run;

The next section of code checks to ensure that the dataset has both variables and records after the
specified dataset options have been applied:

data null ;

dsid=open ("work.t e m p");

rc=attrn (dsid, 'any"') ;

if rc ne 1 then do;
rc=close (dsid) ;
link err;

end;

rc=close (dsid);

err:

do;

11

m = sysmsg();
put m;
stop;
end;
run;

The next section of code serves as the main driver for reading all of the data and writing it to the system
clipboard. . The SAS documentation suggests a much simpler data step approach for accomplishing the
same task but, when we tested the suggested method, it would only copy a dataset’s first 256 characters.
The only way we could discover for getting around that limitation was to accomplish the task using
functions rather than statements. While the approach uses more code than the straight forward clipboard
access method, all of the required code is created automatically by the datastep. Additionally, dependent
upon the value of the usenotepad parameter, one of two different access methods are incorporated:

%1if Supcase(&usenotepad) eq Y %then %do;
%let server path=%sysfunc(pathname (work)) ;
rc=filename('clippy',"&server path.\clip.txt", 'DISK');
%end;
%else %do;
rc=filename('clippy',' ', 'clipbrd');
%end;
if rc ne 0 then link err;
fid=fopen('clippy','o', 0,'v");
if fid eq 0 then link err;

do i =1 to &nvar.;
%if Supcase(&usenames.) ne N %then %do;

if i gt 1 then rc=fput(fid, '09'x);

%$1f Supcase(&usenames.) eq Y %$then %do;
rc=fput(fid, scan("&vnames.",i,"~","M"));

%end;

%else %do;
if missing(scan("&vlabels.",i,"~","M")) then

rc=fput(fid, scan("&vnames.",i,"~"));
else rc=fput(fid, scan("&vlabels.",i,"~","M"));

$end;
$end;
end;
%$1f Supcase(&usenames.) ne N %$then %do;
rc=fwrite(fid) ;;
$end;

do until (lastone);
set &libnm..&filenm.
$if $length(%unquote(&dsoptions.)) gt 2 %$then (8%unquote(&dsoptions.));
end=lastone;
%include code2inc;
end;
rc=fclose(fid);
rc=filename('clippy"')
rc=filename ('code2inc') ;
stop;

err:
do;
m = sysmsqgl();
put m;

12

rc=filename ('code2inc') ;
stop;
end;
run;

The next section of the macro was designed to accommodate those cases where a user sets the
parameter type to a value of N, M or A, indicating that they want the macro to use VB script to either
create an Excel workbook, modify an existing worksheet, or add a new worksheet to an existing
workbook:

%$1f Supcase (&type.) eq N or Supcase(&type.) eq M
or %upcase (&type.) eq A %then %do;

The next section of the macro creates and runs a file called Pastelt.vbs, in the user’s work directory,
which contains VB script. Of course, this section of the macro can only run on an operating system, like
Windows, that can run both VB script and Excel. First, the file is declared and the code common to all
types is specified:

data null ;
length script filevar $256;
script = catx('\',pathname('WORK'), 'Pastelt.vbs');
filevar = script;
script="'"||'cscript "'||trim(script) |['""[|""'";
call symput('script',script);
file dummyl filevar=filevar recfm=v lrecl=512;

put 'Dim objExcel';
put 'Dim Newbook';

The next section of the macro creates the vbs script to use a template to add a worksheet to an existing
workbook:

%$1f $%length(&template.) gt 1 %$then %do;
%$1f Supcase(&type.) eq A Sthen put 'Dim OldBook';;
put 'Set objExcel = CreateObject ("Excel.Application”)';
put 'objExcel.Visible = True';
%$1f Supcase(&type.) eq N S$then %do;
script=catt('Set Newbook = objExcel.Workbooks.Add ("',
"¢template.","'") ") ;
put script;
script=catt('objExcel.Sheets("',"&TemplateSheet.",
'") .Select');
put script;
script=catt('objExcel.Sheets ("', "&TemplateSheet.",
'") .Name = "',"&sheet.","'"");
put script;
put 'objExcel.Visible = True';
script=catt('objExcel.Sheets ("', "&sheet.",
'") .Range ("', "&range.",'") .Activate');
put script;
Then, if the usenotepad parameter has a value of y or Y, the code is temporarily rerouted to a section
(described later in the code) that creates the vb script needed to accomplish a copy operation using one’s
system’s Notepad. A %goto statement is used to simulate the same action that would be accomplished
by a link statement in non-macro code:

13

%$1f Supcase(&usenotepad) eg Y S$then %do;
%let Return to = Return 1;
%goto use npad;
$Return 1:
send;
Then, the vb script needed to accomplish the paste operation is written:

script=catt ('objExcel.Sheets ("', "&sheet.",'") .Paste');

put script;

script=catt ('objExcel.Sheets ("', "&sheet.",

'") .Range ("A1") .Select');

put script;

put 'objExcel.DisplayAlerts = False';

script=catt ('NewBook.SaveAs ("', "&outfile.","'™)");

put script;

%end;

The next section of the macro creates the vb script needed for using a template to create a new
workbook:

%else %do;

script=catt ('strFile=""',"&outfile.","'"");

put script;

script=catt ('Set 0ldBook=objExcel.Workbooks.Open ("',
"soutfile.",'™) ") ;

put script;

script=catt ('Set Newbook = objExcel.Workbooks.Add ("',
"&template.",'™) ")

put script;

script=catt ('objExcel.Sheets ("', "&TemplateSheet.",
'") .Select');

put script;

script=catt ('objExcel.Sheets ("', "&TemplateSheet",

'") .Name ="', "&sheet.
put script;

"""');

put 'objExcel.Visible = True';
script=catt ('objExcel.Sheets ("', "&sheet.",
'") .Range ("',"&range.",'") .Activate');

put script;
%1f Supcase(&usenotepad) eq Y S$then %do;
%let Return to = Return 2;
%goto use npad;
%Return 2:
%end;
script=catt ('objExcel.Sheets ("', "&sheet.",'") .Paste');
put script;
script=catt ('objExcel.Sheets ("', "&sheet.",
'"™) .Range ("Al") .Select');
put script;
script=catt ('objExcel.Sheets ("', "&sheet.",
'") .Move ,0ldBook.Sheets(OldBook.Sheets.Count)"'):;
put script;
put 'objExcel.DisplayAlerts = False';
script=catt ('OldBook.SaveAs ("', "&outfile.","'™)");
put script;
%end;
%end;

14

The next section of the macro creates the vb script declarations needed for all other operations:

selse %do;
%$1f Supcase (&type.) eq N or %upcase(&type.) eq A %$then %do;
%$1f Supcase (&type.) eq N $then put 'Dim NewSheet';;
put 'Dim inSheetCount';
%$1f Supcase(&type.) eq A Sthen put 'Dim strFile';;
send;

put 'Set objExcel = CreateObject ("Excel.Application")';

Then, the macro creates the VB script needed to create a new workbook. Basically, the code simply
causes Excel to create a new workbook, deletes all of the default worksheets that are specified in the
user’s Excel options, and then adds a new worksheet with the name specified by the sheet parameter.
Finally, Excel's SaveAs feature is used to save and name the resulting workbook. While other methods
could have been used, for convenience we selected this method:

%$1f Supcase(&type.) eq N S$then %$do;
put 'Set Newbook = objExcel.Workbooks.Add()';
put 'objExcel.Visible = True';
put 'inSheetCount = Newbook.Application.Worksheets.Count';
script=catt('set NewSheet = Newbook.Sheets.Add',
'(,objExcel.WorkSheets (inSheetCount))"');
put script;
put 'objExcel.DisplayAlerts = False';
put 'i = inSheetCount';
put 'Do Until i = 0';
put ' Newbook.Worksheets (i) .Delete';
put ' i =1i - 1"';
put ' Loop';
script=catt ('Newbook.Sheets (1) .Name=""',"&sheet.","'"");
put script;
script=catt ('Newbook.Sheets ("', "&sheet.",'").Select');
put script;
script=catt ('Newbook.Sheets ("', "&sheet.",
'") .Range ("',"&range.",'") .Activate');
put script;
%$1f Supcase(&usenotepad) eq Y S$then %do;
%let Return to = Return 3;
%goto use npad;
SReturn 3:
%end;
script=catt ('Newbook.Sheets ("', "&sheet.",'") .Paste');
put script;
script=catt ('NewSheet.SaveAs ("', "&outfile.",'™)");
put script;
%end;

The next section of the macro’s code creates the VB script needed to add a new worksheet to an existing
workbook. Again, Excel’s SaveAs feature is used to save and name the resulting workbook.

%else %if Supcase(&type.) eq A Sthen %do;
script=catt('strFile=""',"soutfile.",'"");

put script;
put 'objExcel.Visible = True';

15

put 'objExcel.Workbooks.Open strFile';

put 'inSheetCount = objExcel.Application.Worksheets.Count';

script=catt('set NewBook = objExcel.Sheets.Add(,objExcel.’',
'WorkSheets (inSheetCount)) ') ;

put script;

script=catt('objExcel.Sheets (inSheetCount + 1) .Name=""',

"&Sheet.", IHI);
put script;
script=catt('objExcel.Sheets ("', "&sheet.",'").Select');

put script;
put 'objExcel.Visible = True';
script=catt('objExcel.Sheets ("', "&sheet.",'").Range ("',

"&range.",'") .Activate');
put script;
%$1f Supcase(&usenotepad) eq Y S$then %do;

%let Return to = Return 4;

sgoto use npad;

$Return 4:

%end;
script=catt('objExcel.Sheets(""',"&sheet.",'") . Paste');
put script;
put 'objExcel.DisplayAlerts = False';

script=catt ('Newbook.SaveAs ("', "&outfile.","'™)");
put script;

%end;

The next section of the macro’s code creates the VB script needed to modify an existing worksheet.

%else %do;
script=catt('Set Newbook = objExcel.Workbooks.Open ("',

"goutfile.",'") ") ;
put script;
script=catt('Newbook.Sheets ("', "&sheet.",'") .Select');

put script;

script=catt ('Newbook.Sheets ("', "&sheet.",
'") .Range ("', "&range.",'") .Activate');

put script;

$1f %Supcase(&usenotepad) eq Y %then %do;
%let Return to = Return 5;
%goto use npad;
SReturn 5:
%end;
script=catt ('Newbook.Sheets ("', "&sheet.",'") .Paste');
put script;
put 'objExcel.DisplayAlerts = False';
script=catt ('Newbook.SaveAs ("', "&outfile.",'™)");
put script;
%end;
%end;
put 'objExcel.Workbooks.Close';
put 'objExcel.DisplayAlerts = True';
put 'objExcel.Quit';

The next section of the macro’s code, as shown on the following page, contains the code that is needed
to create pivot tables:

16

%$1f $%$length(&pivot.) gt 2 %then %do;
put 'Set XL = CreateObject ("Excel.Application™)';
put 'XL.Visible=True';
script=catt('XL.Workbooks.Open "', "&outfile.",'"");
put script;
put 'Xllastcell= xl.cells.specialcells(1ll) .address';
put'XL.Sheets.Add.name = "PivotTable"';
script=catt('xldata=""',"&sheet.",'"");
put script;
put 'XL.Sheets(xldata) .select';
put 'XL.ActiveSheet.PivotTableWizard SourceType=xlDatabase,
XL.Range ("A1" & ":" & xllastcell),"Pivottable!R1C1l",xldata’';
%do i=1 %to $sysfunc(countw (&pivot.));
%$1if &i 1t S$sysfunc(countw(&pivot.)) %$then %do;
script=catt('XL.ActiveSheet.PivotTables (xldata) .PivotFields ("',
"%scan(&pivot.,&i.)","'") .Orientation = 1"');
%end;
%else %do;
script=catt('XL.ActiveSheet.PivotTables (xldata) .PivotFields ("',
"%scan(&pivot.,&1i.)","'") .Orientation = 4"');
%end;
put script;
%end;
put 'XL.ActiveWorkbook.ShowPivotTableFieldList = False';
put 'XL.DisplayAlerts = False';
script=catt('XL.ActiveWorkbook.SaveAs ("', "&outfile.","'") ") ;
put script;
put 'XL.Workbooks.Close';
put 'XL.DisplayAlerts = True';
put 'XL.Quit';
%end;
%goto lastline;

The next section of the macro’s code contains the code that is linked to with %goto statements:

suse npad:
put 'Dim objShell';
put 'Set objShell = CreateObject ("WScript.Shell")';
script=catt('objShell.Run "notepad.exe',
" &server path.\clip.txt",'"'");
put script;
put 'Do Until Success = True';
put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';
put 'Loop';
put %str('objShell.SendKeys "SE"');
put 'Do Until Success = True';
put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';
put 'Loop';
put 'objShell.SendKeys "A"';
put 'Do Until Success = True';
put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

17

put 'Loop':;

put $str('objShell.SendKeys "SE"');

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop':;

put 'objShell.SendKeys "C"';

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop':;

put $%str('objShell.SendKeys "SF"');

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop':;

put 'objShell.SendKeys "X"';

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop';

put 'objShell.SendKeys "{TAB}"';

put 'WScript.Sleep 500';

put 'objShell.SendKeys "{ENTER}"';

put 'Wscript.Sleep 1000';

%goto &Return to.;

%lastline:
%$1f Supcase(&usenotepad) eq Y S$then put 'WScript.Quit';;
run;

The final section of the macro’s code runs the VB script, then deletes the temporary file T_E_M_P.:

data null ;
call system(&script.);
run;
%end;
%end;

/*Delete all temporary files*/
proc delete data=work.t e m p;
run;

%mend exportxl;

WHERE TO GET THE MACRO

We did our best to only include carefully written and tested code, but the code may have to be updated
from time to time to correct for errors or enhancements that we or others might discover or request.
Additionally, while a copy of the macro is included in this paper, copying and pasting from a pdf file often
introduces stylish looking quotation marks which aren’t correctly recognized by SAS. As such, we created
a page for the paper on github. The page includes copies of the source code, a powerpoint presentation,
and the most recently updated version of this paper. The page can be found at:
https://github.com/FriedEgg/Papers/tree/master/Excelling_to_Another_Level with SAS/doc

18

CONCLUSION

The purpose of the present paper was to create and describe alternative menu and non-menu driven methods one
could use for exporting SAS datasets to Excel, as well as use SAS Explorer’s built-in functionality for adding pop-up
menu actions. The methods are generalizable to almost any task that has to be repeated. Thus, one could use the
methods to build menu items for running PROC CONTENTS, PROC MEANS, PROC UNIVARIATE, or any proc or
custom macro one might typically use to gain an understanding of any dataset, all with just one click.

REFERENCES

A Poor/Rich Users Proc Export, Tabachneck,A., Abernathy, T., and Kastin, M., SGF 2014 Proceedings,
http://support.sas.com/resources/papers/proceedings14/1793-2014.pdf

Automagically Copying and Pasting Variable Names, Tabachneck, A., Herbison, R., Clapson, A., King, J.,
DeAngelis, R. and Abernathy, T., SGF 2010 Proceedings,
http://support.sas.com/resources/papers/proceedings10/046-2010.pdf

Copy and Paste Almost Anything, Tabachneck, A., Herbison, R., King, J., DeVenezia, R., Derby, N., and
Powell, B., SGF 2012 Proceedings, http://support.sas.com/resources/papers/proceedings12/238-
2012.pdf

Doing More with the SAS® Display Manager: From Editor to ViewTable - Options and Tools You Should Know,
Carpenter, A., SGF 2012 Proceedings, http://support.sas.com/resources/papers/proceedings12/151-2012.pdf

FILENAME, CLIPBOARD Access Method, SAS 9.2 Documentation, SAS Institute 2012,
http://support.sas.com/documentation/cdl/en/Irdict/64316/HTML/default/viewer.htm#a002571877.htm

SAS® Explorer: Use and Customization, DeVenezia, R., NESUG 2005,
http://www.nesug.org/proceedings/nesug05/ap/ap6.pdf

Step-by-Step Programming with Base SAS® Software, Customizing the SAS Widowing Environment
http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a001115650.htm

Which SASAUTOS Macros Are Available to My SAS® Session?, Droogendyk, H, SESUG 2008,
http://analytics.ncsu.edu/sesug/2008/SBC-126.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Arthur Tabachneck, Ph.D., CEO
Analyst Finder, Inc. Thornhill, ON Canada
E-mail: art@analystfinder.com

Tom Abernathy

Pfizer, Inc.

New York, NY 1001

E-mail: tom.abernathy@pfizer.com

Matthew Kastin

NORC at the University of Chicago
Chicago, IL

E-mail: fried.egg@verizon.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

19

http://support.sas.com/resources/papers/proceedings14/1793-2014.pdf
http://support.sas.com/resources/papers/proceedings10/046-2010.pdf
http://support.sas.com/resources/papers/proceedings12/238-2012.pdf
http://support.sas.com/resources/papers/proceedings12/238-2012.pdf
http://support.sas.com/resources/papers/proceedings12/151-2012.pdf
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002571877.htm
http://www.nesug.org/proceedings/nesug05/ap/ap6.pdf
http://support.sas.com/documentation/cdl/en/basess/58133/HTML/default/viewer.htm#a001115650.htm
http://analytics.ncsu.edu/sesug/2008/SBC-126.pdf

APPENDIX A
THE %EXPORTXL MACRO/

/** The %exportxl macro

This macro exports SAS datasets to Excel. It only requires base SAS and
provides the abilities to:

create new workbooks, worksheets, and modify existing worksheets
include or not include a row containing variable names or labels
output to a range that isn't pre-defined

use Excel templates or workbooks as templates

output formatted or unformatted values

export a file to your system's clipboard so that it can be pasted
into another program (e.g., Word or Powerpoint)

avoid 32/64 bit incompatibility issues

create pivot tables

Xk o ok X X ok X ot

L S

*

The macro was designed so that it can be called directly or included
as a SAS abbreviation

AUTHORS: Arthur Tabachneck, Tom Abernathy and Matt Kastin
CREATED: August 6, 2013
MOST RECENT VERSION: November 10, 2017

o S S S . S

* Named Parameter Descriptions:

* data: the parameter to which you would assign the name of the file that
you want to export. Like with PROC EXPORT, you can use either a one or
two-level filename, and dataset options can be included. If you assign
a one-level filename, the libname work will be used. When the macro is
called as an action from a SAS Explorer window, this parameter should be
set to equal: data=%8b.%32b which the macro will interpret as
libname.filename of the file that was selected

* outfile: the parameter to which you would assign the path and filename of
the workbook that you want the macro to either create or modify. The
file’s path must exist before the macro is run. Any one of the following
values can be used:

Any valid filename (including path) for which you have write access
Null The output file will be created using the selected data file’s
pathname, a back slash, the selected data file’s filename, and
the xlsx extension
W Provide window for user input during run

* sheet: the parameter to which you would assign the name of the worksheet
that you want to either create or modify. Any one of the following
values can be used:

Any valid worksheet name
Null The filename of the data parameter
W Provide window for user input during run

* type: the parameter you would use to indicate the type of process that

you want to run. The default value of this parameter is: N. Any one of
the following values can be used:

20

N Create a new workbook

A Add a new worksheet to an existing workbook
M Modify an existing worksheet

C Copy the dataset to your system’s clipboard

* usenames: the parameter you would use to indicate whether you want the
first row of the range to contain the first data record, the variable
names, or the variable labels. The default value of this parameter is: Y.
Any one of the following values can be used:

N Don’t include a variable name row

Y You want the top most row to contain variable names

L You want the top most row to contain variable labels if they exist,
otherwise use variable names

W Provide window for user input during run

* range: the parameter you would use to indicate the upper left cell where
you want the table to begin. The default value is: Al. Any one of The
following values can be used:

Any valid Excel cell name
W Provide window for user input during run

* template: the parameter you would use if you have a preformatted Excel
template (or Excel workbook) that you want to apply to the data you are
exporting. In such a case, use this parameter to specify the template’s
path and filename (e.g., template=c:\temp\template.xltx). Any one of the
following values can be used:

Any valid workbook or template filename (including path)
Null No template is to be used
W Provide window for user input during run

* templatesheet: If you include the template parameter you must use this
parameter to specify the template's Worksheet that contains the template
you want to apply (e.g., templatesheet=template). Either of the
following values can be used:

Any existing worksheet name
W Provide window for user input during run

* useformats: the parameter you would use to indicate whether you want a
dataset’s formats to be applied when you exporting its data. The default
value of this parameter is: N. Any one of the following values can be
used:

Y If you want a dataset’s formats to be applied
N If you don’t want a dataset’s formats to be applied
W Provide window for user input during run

* usenotepad: If you're running this macro on a server, or on an operating
system that doesn’t provide direct access to your computer’s clipboard,
or have an Excel configuration that clears the clipboard upon opening,
set this parameter to equal 'Y'. You should only use this parameter if
you meet one of the above conditions, as it is less efficient than the
method used for this parameter's default value (i.e., N). Any one of the

21

fol

N
Y

lowing values can be used:

Don't use Notepad
Use your system's or server's version of Notepad

* pivot: the parameter you would use to indicate whether you want a
pivot table created at the same time as you're exporting data. The

def

If
con
wan
spa
as

ault value of this parameter is a NULL value.

you want the macro to create a pivot table, this parameter should
tain a space separated list of all of the character variables you

t the Pivot Table to use as class variables, followed by another

ce, and the name of the variable you want the Pivot Table to use

its analytical variable. Any one of the following values can be used:

Space separated list of variable names
W Provide window for user input during run

*/

$macro

exportxl (data=,
outfile=,
sheet=,
type=N,
usenames=Y,
range=Al,
template=,
templatesheet=,
useformats=N,
usenotepad=N,
pivot=);

/*Check whether the data parameter contains a one or two-level filename*/

/*and,
$let
$if &

$let
$let
$let
$end;
%else
$1if %
%le
$le
$end;
%else
%le
%le
$end;

if %

dat

if needed, separate libname and data from data set options */
lp=%sysfunc (findc (%superg(data), estr(%()));

lp. %then %do;

rp=%sysfunc (findc($%$superg(data), $str(%)),b));
dsoptions=%gsysfunc (substrn ($nrstr ($superqg(data)), &lp+l, &rp-&lp-1));
data=%sysfunc (substrn ($nrstr ($superqg(data)),1l, seval (&1lp-1)));

%$let dsoptions=;
sysfunc (countw(&data.))
t libnm=%scan(&data., 1)
t filenm=%scan(&data.,?2

eq 2 %then %do;
)
sdo;

t libnm=work;
t filenm=&data.;

upcase (&outfile.) eg W %then %do;
a null ;

window outfile rows=8 columns=80

i
#

C

row=1 icolumn=2 color=black
2 @3 'Enter path and filename of desired outfile: '
olor=gray outfile $70. required=yes

22

attr=underline color=yellow;
DISPLAY outfile blank;
call symputx('outfile',outfile);
stop;
run;
send;
%$1if $%$length(&outfile.) 1t 1 %then
$let outfile=%sysfunc(pathname (&libnm.))\&filenm..xlsx;;

%$1f Supcase(&sheet.) eq W %$then %do;
data null ;
window sheet rows=8 columns=80
irow=1 icolumn=2 color=black
#2 @3 'Enter valid worksheet name: '
color=gray sheet $40. required=yes
attr=underline color=yellow;
DISPLAY sheet blank;
call symputx('sheet',6 sheet);
stop;
run;
%$end;
%$if %length(&sheet.) 1t 1 %then
%$let sheet=&filenm.;;

/*Left for compatibility with previous version*/
%if Supcase(&type.) eq P %$then %do;
proc export
data=&libnm..&filenm.

%$1if $length(%unquote(&dsoptions.)) gt 2 %then
($unquote (&dsoptions.)) ;

outfile= "&outfile."
dbms=x1sx

replace
;
%$1f &sheet. ne "" %$then sheet="&sheet.";;
run;
%end;

/*end of compatibility code - Note: above is not documented in
%else %do;
$1if Supcase(&range.) eq W %then %do;
data null ;
window range rows=8 columns=80
irow=1l icolumn=2 color=black
#2 @3 'Enter the upper left cell where range should begin
color=gray range $41. required=yes
attr=underline color=yellow;
DISPLAY range blank;
call symputx('range',range);
stop;
run;
%end;
%else %if %length(&range.) 1t 2 %then %do;
%let range=Al;
send;

%$1f Supcase(template) eg W %then %do;
data null ;

23

paper*/

window template rows=8 columns=80
irow=1l icolumn=2 color=black
#2 @3 'Enter the template path and name: '
color=gray template $41. required=yes
attr=underline color=yellow;
DISPLAY template blank;
call symputx('template', template);
stop:;
run;
send;
%else %if $%length(&template.) 1t 2 %then %do;
%let template=;

%end;
%$1f Supcase(&templatesheet.) eq W %then %do;

data null ;
window templatesheet rows=8 columns=80
irow=1l icolumn=2 color=black
#2 @3 "Enter the template sheet's name: "
color=gray templatesheet $41. required=yes
attr=underline color=yellow;
DISPLAY templatesheet blank;
call symputx('templatesheet',6 templatesheet);
stop;
run;
send;
%else %if $length(&templatesheet.) 1t 2 %then %do;
%let templatesheet=;
%end;

$1if Supcase(&pivot) eq W $then %do;
data null ;
window pivot rows=8 columns=80
irow=1 icolumn=2 color=black
#2 @3 'Enter the space separated class and analysis variable list:
color=gray pivot $41. required=yes
attr=underline color=yellow;
DISPLAY pivot blank;
call symputx('pivot',pivot);
stop;
run;
%end;
%else %if $%length(&pivot.) 1t 2 S$then %do;
%let pivot=;
%end;

%if Supcase(&useformats) eq W %then %do;

data null ;
window useformats rows=8 columns=80
irow=1l icolumn=2 color=black
#2 @3 'Enter whether to use formats (Y/N): '
color=gray useformats $1. required=yes
attr=underline color=yellow;
DISPLAY useformats blank;
call symputx('useformats',useformats);
stop;

run;

24

%end;

data null ;
dsid=open(catx('.',"&libnm.","&filenm."));
if dsid eq 0 then do;
rc=close(dsid) ;
link err;

end;
rc=close(dsid) ;
err:
do;
m = sysmsg();
put m;
stop:;
end;
run;

data t e m p;
set &libnm..&filenm. (%unquote(&dsoptions.) obs=1);
run;

proc sgl noprint;
select name, length, type, format, strip (coalescec(label,name))
into :vnames separated by "~"
:vlengths separated by "~"
:vtypes separated by "~"
:vformats separated by "~",
:vlabels separated by "~"
from dictionary.columns
where libname="WORK" and
memname="T E M P"
quit;
%let nvar=&sqglobs.;

filename code2inc temp;
data null ;
file code2inc;
length script $80;
length fmt $32;
do i=1 to &nvar;
if 1 gt 1 then put 'rc=fput(fid,"09"x);';

%$1f Supcase(&useformats.) eq Y S$then %do;
fmt=scan("&vformats.",i,"~","M");

%end;

%else call missing(fmt) ;;

if scan("&vtypes.",i,"~") eq 'char' then do;

if missing(fmt) then

fmt=catt('S$', scan("&vlengths.",i,"~","M"),".");
script=catt('rc=fput (fid,putc(put (',
scan("&vnames.",1i,"~","M"),"', "', fmt, "), 'Schar",

scan("&vlengths.",i,"~","M"),"."));");
put script;
end;
else do;

if missing(fmt) then fmt='best32.';
script=catt('rc=fput (fid,putc(put (',

25

scan (" &vnames.",i,"~","M"), "', ", fmt, "), 'Schar32."));");
put script;

end;
end;
put 'rc=fwrite(fid);';
run;

data null ;
dsid=open("work.t e m p");
rc=attrn(dsid, 'any"') ;
if rc ne 1 then do;
rc=close(dsid) ;
link err;

end;
rc=close(dsid) ;
err:
do;
m = sysmsqgl();
put m;
stop;
end;
run;

data null ;
%1if Supcase(&usenotepad) eq Y %then %do;
%let server path=%sysfunc(pathname (work)) ;
rc=filename('clippy',"&server path.\clip.txt", 'DISK");
%end;
%else %do;
rc=filename('clippy',' ', 'clipbrd');

%end;
if fid eq 0 then link err;
do i =1 to &nvar.;
%$1f Supcase(&usenames.) ne N %$then %do;
if 1 gt 1 then rc=fput(fid,'09'x);
$1if Supcase(&usenames.) eq Y $then %do;
rc=fput (fid, scan("&vnames.",i,"~","M"));
%end;
%else %do;
if missing(scan("&vlabels.",i,"~","M")) then
rc=fput (fid, scan("&vnames.",i,"~"));
else rc=fput(fid, scan("&vlabels.",i,"~","M"));
%end;
%end;
end;
%if Supcase(&usenames.) ne N %then %do;
rc=fwrite(fid) ;;
%end;

do until (lastone);
set &libnm..&filenm.
%$1f %length (Sunquote (&dsoptions.))>2 Sthen (%unquote(&dsoptions.
end=lastone;
%$include code2inc;
end;
rc=fclose(fid);
rc=filename('clippy');
rc=filename ('code2inc');

26

stop;

err:
do;
m = sysmsg();
put m;
rc=filename ('code2inc') ;
stop:;
end;
run;

%$1f Supcase(&type.) eq N or Jupcase(&type.) eq M
or Supcase(&type.) eq A Sthen %$do;

data null ;
length script filevar $256;
script = catx('\',pathname('WORK'), 'Pastelt.vbs');
filevar = script;
script="""||"'cscript "'||trim(script) | |"""[|""'";
call symput('script',script);
file dummyl filevar=filevar recfm=v lrecl=512;

put 'Dim objExcel';
put 'Dim Newbook';

%$if $length(&template.) gt 1 %then %do;
%if Supcase(&type.) eqg A S$then put 'Dim 0ldBook';;
put 'Set objExcel = CreateObject ("Excel.Application")';
put 'objExcel.Visible = True';
%if Supcase(&type.) eq N $then %do;
script=catt('Set Newbook = objExcel.Workbooks.Add ("',
"gtemplate.™,'") ")
put script;
script=catt('objExcel.Sheets ("', "&TemplateSheet.",
'").Select');
put script;
script=catt('objExcel.Sheets ("', "&TemplateSheet.",
vu) .Name = "',"&sheet.", l"l),.
put script;
put 'objExcel.Visible = True';
script=catt('objExcel.Sheets ("', "&sheet.",
'") .Range ("',"&range.",'") .Activate');
put script;
%1f Supcase(&usenotepad) egq Y S$then %do;
%let Return to = Return 1;
sgoto use npad;
SReturn 1:
%end;
script=catt('objExcel.Sheets ("', "&sheet.",'") .Paste');
put script;
script=catt('objExcel.Sheets ("', "&sheet.",
'") .Range ("Al") .Select');
put script;
put 'objExcel.DisplayAlerts = False';
script=catt ('NewBook.SaveAs ("', "&outfile.",'™)");
put script;
%end;

27

3else %do;
script=catt('strFile=""',"&outfile.",'"");
put script;
script=catt('Set 0ldBook=objExcel.Workbooks.Open ("',

"goutfile.",'") ") ;
put script;
script=catt('Set Newbook = objExcel.Workbooks.Add ("',

"&template.",'") ")
put script;
script=catt('objExcel.Sheets ("', "&TemplateSheet.",

'") .Select');
put script;
script=catt('objExcel.Sheets ("', "&TemplateSheet",

'") .Name ="', "&sheet.","'"");
put script;
put 'objExcel.Visible = True';
script=catt('objExcel.Sheets ("', "&sheet.",

'") .Range ("', "&range.",'") .Activate');
put script;
%1if Supcase(&usenotepad) eq Y %$then %do;

%let Return to = Return 2;

sgoto use npad;

$Return 2:
%end;
script=catt('objExcel.Sheets(""',"&sheet.",'") . Paste');
put script;
script=catt('objExcel.Sheets ("', "&sheet.",

'") .Range ("A1") .Select");
put script;
script=catt('objExcel.Sheets ("', "&sheet.",

'") .Move ,0ldBook.Sheets(OldBook.Sheets.Count)"');
put script;
put 'objExcel.DisplayAlerts = False';
script=catt('OldBook.SaveAs ("', "&outfile.",'™)");
put script;

%end;

%end;
%else %do;

%$1f Supcase(&type.) eq N or 3Jupcase(&type.) eq A Sthen %do;
$if Supcase(&type.) eq N $then put 'Dim NewSheet';;
put 'Dim inSheetCount';
$1if Supcase(&type.) eq A S$then put 'Dim strFile';;

%end;

put 'Set objExcel = CreateObject ("Excel.Application™)';

%1f Supcase(&type.) eq N Sthen $do;
put 'Set Newbook = objExcel.Workbooks.Add()';
put 'objExcel.Visible = True';
put 'inSheetCount = Newbook.Application.Worksheets.Count';
script=catt('set NewSheet = Newbook.Sheets.Add',
'(,o0bjExcel.WorkSheets (inSheetCount))"');
put script;
put 'objExcel.DisplayAlerts = False';
put 'i = inSheetCount';
put 'Do Until i = 0';
put ' Newbook.Worksheets (i) .Delete';

28

put ' i =41i - 1";
put ' Loop';

script=catt ('Newbook.Sheets (1) .Name="",
"&sheet.",'"");

put script;

script=catt ('Newbook.Sheets ("', "&sheet.",'").Select"');

put script;
script=catt ('Newbook.Sheets ("', "&sheet.",
'") .Range ("', "&range.",'") .Activate');
put script;
%$1f Supcase(&usenotepad) eg Y $then %do;
%let Return to = Return 3;
%goto use npad;
$Return 3:
send;
script=catt ('Newbook.Sheets ("', "&sheet.",'") .Paste');
put script;
script=catt ('NewSheet.SaveAs ("', "&outfile.",'™)");
put script;
send;
%else %if Supcase(&type.) eq A %$then %do;
script=catt('strFile=""',"&outfile.","'"");
put script;
put 'objExcel.Visible = True';
put 'objExcel.Workbooks.Open strFile';
put 'inSheetCount = objExcel.Application.Worksheets.Count';
script=catt('set NewBook = objExcel.Sheets.Add(,objExcel.’',
'WorkSheets (inSheetCount)) ') ;
put script;
script=catt('objExcel.Sheets (inSheetCount + 1) .Name="",
"&sheet.",'"");
put script;
script=catt('objExcel.Sheets ("', "&sheet.",
'").Select');
put script;
put 'objExcel.Visible = True';
script=catt('objExcel.Sheets("',"&sheet.",'") .Range ("',
"srange.",'") .Activate');
put script;
%$if Supcase(&usenotepad) eq Y %$then %do;
%let Return to = Return 4;
%goto use npad;
$Return 4:
%end;
script=catt('objExcel.Sheets(""',"&sheet.",'") . .Paste');
put script;
put 'objExcel.DisplayAlerts = False';
script=catt ('Newbook.SaveAs ("', "&outfile.",'™)");
put script;
%end;
%else %do;
script=catt('Set Newbook = objExcel.Workbooks.Open ("',

"soutfile.",'™)");
put script;
script=catt ('Newbook.Sheets ("', "&sheet.",'").Select');

put script;
script=catt ('Newbook.Sheets ("', "&sheet.",

29

'") .Range ("', "&range.",'") .Activate');
put script;

%1f Supcase(&usenotepad) eq Y S$then %do;
%let Return to = Return 5;
goto use npad;
SReturn 5:
%end;
script=catt ('Newbook.Sheets ("', "&sheet.",'") .Paste');
put script;
put 'objExcel.DisplayAlerts = False';
script=catt ('Newbook.SaveAs ("', "&outfile.","'™)");
put script;
%end;

send;

put 'objExcel.Workbooks.Close';

put 'objExcel.DisplayAlerts = True';
put 'objExcel.Quit';

%$if $length(&pivot.) gt 2 %then %do;

put 'Set XL = CreateObject ("Excel.Application")';

put 'XL.Visible=True';

script=catt('XL.Workbooks.Open "', "&outfile.","'"");

put script;

put 'Xllastcell= xl.cells.specialcells(1ll) .address';
put'XL.Sheets.Add.name = "PivotTable"';
script=catt('xldata=""',"&sheet.","'"");

put script;

put 'XL.Sheets(xldata) .select';

put 'XL.ActiveSheet.PivotTableWizard SourceType=xlDatabase,

XL.Range ("A1" & ":" & xllastcell),"Pivottable!R1C1",xldata’;
%$do i=1 %$to $sysfunc(countw(&pivot.));
%$1if &i 1t S%$sysfunc(countw(&pivot.)) S$then %do;
script=catt('XL.ActiveSheet.PivotTables (xldata) .PivotFields ("',
"$scan (&pivot.,&i.)","'") .Orientation = 1");
%end;

%else %do;
script=catt('XL.ActiveSheet.PivotTables (xldata) .PivotFields ("',
"$scan(&pivot.,&i.)",'") .Orientation = 4');

%end;

put script;
%end;
put 'XL.ActiveWorkbook.ShowPivotTableFieldList = False';
put 'XL.DisplayAlerts = False';
script=catt('XL.ActiveWorkbook.SaveAs ("', "&outfile.","'") ")
put script;
put 'XL.Workbooks.Close';
put 'XL.DisplayAlerts = True';
put 'XL.Quit';

$end;

%goto lastline;

suse npad:
put 'Dim objShell';
put 'Set objShell = CreateObject ("WScript.Shell")';
script=catt('objShell.Run "notepad.exe',
" &server path.\clip.txt",'"');

30

put script;

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop':;

put $str('objShell.SendKeys "SE"');

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop':;

put 'objShell.SendKeys "A"';

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop':;

put $%str('objShell.SendKeys "SE"');

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop';

put 'objShell.SendKeys "C"';

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop':;

put $str('objShell.SendKeys "SF"');

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop';

put 'objShell.SendKeys "X"';

put 'Do Until Success = True';

put 'Success = objShell.AppActivate ("Notepad")';
put 'Wscript.Sleep 1000';

put 'Loop':;

put 'objShell.SendKeys "{TAB}"';

put 'WScript.Sleep 500';

put 'objShell.SendKeys "{ENTER}"';

put 'Wscript.Sleep 1000';

%goto &Return to.;

%lastline:
%$1f Supcase(&usenotepad) eq Y S$then put 'WScript.Quit';;
run;

data null ;
call system(&script.);
run;
%end;
%end;

/*Delete all temporary files*/
proc delete data=work.t e m p;
run;

smend exportxl;

/*Useage Examples. The following examples assume that you have

31

write access to a directory named: c:\temp. Having that specific
directory isn't a requirement for the macro, but you do need to have
write access to the file that you specify in the outfile parameter

*

Example 1: Create a new workbook (c:\temp\class.xlsx), copying all
records from sashelp.class, letting the macro automatically name the
worksheet (i.e., use the data parameter's filename: class), with the
worksheet's first row containing the dataset's variable names:

%exportxl (data=sashelp.class, outfile=c:\temp\class.xlsx)

Example 2: Create the same workbook as in Example 1, but name the
worksheet 'Students', and don't include a variable name header record:

%exportxl (data=sashelp.class, outfile=c:\temp\class.xlsx,usenames=N,
sheet=Students)

Example 3: Same as Example 2, but running on a system that doesn't
provide direct access to your computer's clipboard (e.g., a server),
or have an Excel configuration that clears the clipboard upon opening:

$exportxl (data=sashelp.class, outfile=c:\temp\class.xlsx,usenames=N,
sheet=Students, usenotepad=Y)

Example 4: Create a new workbook from sashelp.cars, name the worksheet
'cars', and have the worksheet's first row contain the dataset's
variable labels:

%exportxl (data=sashelp.cars, outfile=c:\temp\cars.xlsx,usenames=L)

Example 5: Create a new workbook (c:\temp\class.xlsx), copying all
records for males from sashelp.class, name the worksheet 'Males', and
have the worksheet's first row contain the dataset's variable names:

sexportxl (data=sashelp.class (where=(sex eq 'M')),sheet=Males,
outfile=c:\temp\class.x1lsx)

Example 6: Modify the workbook created in Example 5, adding a new
worksheet named 'Females', copying all records for females from
sashelp.class, and have the worksheet's first row contain the
dataset's variable names:

%exportxl (data=sashelp.class (where=(sex eq 'F')),sheet=Females,
outfile=c:\temp\class.xlsx, type=2A)

Example 7: Create a workbook using an Excel template
%exportxl (data=sashelp.class (keep=name sex age height),
template=c:\temp\template.x1ltx, templatesheet=template,
outfile=c:\temp\class stats.xlsx, usenames=N,

range=A2, sheet=Jan 2018)

Example 8: Modify workbook created by running Example 7, adding
the weight wvariable to column E

sexportxl (data=sashelp.class (keep=weight), type=M, range=E2,

32

*/

outfile=c:\temp\class_ stats.xlsx, usenames=N, sheet=Jan 2018)
* Example 9: Create a new workbook including a Pivot Table

%exportxl (data=sashelp.cars, outfile=c:\temp\cars.xlsx,
pivot=0rigin Type Make MSRP)

33

APPENDIX B

F*THE %EXPORTXL MACRO TIP SHEET*/

34

Exportxl Macro Tip Sheet

Purpose: The macro exports SAS datasets to Excel workbooks and/or worksheets. It can create new workbooks or
worksheets, modify existing worksheets, export to a range that hasn’tbeen predefined, use variable names or labels,
use or not use variable formats, use Excel templates or existing worksheets as templates, and create pivot tables.

Named Parameters: The macro uses Named parameters so that: (1) default values can be assigned and (2) the various
parameters only have to be specified when values other than the default values are needed.

Parameter Required Possible Values Default Description
data Yes Any valid one or two-level SAS filename Null The 1 or2-level filename you want to export
outfile Yes Any valid filename (including path) Null The path and filename of the workbook that
W = provide window for user input you want the macro to create or modify
Null = path and filename of the data
parameter + xlsx extension
sheet No Valid worksheet name Null The name of the worksheet you want to
W = provide window for user input create or modify
Null =filename of data parameter
type No P=run PROC EXPORT N The type of process that you want to run
N =create a new workbook using VBS
A =add new worksheet using VBS
M = modify worksheet using VBS
C = copy dataset to system clipboard
usenames No N = don’t include a variable name row Y Whether the first row of the range will
Y = include a variable name row contain the first data record, the variable
L = include a variable label row names, or the variable labels
W = provide window for userinput
range No Any valid Excel cell name Al The upper left cell where you want the table
W = provide window for user input to begin
template No Null = No template is to be used Null The filename (including path) of an Excel
filename (including path) of an existing template or workbook that you want applied
Excel template or workbook as a template to the file you are exporting
W = provide window for user input
templatesheet Yes if Null = No template is to be used Null The name of the worksheet to be usedas a
template | Worksheet name template
specified | W = provide window for userinput
useformats No Y =Yes N Whether dataset’s formats should be applied
N =No when exporting its data
W = provide window for user input
usenotepad No N =Don’t use Notepad N Notepad is needed If you're running this
Y =Use Notepad macro on a system that doesn’t provide direct
access to your computer’s clipboard (e.g,, if
you're running this macro on a server)
pivot No Null Null Space separated list of the character variable

Space separated list of variable names
W = provide window for userinput

names to use as Pivot Table’s class variables,
followed a space, and the name of the
analytical variable

35

Usage Examples: The followingexamplesassume that you have write access to adirectory named: c:\temp. Having
that specific directoryisn'ta requirement forthe macro, but you do need to have write access to the file that you specify
in the outfile parameter

Example 1: Create a new workbook (c:\temp\class.xlsx), copying all records from sashelp.class, letting the macro
automatically name the worksheet (i.e., use the data parameter's filename: class), with the worksheet's firstrow
containing the dataset's variable names

%exportxl(data=sashelp.class, outfile=c:\temp\ class.xlsx)

Example 2: Create the same workbookas in Example 1, but name the worksheet 'Students’, and don'tinclude avariable
name header record

%exportxl(data=sashelp.class, outfile=c:\temp\class.xlsx,usenames=N, sheet=Students)

Example 3: Same as Example 2, butrunning on asystemthat doesn't provide direct access to your computer's clipboard
(e.g.,a server), or havean Excel configurationthat clearsthe clipboard upon opening

%exportxl(data=sashelp.class, outfile=c:\temp\class.xlsx, usenames=N, sheet=Students, usenotepad=Y)

Example 4: Create a new workbook from sashelp.cars, name the worksheet 'cars’, and have the worksheet's firstrow
contain the dataset'svariablelabels

%exportxl(data=sashelp.cars, outfile=c:\temp\cars.xlsx, usenames=L)

Example 5: Create a new workbook (c:\temp\class.xlsx), copying all records for malesfrbm sashelp.class, name the
worksheet'Males’, and have the worksheet's first row contain the dataset'svariable names

%exportxl(data=sashelp.class(where=(sex eq 'M')), sheet=Males, outfile=c:\temp\class.xlIsx)

Example 6: Modify the workbook created in Example 5, adding a new worksheet named 'Females’, copying all records
for females fromsashelp.class, and have the worksheet's first row contain the dataset's variable names

%exportxl(data=sashelp.class(where=(sex eq 'F')), sheet=Females, outfile=c:\temp\class.xlIsx, type=A)

Example 7: Create a workbookusing an Excel template

templatesheet=template, outfile=c:\temp\class_stats.xlsx, usenames=N, range=A2, sheet=Jan_2018)

Example 8: Modify workbook created by running Example 7, adding the weight variable to column E

SN SO

usenames=N, sheet=Jan_2018)
Example 9: Create a new workbook including a Pivot Table

%exportxl(data=sashelp.cars, outfile=c:\temp\cars.xsx, pivot=0rigin Type Make MSRP)

36

