
1

Paper 2403-2018

Using PROC FCMP to the Fullest: Getting Started and Doing More
Arthur L. Carpenter

California Occidental Consultants, Anchorage, AK

ABSTRACT
The FCMP procedure is used to create user defined functions. Many users have yet to tackle this fairly new
procedure, while others have only attempted to use only its simplest options. Like many tools within SAS®, the
true value of this procedure is only appreciated after the user has started to learn and use it. The basics can
quickly be mastered and this allows the user to move forward to explore some of the more interesting and
powerful aspects of the FCMP procedure.

Starting with the basics of the FCMP procedure, this paper also discusses how to store, retrieve, and use user
defined compiled functions. Included is the use of these functions with the macro language as well as with user
defined formats. The use of PROC FCMP should not be limited to the advanced SAS user; even those fairly new
to SAS should be able to appreciate the value of user defined functions.

INTRODUCTION
The FCMP procedure allows you to write, compile, and test DATA step functions and CALL routines that you can
then use in the DATA step, with the macro language, and within a number of procedures that allow the use of
functions.

In the simplest sense creating a function is fairly straightforward, and more complex functions are possible. The
FCMP procedure is very powerful and the concepts are not that difficult.

What are Functions and Routines?
Functions are pre-written code tools that perform a specific task. They may or may not require arguments and
they may or may not return values. There are two general types of functions and there is a bit of naming
ambiguity associated with them. The less commonly used type is known as a ‘routine’ (or ‘call routine’), while
the more commonly used type of function is called a ‘function’. SAS ships with over 450 predefined functions
and routines. In addition you have the ability to define and store your own functions and routines through the
use of the FCMP procedure.

The FCMP procedure is fairly new to SAS (SAS9.1) and even experienced SAS programmers have not always been
quick to see the potential of user defined functions and routines. In actuality user defined functions can be
written to solve complex coding problems. With the added ability to store the functions in libraries that can be
shared, it becomes imperative that all SAS programmers know how to create user defined functions and
routines.

PROC FCMP Basics
Through the use of PROC FCMP, functions and routines are compiled and stored in a special type of SAS data set.
In Example 1 a function is defined that will convert weight in pounds to kilograms.

2

 The OUTLIB= option
identifies the data set that is
to contain the function
definition. This data set is
subdivided into packages
(CONVERSIONS).
 The FUNCTION statement
names the function (LB2KG)
and identifies its incoming
arguments (LB).
 Standard DATA step
statements are used in the
function definition. The
variables (LB and KG) are
independent of the DATA

step’s PDV and are maintained
in a separate instance of memory.
 The RETURN statement identifies the value (here the value of the variable KG) that is to be returned by the
function.
 The ENDSUB statement closes the function definition. A given PROC FCMP step can contain multiple function
definitions.
 The CMPLIB system option is used to point to one or more data sets that contain function definitions. This
option must be set before the function defined and stored by FCMP can be used.
 The function is used just as you would any other SAS function.

Returning a Character Value
By default functions work with numeric values. However it is possible for a function to act on character strings

and to return character
values.

 This function will be added
to the CONVERSIONS
package (along with the
function LB2KG) created in
Example 1.
 The dollar sign ($) is used
to indicate that the value to
be returned will be character.
The LENGTH statement is
used to set the length for the
new character variable.
Based on the length of the
returned value, KG_C will be
a $10 variable.

The variables KG and LB

will not appear in the data set KILOS. The variable names internally to a function are completely independent of
any names used in the DATA step’s PDV.

* Example 1: FCMP Basics;
proc fcmp outlib=funcsol.functions.conversions;
 function lb2kg(lb);
 kg = lb/2.2;
 return (kg);
 endsub;
 run;

options cmplib=(funcsol.functions);

data kilos;
 set sashelp.class(keep=name age weight);
 Kilos = lb2kg(weight);
 run;

* Example 2: Return a Character Value;
proc fcmp outlib=funcsol.functions.conversions;
 function lb2kgC(lb) $;
 length kg $10;
 kg = catt(put((lb/2.2),6.2),'Kg');
 return (kg);
 endsub;
 run;

options cmplib=(funcsol.functions);

data kilos;
 set sashelp.class(keep=name age weight);
 Kilos = lb2kg(weight);
 Kg_c = lb2kgc(weight);
 run;

Example 1

Example 2

3

Functions with Multiple Arguments
Functions that have multiple arguments require only a slight expansion of the previous examples. In this
example the Body Mass Index, BMI, is calculated based on the height and weight.

 The arguments are comma
separated, and the order that
they are listed is important.
 Rather than create an
intermediate variable, as was
done in the previous
examples, the conversion
expression is written directly
into the RETURN statement.
 The order of the
arguments is very important.

Creating a Subroutine
Subroutines are created using the SUBROUTINE statement rather than the FUNCTION statement. Like the
function BMI in Example 3, the BODYMASSINDEX routine described here calculates the body mass index based
on the individual’s height and weight (units are assumed to be inches and pounds).

 The SUBROUTINE
statement defines both the
incoming and outgoing
arguments.
 When needed the
OUTARGS statement is used
to let the function know
which values are to be
returned by the subroutine.
 The body mass index is
calculated and stored in the
variable B, where it will be
passed back to the calling
program.
 The BODYMASSINDEX
subroutine is executed using
the CALL statement.

➎ The variable BMINDEX is initialized on the PDV by assigning it a missing value. The BODYMASSINDEX routine
then returns a body mass index value which is placed into this variable. Variables to be returned by a routine
MUST be initialized!

* Example 3: Function with Multiple Arguments;
proc fcmp outlib=funcsol.functions.conversions;
 function BMI(lb,ht) ;
 return((lb*703)/(ht*ht));
 endsub;
 run;

options cmplib=(funcsol.functions);

data bmi;
 set sashelp.class(keep=name age weight height);
 BMI = bmi(weight,height);
 run;

Example 4: Creating a subroutine";
proc fcmp outlib=funcsol.functions.conversions;
 subroutine BodyMassIndex(w,h,b) ;
 outargs b;
 b=((w*703)/(h*h));
 endsub;
 run;

options cmplib=(funcsol.functions);

data bmi;
 set sashelp.class(keep=name age weight height);
 BMIndex=.; ➎
 call bodymassindex(weight,height,BMIndex);
 run;

Example 3

Example 4

4

Including Logic and Character Arguments
A great many of the statements that you use in the DATA step are also available in FCMP functions. This
includes IF-THEN/ELSE processing as is shown in this example. The FROMTO function converts weight from
pounds to kilograms or from kilograms to pounds. The first argument is a code that tells the function which way
to convert the value of the second argument.

 The dollar sign ($) following the first argument (CODE) lets the function know that the argument is character.
 The value of CODE is used to determine which type of conversion is to take place.
 The code of LB2KG causes the value of the second argument to be converted to kilograms, while KG2LB
converts from kilograms to pounds.

USING THE FCMP FUNCTION EDITOR
The FCMP Function Editor is an interactive tool that is available to you through the display manager. Using the

pull down menus as shown in Example
6a select :
Solutions Analysis FCmp
Function Editor.

Although am not a big fan of tools such
as this one, it does allow you to do a
number of function maintenance
operations fairly easily.

Example 6a

Example 5

* Example 5: Create a simple function;
proc fcmp outlib=funcsol.functions.conversions;
 function fromto(code $, v);
 if upcase(code)='LB2KG' then r = v/2.2; /* Lb to KG */
 else if upcase(code)='KG2LB' then r = v*2.2; /* KG to LB */
 else r=.; /* unknown */
 return (r);
 endsub;
 run;

options cmplib=(funcsol.functions);

data conv;
 set sashelp.class(keep=name age weight);
 Kilos = fromto('lb2kg',weight);
 Pounds= fromto('kg2lb',kilos);
 run;

5

Once the function editor has started
you will discover that the left panel
(Example 6b) shows each of the
function libraries and the functions
that they contain.

These function libraries include a
number of compiled functions that
ship with SAS, and are worth
additional exploration. Look in the
SASHELP library for the data set
SLKWXL.

Example 6b

By double clicking on a function in the left panel, you can bring up a dialogue box that contains the function
definition. This definition includes the arguments (parameters) and coding. Tabs at the bottom of this dialogue
box allow you to see the full PROC FCMP step that created this function or subroutine.

Example 6c

While you can use the FCMP Function Editor to edit or modify function definitions, my recommendation would
be to not do so. Most programmers are used to working with source code and changes made interactively will
not be reflected in the original source code.

6

DOING MORE WITH FUNCTIONS
By necessity this paper cannot cover all the capabilities of this procedure. The examples that follow should give
you a good start on working with user defined functions and routines.

Deleting Function Definitions
As was mentioned earlier, function and subroutine definitions are stored in SAS data sets that have a special
form. These data sets store the instructions for the generation of the functions. Within the data set there can
be one or more packages and the functions are stored within these packages. This means that each function has
a four level name: library.dataset.package.function_name. It also means that multiple functions with the same
name, and with different definitions, can coexist at the same time in different packages in the same data set.
Usually this is not wise, but it implies that we need the ability to delete functions as well as to create them.

Here the DELETEFUNC statement is
used to delete functions from the
CONVERSIONS package which is in
the FUNCTIONS data set.

Executing a Macro
Macro language elements can be used with compiled functions, however like with other compiled elements
(views, compiled DATA steps, SCL programs, and such) one must be careful to understand the interaction of the
macro language with the compilation process.

Consider the following subroutine (PRINTN). We would like to pass it three arguments and then in turn pass
those arguments as parameters to the macro %PRINTIT. This macro is a simple PROC PRINT with some TITLE
statements, and is defined below (see Example 8c). Unfortunately THIS DOES NOT WORK!! We must remember

that the function is first
compiled and later (perhaps
even next week) it is
executed. A macro call such
as the one shown here is
executed during the
compilation of the function
and NOT during its
execution.

It is conceivable that you actually would want to execute a macro during the compilation of the function.
Remember the macro language is primarily a code generator. So if your macro is used to write the code used by
the function, then a macro call within the function definition would be appropriate.

When you want a function or subroutine to execute a macro, when the function executes, you will need to use
the special RUN_MACRO routine. This special routine allows you to name a macro to be executed and to list its
parameters. The RUN_MACRO routine and the way it interfaces with the macro itself does have some
limitations, but they are not too severe. First the parameter values passed into the macro from the function will
be surrounded by quotes, which will almost certainly need to be removed. Secondly the macro itself is defined
without parameters – as these are supplied by the function. As a result macros written to be called by functions
will tend to have limited utility elsewhere.

proc fcmp outlib=funcsol.functions.conversions;
 deletefunc lb2kgc;
 deletefunc bodymassindex;
 run;

proc fcmp outlib=funcsol.functions.utilities;
 subroutine printN(lib $, dsn $,num);
 * This will NOT work! The macro is
 * executed when the function is compiled;
 %printit(lib,dsn,num)
 endsub;
 run;

Example 7

Example 8a

7

Here the PRINTN subroutine has been rewritten to use the RUN_MACRO routine. The macro name is quoted as
it is a constant in this
example. And the macro
name is followed by the
parameter values.

 The macro itself is defined
with parentheses, but
without parameters. The
names of the arguments in
the subroutine are the same
as the parameters in the
macro, and they are passed
into the macro directly.
 This %PUT statement is
included here merely to
demonstrate that the
parameter values are

surrounded by quotes.
 Because the process of calling a macro through a function inserts quotes around parameter values, these will
need to be removed. Here the DEQUOTE function is used to remove the quotes from the parameters.

Formats that Call Functions
Starting in SAS 9.3 it is possible to call a function through a format. Although limited to functions that have at
most a single argument, this can still be very advantageous. Functions can now be used wherever you can use a
format; including in procedure steps. Because, through the use of formats, you can now execute functions from
within procedure steps, your functions are no longer limited to DATA steps or procedures that execute SAS
Language elements, such as PROC REPORT’s compute block.

In Example 1 the function LB2KG() is used to convert pounds to kilograms. This function takes a single argument

(pounds) and returns the converted value. In the
format POUNDS2KG. shown here, all the data
values are mapped to the function using the
OTHER keyword of the VALUE statement. Notice
that the function is called inside of square
brackets which are not quoted. In this example
the PROC PRINT will show the weight in
KiloGrams, although the data are still stored in
pounds.

This gives us the ability to form formats that
convert continuous values to continuous values.

%macro printit();
%put &lib &dsn;
 %let lib = %sysfunc(dequote(&lib));
 %let dsn = %sysfunc(dequote(&dsn));
 %let num = %sysfunc(dequote(&num));
 %if &num= %then %let num=max;
 title2 "&lib..&dsn";
 title3 "First &num Observations";
 proc print data=&lib..&dsn(obs=&num);
 run;
%mend printit;

proc fcmp outlib=funcsol.functions.utilities;
 subroutine printN(lib $, dsn $,num);
 rc=run_macro('printit',lib,dsn,num);
 endsub;
 run;

* Exercise 9: Execute a Function
* Using a Format';
proc format;
 value pounds2kg
 other=[lb2kg()];
 run;

options cmplib=(funcsol.functions);

title2 'Weight in Kg';
proc print data=sashelp.class;
 var name age weight;
 format weight pounds2kg.;
 run;

Example 8b

Example 8c

Example 9

8

Returning Multiple Values
Functions return a single value and generally subroutines do not return any values. However the subroutine in
Example 4 used the OUTARGS statement to return a value. An expansion on that example allows subroutines to
return multiple values.

 The subroutine METRIC_HWBMI accepts height and weight in English units (inches and pounds) and returns the
height in meters, the weight in kilograms, as well as the Body Mass Index.

 The subroutine arguments are listed (both incoming and those that are calculated).
 The OUTARGS statement lists those values that are to be returned. Variables that are to receive values from
a routine must be initialized before the routine is called.
 The variables that will be calculated by the call routine are initialized.
 The three calculated values are returned from the subroutine back to the DATA step’s PDV.

Example 10

proc fcmp outlib=funcsol.functions.conversions;
 subroutine metric_HWBMI(h,w,mh,mw,bmi);
 outargs mh, mw, bmi;
 mh = h*.0254;
 mw = w*.4536;
 bmi= mw /(mh*mh);
 endsub;
 run;

options cmplib=(funcsol.functions);

data multiple;
 set sashelp.class(keep=name age height weight);
 HeightMeters=.;
 WeightKilos=.;
 BMI=.;
 call metric_hwbmi(height, weight, HeightMeters, WeightKilos, BMI);
 run;

9

Using FCMP Functions with %SYSFUNC and %SYSCALL
The SAS macro language has the ability to access most of the DATA step functions and call routines indirectly
through the use of the macro language function %SYSFUNC and the macro language statement %SYSCALL.
Through these same ‘bridging’ tools, functions created through the use of PROC FCMP are also available to the
macro language - you do not need to do anything special to make your FCMP functions and routines available to
the macro language.

In Example 3 the BMI function calculates the Body Mass Index based on a height and weight. This same function

can be used in the macro language by
enclosing the BMI function in a call to
the %SYSFUNC function.

The value returned by the BMI
function is stored in the macro
variable %BMI.

In Example 10 the HWBMI routine returns not only the Body Mass Index, but also returns the height and weight

in metric values. Using the
%SYSCALL statement (%SYSFUNC
is a macro function, while
%SYSCALL is a macro statement),
we can call this routine from
within the macro language.
As was the case when returning
values with a routine in a DATA
step (Exercise 10), the values
returned by the HWBMI routine
(in this case macro variables)
must be initialized prior to the
execution of the routine. Notice

also that routine arguments associated with a %SYSCALL are assumed to be macro variables and must be
specified without the ampersand (&).

There were some memory issues with the use of %SYSCALL with FCMP routines in early versions of FCMP,
however these seem to have been solved with the release of SAS9.4. FCMP routines cannot currently be used
within PROC DS2 (use a method instead).

SUMMARY
The FCMP procedure allows us to write our own functions and routines. It is very flexible and provides us with a
tool that can be applied in any number of ways. When writing functions we are no longer constrained to writing
macro functions. We can now write functions and store them in libraries where everyone in our group can have
access to them.

* Exercise 11: Using Functions with %SYSFUNC;
options cmplib=(funcsol.functions);

%let ht = 69;
%let wt = 112.5;
%let bmi= %sysfunc(bmi(&wt,&ht));
%put &=bmi;

Example 11a

* Exercise 11: Using a subroutine with %SYSCALL;
options cmplib=(funcsol.functions);

%let ht = 69;
%let wt = 112.5;
%let mh=.;
%let mw=.;
%let bmi=.;
%syscall metric_hwbmi(ht, wt, mh, mw, bmi);
%put &ht, &wt, &mh, &mw, &bmi;

Example 11b

10

ABOUT THE AUTHOR
Art Carpenter’s publications list includes five books, and numerous papers and posters presented at SUGI, SAS
Global Forum, and other user group conferences. Art has been using SAS® since 1977 and has served in various
leadership positions in local, regional, national, and international user groups. He is a SAS Certified Advanced
Professional programmer, and through California Occidental Consultants he teaches SAS courses and provides
contract SAS programming support nationwide.

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

View Art Carpenter’s paper presentations page at:
http://www.sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations

ACKNOWLEDGEMENTS
Thank you to Radha Chebolu of Ad hoc Reporting and Data Delivery, for help with text corrections.

REFERENCES
A further discussion of FCMP functions can be found in the book Carpenter’s Guide
to Innovative SAS® Techniques by Art Carpenter (SAS Press, 2012).

The classic introduction to the FCMP procedure was written in 2007 by Jason
Secosky. Although an older paper, this is still a great place to start when first learning
about the FCMP procedure.
Secosky, Jason, 2007, “User-Written DATA Step Functions”, published in the
Proceedings of the SAS Global Forum 2007 Conference, Cary, NC: SAS Institute Inc.,
paper 008-2007.
http://www2.sas.com/proceedings/forum2007/008-2007.pdf

Two other good introductory papers include:
Adams, John H., 2010, “The new SAS 9.2 FCMP Procedure, what functions are in your future?”, Proceedings of the
Pharmaceutical SAS User Group Conference (PharmaSUG), 2010, Cary, NC: SAS Institute Inc., paper AD02.
http://www.lexjansen.com/pharmasug/2010/ad/ad02.pdf

Eberhardt, Peter, 2011, “A Cup of Coffee and Proc FCMP: I Cannot Function Without Them”, published in the
Proceedings of the Pharmaceutical SAS Users Group Conference (PharmaSUG), 2011,Cary, NC: SAS Institute Inc.,
paper TU07. http://www.pharmasug.org/proceedings/2011/TU/PharmaSUG-2011-TU07.pdf

http://www.caloxy.com/
http://www.sascommunity.org/wiki/Presentations:ArtCarpenter_Papers_and_Presentations
https://support.sas.com/pubscat/bookdetails.jsp?pc=62454
https://support.sas.com/pubscat/bookdetails.jsp?pc=62454
http://www2.sas.com/proceedings/forum2007/008-2007.pdf
http://www.lexjansen.com/pharmasug/2010/ad/ad02.pdf
http://www.pharmasug.org/proceedings/2011/TU/PharmaSUG-2011-TU07.pdf

11

The primary documentation for PROC FCMP is:
SAS Institute Inc. The Base SAS 9.4 Procedures Guide, Seventh Edition. Cary, NC: SAS Institute Inc. Available at:
http://documentation.sas.com/api/docsets/proc/9.4/content/proc.pdf?locale=en#nameddest=bookinfo

An advanced topic paper on FCMP for SAS 9.3 can be found at:
Secosky, Jason, “Executing a PROC from a DATA Step”, published in the Proceedings of the 2012 SAS Global
Forum Conference, Cary, NC, SAS Institute Inc, Paper 227-2012.
http://support.sas.com/resources/papers/proceedings12/227-2012.pdf

The relative merits of using FCMP functions to store hash tables (as well as how to do it) are discussed in:
Carpenter, Arthur L., 2018, “Using Memory Resident Hash Tables to Manage Your Lookup Control Files”,
published in the Proceedings of the 2018 SAS Global Forum Conference, Cary, NC, SAS Institute Inc, Paper 2399-
2018.

Trademark Information
SAS, SAS Certified Professional, SAS Certified Advanced Programmer, and all other SAS Institute Inc. product or
service names are registered trademarks of SAS Institute, Inc. in the USA and other countries.
® indicates USA registration.

http://documentation.sas.com/api/docsets/proc/9.4/content/proc.pdf?locale=en#nameddest=bookinfo
http://support.sas.com/resources/papers/proceedings12/227-2012.pdf

	Using PROC FCMP to the Fullest: Getting Started and Doing More
	ABSTRACT
	INTRODUCTION
	What are Functions and Routines?
	PROC FCMP Basics
	Returning a Character Value
	Functions with Multiple Arguments
	Creating a Subroutine
	Including Logic and Character Arguments

	USING THE FCMP FUNCTION EDITOR
	DOING MORE WITH FUNCTIONS
	Deleting Function Definitions
	Executing a Macro
	Formats that Call Functions
	Returning Multiple Values
	Using FCMP Functions with %SYSFUNC and %SYSCALL

	SUMMARY
	ABOUT THE AUTHOR
	AUTHOR CONTACT
	ACKNOWLEDGEMENTS
	REFERENCES
	Trademark Information

