
Comparisons of Large Complex Data Sets with Matching Common
Dimensions to catch any Changes using SAS® Enterprise Guide

Kaiqing Fan, Mastech Digital Inc., Brecksville, Ohio

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Comparisons of Large Complex Data Sets to catch any Changes
using SAS® Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

Abstract

Today, with the tremendous size of data files and frequent
changes, comparing complex, large data files is a growing
challenge. It is impossible to only use PROC COMPARE to catch
the differences between current and previous large, complex
data files with different numbers of observations and lots of
changes.

Fortunately, SAS offers a simple solution. We split the current
and previous data into three parts:

1) the common dimensions with modified values exists in
current and previous data files;

2) an additional part new added into current data file; and

3) an additional part dropped from previous data file.

Then we can compare the common dimensions, catch what
was modified; and catch the additional parts in current and
previous data.

CONCLUSIONS

PROC COMPARE,

large and complex data files comparison,

Red: the additional part new added into current data;

Green: the additional part dropped from previous data;

Yellow: the common dimensions part modified in both data
files;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Key words

Warning

Before starting comparison, I suggest using PROC
EXPORT to export the current and previous data files
as txt files if both were with different lengths or
formats, then use DATA STEP INFILE to read them as
.sas7bdat files with standardized lengths and formats.

For example, for the same column variable, it may only
include numeric values in one file, but include
character and numeric values in another file. Under
this situation, if using PROC IMPORT may cause trouble
during comparison.

CONCLUSIONS

Users only need to modify the variables and paths
correspondingly in the very beginning because we use
automation technical skills to reduce manual modifications
everywhere.

Here is the engine:
/*use to show the values of macro and their parameters*/

options mprint symbolgen mlogic;

%let root = /sas/development/reports/complex_files;

%let D_CUR =&root./current;

LIBNAME D_CUR "&D_CUR"; /*current output path */

%let D_PREV=&root./previous;

LIBNAME D_PREV "&D_PREV"; /*previous output path */

%let D_FINAL=& root./current_vs_prev;

LIBNAME D_FINAL "&D_FINAL"; /*final comparison output path */

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Comparison engine

Comparisons of Large Complex Data Sets to catch any Changes using SAS®
Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

Compare_engine (cur,prv)

%macro data_reader_cleanner(path=,name=);

data &name(drop=Run_Date Release_Number); /*Run_Date and
Release_Number always different*/

infile "&path./&name..txt" dlm='|' dsd missover pad firstobs=2
lrecl=1025;

input Release_Number :8. Run_Date :$50. X1 :$50. X2 :$50. X3
:$50. X4 :$50. X5 :$50. X6 :$50. X7 :$50. X8 :$50. X9 :$100. X10
:$50. X11 :$50. X12 : $50. %do i = 0 %to 200; TIME&i :8. %end; ;

run;

/***** set missing values to be zeros******/

/*Here we can replace all the following TIME: with _numeric_*/

proc stdize data=&name reponly missing=0 out=&name._0;

var TIME:;

run;

CONCLUSIONS

/* delete the row if all columns are zeros */

/* we may also replace all the following TIME: with _numeric_*/

data &name._no0;

set &name._0;

array var[*] TIME:; grandtotalsum=0;

do z=1 to dim(var); grandtotalsum=grandtotalsum + abs(var[z]); end;

if grandtotalsum = 0 then delete;

drop z grandtotalsum;

run;

/*sort by _ALL_ for comparisons, only sorted data sets are good for comparison*/

proc sort data=&name._no0 out=&name._srt ;

by _ALL_ ;

run;

%mend data_reader_cleanner;

%data_reader_cleanner(path=&D_CUR,name=cur);

%data_reader_cleanner(path=&D_PREV,name=prv);

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Compare_engine (continued)

Comparisons of Large Complex Data Sets to catch any Changes using SAS®
Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

Compare_engine (continued)

/***roughly compare first, if exactly equal, then the rest of the files
would be empty **/

proc compare base=cur_srt compare=prv_srt out=cur_prv_diff;

run;

/*set common columns as sort keys, output them as txt file*/

/*The following procedures can also be replaced by proc SQL*/

/*select … into : param_name separated by ‘ ‘ from source data*/

proc export data=cur_prv_diff(obs=0 drop=TIME: _TYPE_ _OBS_)

outfile="&D_FINAL./used_for_srtd.txt" dbms=csv replace;

delimiter=" "; putnames=YES;

run;

CONCLUSIONS

/*define the txt file with common columns as sort keys*/

filename COLLST "&D_FINAL./";

%macro used_for_srtd_txt;

%include COLLST("used_for_srtd.txt");

%mend used_for_srtd_txt;

/*find common columns and compare them*/

data find_commonkeys;

merge cur_srt(drop=TIME: in=a)

prv_srt(drop=TIME: in=b);

by _ALL_ ;

if a=1 and b=1 ;

run;

proc sort data=find_commonkeys;

by %used_for_srtd_txt;

run;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Compare_engine (continued)

Comparisons of Large Complex Data Sets to catch any Changes using SAS®
Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

Compare_engine (continued)

/*select the common values from current and previous datasets*/

%macro common_values_frm_current_prev(data_name=);

proc sort data=&data_name._srt;

by %used_for_srtd_txt;

run;

data select_common_values_from_&data_name.1;

merge find_commonkeys(in=a) &data_name._srt(in=b);

by %used_for_srtd_txt;

if a=1 and b=1 ;

run;

proc sort data=select_common_values_from_&data_name.1

out=select_common_val_from_&data_name._2;

by %used_for_srtd_txt;

run;

CONCLUSIONS

/* create OBS_ID as merge key here because will add true
values of character columns back into Comparison results in
the comparison result .sas7bdat file, characters are. if the
letters are same */

data common_var_same_sequence_&data_name;

OBS_ID=_N_;

set select_common_val_from_&data_name._2;

run;

%mend common_values_frm_current_prev;

%common_values_frm_current_prev(data_name=prv);

%common_values_frm_current_prev(data_name=cur);

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Compare_engine (continued)

Comparisons of Large Complex Data Sets to catch any Changes using SAS®
Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

Compare_engine (continued)

/*that OBS_ID is not equal 0 means the sequence order has issues
or unmatch order sequences avoid to use by statement because it is
very time-consuming */

proc compare base=common_var_same_sequence_cur

compare=common_var_same_sequence_prv
out=common_part_diff_cur_vs_prv(rename=(_OBS_=OBS_ID_NEW))
criterion=0.00001;

run;

/*if any OBS_ID is not 0, then code will automatically stop
executing*/

data stop_triger_for_unmatch;

set common_part_diff_cur_vs_prv;

if OBS_ID ^=0 then stop;

run;

CONCLUSIONS

data diff_cur_vs_prv_renamed(rename=(OBS_ID_NEW=OBS_ID));

set stop_triger_for_unmatch(drop=OBS_ID _TYPE_);

run;

/*put common values of character variables back into the
comparison result table*/

data modified_rows(drop=_TYPE_ _OBS_);

merge common_var_same_sequence_cur (drop=TIME: in=a)

diff_cur_vs_prv_renamed (keep=OBS_ID TIME: in=b);

by OBS_ID;

run;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Compare_engine (continued)

Comparisons of Large Complex Data Sets to catch any Changes using SAS®
Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

Compare_engine (continued)

/*remove the rows if all numeric columns are only 0's, if the whole
row numeric values are 0’s, it means that this row is exactly same
on both current and previous parts. we use abs(var[z]) LT 0.00001
then var[z]=0; because system differences always exist*/

data D_FINAL.common_modified_rows;

set modified_rows(drop=OBS_ID);

array var[*] TIME:;

grandtotalsum=0;

do z=1 to dim(var);

if abs(var[z]) LT 0.00001 then var[z]=0;

grandtotalsum=grandtotalsum + abs(var[z]);

end;

if grandtotalsum = 0 then delete;

drop z grandtotalsum;

run;

CONCLUSIONS

/*find additionl values from previous and current data sets*/

%macro additnl_values_frm_current_prev(file_name=);

data D_FINAL.additnl_rows_in_&file_name;

merge find_commonkeys(in=a)

&file_name._srt(in=b);

by %used_for_srtd_txt;

if a^=1 and b=1;

run;

%mend additnl_values_frm_current_prev;

%additnl_values_frm_current_prev(file_name=prv);

%additnl_values_frm_current_prev(file_name=cur);

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Compare_engine (continued)

Comparisons of Large Complex Data Sets to catch any Changes using SAS®
Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

Conclusion

In the D_FINAL folder, if additnl_rows_in_prv,
additnl_rows_in_cur and common_modified_rows are
empty, it means that there are no differences and no
additional or deleted rows in the large, complex data
sets.

CONCLUSIONS

I am a Sr. SAS Tech Lead, SR. SAS Developer and Sr. predictive modeler with
9 year experience in SAS programming, 3 year in developing SAS engines.

My major was History, I got my master degree in History from East China
Normal University; got master degree of applied mathematics from
University of New Orleans; master degree of Statistics from University of
Wyoming. I am expert at developing, optimizing SAS engines.

My main achievements include: 1) Reducing at least 80%-90% of the
execution time of model engines using mixed methods; 2) Using
automation technical skills such as the SAS Code Automatic Generation
Method to fulfill automation run of our model engines. 3) Developed more
than 20 automatic execution banking models engines in our bank; 4) fitted
some predictive modeling, developed many very good forecasting models
using statistical modeling and machine learning methods.

My motto is that the beauty of our engines developing should be: using the
simplest codes to solve difficult and complex tasks, to develop SAS engines
that can automatically cover all expected changes, fulfill automation run,
and finish engines execution in the shortest time.

I am also a part-time media reporter and freelancer.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Bio information

Comparisons of Large Complex Data Sets to catch any Changes using SAS®
Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Kaiqing Fan
Mastech Digital Inc.
Address: 6750 Miller Road, Brecksville, OH-44141
Mobile: 504.344.7267
Email: fankaiqinguw@gmail.com
Linkedin: https://www.linkedin.com/in/fan-kaiqing-81776940/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

• Comparisons of Large Complex Data Sets to catch any Changes using SAS®
Enterprise Guide

Kaiqing Fan, Mastech Digital Inc.

mailto:fankaiqinguw@gmail.com
https://www.linkedin.com/in/fan-kaiqing-81776940/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Paper 2381-2018 SFG 2018

1

Comparisons of Large Complex Data Sets with Matching Common

Dimensions to catch any Changes using SAS® Enterprise Guide

Kaiqing Fan, Mastech Digital Inc., Brecksville, Ohio

Abstract

Today, with the tremendous size of data files and frequent changes, comparing
complex, large data files is a growing challenge. It is impossible to only use PROC
COMPARE to catch the differences between current and previous large, complex
data files with different numbers of observations and lots of changes. Fortunately,
SAS offers a simple solution. We split the current and previous data into three
parts: 1) the common dimensions with modified values in current and previous
data files; 2) an additional part new added into current data file; and 3) an
additional part dropped from previous data file. Then we can compare the
common dimensions, catch what was modified; and catch the additional parts in
current and previous data.

Key words: PROC COMPARE, large and complex data files, the common
dimensions with modified, the additional part in previous file, the additional part in
current file

Introduction

In banking, the tremendously large data files, their volumes, variables and values,
and the number of observations are all continuously changing; business
requirements keep changing, too. It’s a great challenge to compare the results of
these data files from different executions. What we always want to know is the
difference between the current and previous runs.

If we only use PROC COMPARE, it is impossible to catch the differences between
the current and previous version data sets because the current data and previous
data may have different number of observations, many different values.

The solution is to split the current data and previous data into three parts as shown
in the following colorful image: 1) the common dimensions parts with modified
values in which exists in both current and previous data files; 2) the additional part
only exists in current data file; and 3) the additional part only exists in previous

Paper 2381-2018 SFG 2018

2

data file. Then we can compare with common dimensions, catch what are
modified; and catch the additional parts only in both current data and previous
data.

Red: the additional part new added into current data;

Green: the additional part dropped from previous data;

Yellow: the common dimensions part modified in both data files;

Comparison Engine

Before starting comparison, I suggest using PROC EXPORT to export the current
and previous data files as txt files if both were with different lengths or formats,
then use DATA STEP INFILE to read them as .sas7bdat files with standardized
lengths and formats. For example, for the same column variable, it may only
include numeric values in one file, but include character and numeric values in
another file, under this situation, if using PROC IMPORT may cause trouble
during comparison.

Here is the engine. Users only need to modify the variables and paths
correspondingly in the very beginning. In this engine, I tried to use automation
technical skills to reduce manual modifications. I will also list some other
automation skills if possible.
/*use to show the values of macro and their parameters*/
options mprint symbolgen mlogic;
%let root = /sas/development/reports/ complex_files;
%let D_CUR =&root. /current;
LIBNAME D_CUR "&D_CUR"; /*current output path */

%let D_PREV=&root. /previous;
LIBNAME D_PREV "&D_PREV"; /*previous output path */

%let D_FINAL=& root./current_vs_prev;
LIBNAME D_FINAL "&D_FINAL"; /*final comparison output path */

/**/
/******* compare_engine(cur,prv); ****/

Paper 2381-2018 SFG 2018

3

/**/
%macro data_reader_cleanner(path=,name=);
data &name(drop=Run_Date Release_Number); /*Run_Date and Release_Number always different*/
 infile "&path./&name..txt" dlm='|' dsd missover pad firstobs=2 lrecl=1025;
 input Release_Number :8. Run_Date :$50. X1 :$50. X2 :$50. X3 :$50. X4 :$50. X5 :$50.
 X6 :$50. X7 :$50. X8 :$50. X9 :$100. X10 :$50. X11 :$50. X12 : $50.
 %do i = 0 %to 200; TIME&i :8. %end; ;
run;

/***** set missing values to be zeros******/
/*Here we can replace all the following TIME: with _numeric_*/
proc stdize data=&name reponly missing=0 out=&name._0;
 var TIME:;
run;

/* delete the row if all columns are zeros */
/* we may also replace all the following TIME: with _numeric_*/
data &name._no0;
 set &name._0;

array var[*] TIME:;
grandtotalsum=0;
 do z=1 to dim(var);
 grandtotalsum=grandtotalsum + abs(var[z]);
 end;
if grandtotalsum = 0 then delete;
drop z grandtotalsum;

run;

/*sort by _ALL_ for comparisons, only sorted data sets are good for comparison*/
proc sort data=&name._no0 out=&name._srt ;

by _ALL_ ;
run;
%mend data_reader_cleanner;
options mprint symbolgen mlogic;
%data_reader_cleanner(path=&D_CUR,name=cur);
%data_reader_cleanner(path=&D_PREV,name=prv);

/***roughly compare first, if exactly equal, then the rest of the files would be empty **/
proc compare base=cur_srt compare=prv_srt out=cur_prv_diff; run;

/*find common columns set them as sort keys, output them as txt file*/
/*The following two procedures can also be replaced by proc SQL;*/
/* select … into : parameter_name separated by ‘ ‘ from source data */
proc export data=cur_prv_diff(obs=0 drop=TIME: _TYPE_ _OBS_)

outfile="&D_FINAL./used_for_srtd.txt" dbms=csv replace;
delimiter=" ";

 putnames=YES;
run;

Paper 2381-2018 SFG 2018

4

/*define the txt file inside with common columns as sort keys using macro*/
filename COLLST "&D_FINAL./";
%macro used_for_srtd_txt;
%include COLLST("used_for_srtd.txt");
%mend used_for_srtd_txt;

/*find common columns and compare them*/
data find_commonkeys;

merge cur_srt(drop=TIME: in=a)
 prv_srt(drop=TIME: in=b);

 by _ALL_ ;
if a=1 and b=1 ;
run;

proc sort data=find_commonkeys;
 by %used_for_srtd_txt;
run;

/*select the common values from current and previous datasets*/
%macro common_values_frm_current_prev(data_name=);
proc sort data=&data_name._srt;
 by %used_for_srtd_txt;
run;

data select_common_values_from_&data_name.1;

merge find_commonkeys(in=a) &data_name._srt(in=b);
 by %used_for_srtd_txt;
if a=1 and b=1 ;
run;

proc sort data=select_common_values_from_&data_name.1

out=select_common_val_from_&data_name._2;
 by %used_for_srtd_txt;
run;

/* create OBS_ID as merge key here because will add true values of character columns back into
Comparison results in the comparison result .sas7bdat file, characters are. if the letters are same */
data common_var_same_sequence_&data_name;

OBS_ID=_N_;
set select_common_val_from_&data_name._2;

run;
%mend common_values_frm_current_prev;
options mprint symbolgen mlogic;
%common_values_frm_current_prev(data_name=prv);
%common_values_frm_current_prev(data_name=cur);

/*that OBS_ID is not equal 0 means the sequence order has issues or unmatch order sequences*/

Paper 2381-2018 SFG 2018

5

/*avoid to use by statement because it is very time-consuming */
proc compare base=common_var_same_sequence_cur
 compare=common_var_same_sequence_prv
 out=common_part_diff_cur_vs_prv(rename=(_OBS_=OBS_ID_NEW)) criterion=0.00001;
run;

/*if any OBS_ID is not 0, then code will automatically stop executing*/
data stop_triger_for_unmatch;

set common_part_diff_cur_vs_prv;
if OBS_ID ^=0 then stop;

run;

data diff_cur_vs_prv_renamed(rename=(OBS_ID_NEW=OBS_ID));

set stop_triger_for_unmatch(drop=OBS_ID _TYPE_);
run;

/*put common values of character variables back into the comparison result table*/
data modified_rows(drop=_TYPE_ _OBS_);

merge common_var_same_sequence_cur (drop=TIME: in=a)
 diff_cur_vs_prv_renamed (keep=OBS_ID TIME: in=b);

 by OBS_ID;
run;

/*remove the rows if all numeric columns are only 0's*/
/*if the whole row numeric values are 0’s, */
/*it means that this row is exactly same on both current and previous parts*/
/* we use abs(var[z]) LT 0.00001 then var[z]=0; because system differences always exist*/
data D_FINAL.common_modified_rows;

set modified_rows(drop=OBS_ID);
 array var[*] TIME:;
 grandtotalsum=0;

do z=1 to dim(var);
if abs(var[z]) LT 0.00001 then var[z]=0;
grandtotalsum=grandtotalsum + abs(var[z]);

end;
 if grandtotalsum = 0 then delete;
 drop z grandtotalsum;
run;

/*find additionl values from previous and current data sets*/
%macro additnl_values_frm_current_prev(file_name=);
data D_FINAL.additnl_rows_in_&file_name;

 merge find_commonkeys(in=a)
 &file_name._srt(in=b);

 by %used_for_srtd_txt;
 if a^=1 and b=1;
run;
%mend additnl_values_frm_current_prev;

Paper 2381-2018 SFG 2018

6

options mprint symbolgen mlogic;
%additnl_values_frm_current_prev(file_name=prv);
%additnl_values_frm_current_prev(file_name=cur);

Conclusion

In the D_FINAL folder, if additnl_rows_in_prv, additnl_rows_in_cur and
common_modified_rows are empty, it means that there are no differences and no
additional or deleted rows in the large, complex data sets.

ACKNOWLEDGMENTS

I would like to thank AnnMaria De Mars very much for reviewing this paper, and
mentoring me a lot!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Kaiqing Fan
Mastech Digital Inc.
Address: 6750 Miller Road, Brecksville, OH-44141
Mobile: 504.344.7267
Email: fankaiqinguw@gmail.com
Linkedin: https://www.linkedin.com/in/fan-kaiqing-81776940/

SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ®
indicates USA registration.
Other brand and product names are trademarks of their respective companies.

mailto:fankaiqinguw@gmail.com
https://www.linkedin.com/in/fan-kaiqing-81776940/

	2381-2018-eposter.pdf
	2381-2018.pdf

