
1

Paper SAS2125-2018

FCMP: A Powerful SAS® Procedure You Should Be Using
Bill McNeill, Andrew Henrick, Mike Whitcher, and Aaron Mays, SAS Institute Inc.

ABSTRACT
The FCMP procedure is the SAS® Function Compiler procedure. As the name suggests, it enables you to
create and save functions (and subroutines) that can be of varying size and complexity. The functions
and subroutines can then be integrated with other built-in SAS functions in your SAS programs. This
integration simplifies your SAS programming and facilitates code reuse that can be shared with your
fellow SAS programmers. You should be using this procedure. The modularity of your code will increase.
The readability of your code will increase. The maintainability of your code will increase. Your productivity
will increase. Come learn how this powerful procedure will make your programming life simpler.

INTRODUCTION
Keeping the software easy to read and understand is an important part of making the software
maintainable. Just about all software needs to be maintained if not enhanced. The “KISS” (Keep It Simple
Stupid) methodology is an important part of making software easy to maintain and enhance. Simpler
software is easier to understand and modify. Functions and subroutines, along with modularity, are
proven methods to make software easier to understand. They allow for breaking complicated tasks into
smaller, simpler blocks of code that are more easily understood.

In writing software using SAS, you probably have knowledge of SAS functions and CALL routines along
with including SAS files (with “%INCLUDE”) for modularity, and named custom SAS macros for isolating
repetitive tasks. In SAS 9.2, the FCMP procedure was added to the programmer’s tool chest. With PROC
FCMP you can write custom functions and subroutines, save them to special data sets called packages,
and call them from practically anywhere in your SAS programs. And, if you make the packages available,
the functions and subroutines in the packages can be shared with other SAS programmers. The FCMP
procedure basically allows you to add to the extensive list of SAS functions and CALL routines available
within SAS. As you will see, functions and subroutines that are created using the FCMP procedure can be
quite powerful and can be customized to your specific needs. Let us start by demonstrating how to create
these custom functions and subroutines that can make your SAS programs easier to read, understand,
and maintain - thereby making your programming life easier.

Note that for the remainder of this paper, the term “function” refers to both functions and subroutines
being created using PROC FCMP. The term “subroutine” specifically refers to information about the
FCMP SUBROUTINE statement.

DEFINING CUSTOM FUNCTIONS
Depending on the programming language, functions and subroutines have various meanings. For PROC
FCMP, the main difference is that a function usually passes back one value while a subroutine returns
zero or more values.

FUNCTIONS
To define a function, use this syntax within PROC FCMP:
 FUNCTION function-name(argument-1 <, argument-2, ...>) <VARARGS> <$>

 <length>;

 ... more-program-statements ...

 RETURN (expression);

 ENDSUB;

2

Here is an example of a function to compute the cost of a purchase including tax:
 LIBNAME billsLib 'C:/SAS_Global_Forum/2018/sasuser/';

 PROC FCMP OUTLIB=billsLib.paper.tax;

 FUNCTION priceWithTax_func(price);

 STATIC taxRate;

 IF (MISSING(taxRate))

 THEN taxRate = (7.25 / 100);

 taxedPrice = (price * (1 + taxRate));

 RETURN (taxedPrice);

 ENDSUB;

 QUIT;

This example created a function called “priceWithTax_func” that
takes a parameter, “price”. A new price that includes the sales
tax, 7.25% in this case, is computed. By declaring the “taxRate”
variable as STATIC, the tax rate needs to be computed only the
first time the function is called. This is done by setting “taxRate”
only when it has been initialized to a SAS numeric missing value.
On repeated function calls, the variable “taxRate” retains the
constant value previously computed. With the tax rate set, the
variable “taxedPrice” can then be computed for the price passed
into the function. The “taxedPrice” is then passed back to the
caller. The PROC FCMP OUTLIB= option saves the
“priceWithTax” function to the “tax” package of the “paper”
member of the “billsLib” SAS library (with the library being set
with the LIBNAME statement).

This next example is run from a new SAS session. To work in a new SAS session, the libref “billsLib”
must be set. The option CMPLIB is needed to identify the package to search for the saved FCMP
function, “priceWithTax”. The “priceWithTax” function is used in the DATA step just like any other SAS
function or CALL routine. In this example, the function is used with the sashelp.cars data set to compute
the after-tax cost of the vehicles:
 LIBNAME billsLib 'C:/SAS_Global_Forum/2018/sasuser/';

 OPTION CMPLIB=billsLib.paper;

 /* TAXES (function) */

 DATA work.carPriceWithTaxFun;

 SET sashelp.cars;

 FORMAT msrpWithTax DOLLAR8.;

 msrpWithTax = priceWithTax_func(msrp);

 OUTPUT;

 RUN;

 PROC PRINT DATA=work.carPriceWithTaxFun(

 KEEP=make model invoice msrp msrpWithTax

 OBS=5);

 RUN;

Expensive Computation Efficiency

A STATIC variable comes in quite
handy in cases where it is expensive
to compute a constant value.
Computing the value over and over
as the function is called repeatedly
will be a performance hit. Declaring
the variable STATIC means that the
expensive computation only needs
to occur once.

3

The price of the vehicle is passed to the function and the after-tax price is passed back from the function.
Here are the first 5 observations from printing only the key fields and the price data in the resulting data
set:

Figure 1: PROC PRINT Output of the carPriceWithTax Data Set (First 5 Observations)

SUBROUTINES
To define a subroutine, use this syntax within PROC FCMP:
 SUBROUTINE subroutine-name (argument-1 <, argument-2, ...>) <VARARGS>;

 OUTARGS out-argument-1 <, out-argument-2, ...>;

 ... more-program-statements ...

 ENDSUB;

In this example, the same tax calculation is done with the subroutine instead of the function. This gives
the chance to see the differences in defining and using functions and subroutines:
 PROC FCMP OUTLIB=billsLib.paper.tax;

 SUBROUTINE priceWithTax_sub(price, taxedPrice);

 OUTARGS taxedPrice;

 STATIC taxRate;

 IF (MISSING(taxRate))

 THEN taxRate = (7.25 / 100);

 taxedPrice = (price * (1 + taxRate));

 ENDSUB;

 QUIT;

In the SUBROUTINE statement, the “taxedPrice” variable is a new parameter to the subroutine. The
OUTARGS statement is needed to update the “taxedPrice” value that is computed within the subroutine.
Also, the RETURN statement has been removed.

As before with the function example, “priceWithTax_func”, this next example can run from a new SAS
session:
 LIBNAME billsLib 'C:/SAS_Global_Forum/2018/sasuser/';

 OPTION CMPLIB=billsLib.paper;

 DATA work.carPriceWithTaxSub;

 SET sashelp.cars;

 FORMAT msrpWithTax DOLLAR8.;

 msrpWithTax = 0;

 CALL priceWithTax_sub(msrp, msrpWithTax);

 OUTPUT;

 RUN;

4

In calling the subroutine from the DATA step, the assignment statement is replaced by a CALL statement.
The data set variable “msrpWithTax” is added to the subroutine call. This is the value that the subroutine
updates and pass back with the calculated taxed price.

FUNCTION ARGUMENTS
In FCMP functions, all the arguments are, by default, passed by value. This means that you cannot retain
the changed value of an argument outside of the function. All of the arguments are local to the function.
The usual way to get a value from the FUNCTION statement is via the RETURN statement, which is
assigned to the variable that is invoking the function call. In the FUNCTION statement example above,
that variable is “msrpWithTax”. This default behavior of the FUNCTION statement can be changed by
using the OUTARGS statement (as explained below).

While the SUBROUTINE statement has the same defaults, those defaults are usually overridden. Notice
in the SUBROUTINE statement example that a second argument is passed in and that argument name is
included in the OUTARGS statement. The OUTARGS statement lists the variables whose values are
updated and accessible from the SUBROUTINE statement caller. In this case, the price with the tax value
is updated and passed back to the caller in the “msrpWithTax” variable.

CHARACTER ARGUMENTS AND VARIABLES
To specify passing a character argument to an FCMP function, put a dollar sign symbol ”$” after the
argument (in this case, “string”). Here is an example that counts the vowels in a character string:
 PROC FCMP OUTLIB=billsLib.paper.vowels;

 FUNCTION getVowelCount (string $);

 ARRAY vowel[5] $ ('a', 'e', 'i', 'o', 'u');

 vowelCount = 0;

 DO stringIndex=1 to LENGTH(string);

 stringChar = SUBSTR(string, stringIndex, 1);

 DO vowelIndex=1 TO dim(vowel);

 IF ((stringChar EQ vowel[vowelIndex]) OR

 (stringChar EQ UPCASE(vowel[vowelIndex])))

 THEN DO

 vowelCount = vowelCount + 1;

 LEAVE;

 END;

 END;

 END;

 RETURN(vowelCount);

 ENDSUB;

 QUIT;

To keep the output of reasonable size, the next DATA step that calls the “getVowelCount” function uses
only data from the first quarter of 1999 for the children product line in the children sports product group:

 DATA work.vowels(KEEP=product_group vowelCount);

 SET sashelp.orsales(KEEP=quarter product_line

 product_category product_group);

 WHERE quarter="1999Q1" AND

 product_line="Children" AND

 product_category="Children Sports";

 vowelCount=getVowelCount(product_group);

 RUN;

5

 PROC PRINT DATA=work.vowels;

 RUN;

Figure 2: Vowel Count Output

This program also demonstrates using a character array within PROC FCMP. The vowel array is created
and set in the ARRAY statement. The “$” following the array variable name indicates that the array
contains character data. The elements of the array are used via subscript (the “vowelIndex” variable).

In this next example, the “getVowelCount” function is called from an FCMP function that produces a
sentence that indicates the number of vowels in the product group. This new function shows the usage of
character variables within PROC FCMP:
 PROC FCMP OUTLIB=billsLib.paper.vowels;

 FUNCTION getVowelCountStmt (product $) $;

 LENGTH vowelStmt $60;

 vowelClause1 = "There are ";

 vowelCount = getVowelCount(product);

 vowelClause2 = " vowels in the product. ";

 vowelStmt = CAT(vowelClause1, vowelCount, vowelClause2, product);

 RETURN(vowelStmt);

 ENDSUB;

 QUIT;

The “$” at the end of the FUNCTION statement notes that the function is passing back a character value.
The LENGTH statement declares the “vowelStmt” variable as a character variable with sufficient space
(60 characters) to contain the longest expected character value being passed back to the caller. In the
following “getVowelCountStmt” function DATA step example, the same data that is used in the
“getVowelCount” function example is used:
 DATA work.vowelsStmt(KEEP=product_group vowelCountStmt);

 SET sashelp.orsales(KEEP=quarter product_line

 product_category product_group);

 WHERE quarter="1999Q1" AND

 product_line="Children" AND

 product_category="Children Sports";

6

 vowelCountStmt=getVowelCountStmt(product_group);

 RUN;

 PROC PRINT DATA=work.vowelsStmt(OBS=5);

 RUN;

Figure 3: Vowel Statements in the Data Set (First 5 Observations)

DETERMINING AVAILABLE FUNCTIONS
To determine what functions are available to the current SAS session, use the LISTFUNCS option in the
FCMP procedure statement.
 PROC FCMP INLIB=billsLib.paper LISTFUNCS;

 RUN;

Here is the type of information you see in the Output window:

Figure 4: Partial Listing of Available Functions and Subroutines

7

DELETING A SAVED FUNCTION OR SUBROUTINE
If you need to delete a saved function or subroutine, use the DELETEFUNC or DELETESUB statement
respectively. Each statement takes the name of the function or subroutine to delete. The deletion is done
from the named package specified in the OUTLIB option.
 PROC FCMP INLIB=billsLib.paper OUTLIB=billsLib.paper.delete;

 DELETESUBR priceWithTax_test;

 RUN;

DEBUGGING INFORMATION
When you need to see what is being executed by the function, you can trace the code execution with the
TRACE option. As the code is executed, the steps taken by the code, along with the actual values used,
are displayed in the output window. Note that the FCMP defined function needs to be called from within
the FCMP procedure where the TRACE option is set.

 PROC FCMP INLIB=billsLib.paper TRACE;

 ATTRIB itemCost FORMAT=DOLLAR8.2

 taxPrice FORMAT=DOLLAR8.2;

 itemCost=6.99;

 taxPrice=priceWithTax_func(itemCost);

 PUT itemCost "will be " taxPrice " with tax";

 QUIT;

Here is what is displayed in the Output window:

Figure 5: Trace Option Output

8

Note that even the values of sub-computations are shown (like temporary variable “_temp1”), making it
easier to find problems should the results be incorrect.

ARRAY USAGE IN FUNCTIONS
The FCMP procedure allows for creating and using numeric and character arrays. The arrays are similar
to DATA step arrays with a few exceptions:

• The array dimensions are limited to 6.

• Lower bounds are not supported.

• References require explicit indexing via subscripts (that is, letter[4], not letter4) to any array
variable passed into an FCMP function. This restriction does not apply to any array variable
declared in the function.

• The subscript must be within square brackets or braces, not parentheses (that is, letter[4] or
letter{4}; letter(4) is a call to the “letter” function with the value 4).

As was demonstrated in the “getVowelCount” function, arrays allow for enumerating values (especially
useful in loops). Arrays take on even more importance with functions that need access to SAS data sets.

The FCMP procedure allows for reading data sets into an array and writing array values into a SAS data
set. This is done with specialized functions and CALL routines (in this case, the READ_ARRAY and
WRITE_ARRAY functions) built into FCMP and available only from within FCMP (they cannot be called
from DATA step).

Consider the task of getting a data set each month that contains outdoor temperatures taken in 6-hour
increments. Here are the first 5 observations in the data set:

Figure 6: Daily Temperature Data (First 5 Observations)

The task is to produce a data set that has the average temperature at each time interval over that month.
The next example demonstrates a way to accomplish this with READ_ARRAY.

9

 PROC FCMP OUTLIB=billsLib.paper.averages;

 /* Determine the average temperature for the same time index

 over a month of specified daily temperature data. */

 FUNCTION averageTempAtTime(dsName $, timeIndex);

 ARRAY monthlyTimeTemp[31,4] / NOSYMBOLS;

 /* Read the data from the named SAS data set. */

 rc = READ_ARRAY(dsName, monthlyTimeTemp);

 IF (rc EQ 0)

 THEN DO;

 averageTemp = getAverageTemp(monthlyTimeTemp, timeIndex);

 END;

 ELSE DO;

 /* Problem reading the data set. */

 ATTRIB missingValue FORMAT=8.;

 missingValue = .;

 averageTemp = missingValue;

 END;

 RETURN(averageTemp);

 ENDSUB;

 /* Compute the average temperature for the specified time index. */

 FUNCTION getAverageTemp(monthlyTimeTemp[*,*], timeIndex);

 ARRAY tempByTime[1,1] / NOSYMBOLS;

 rowDimension = 1;

 columnDimension = 2;

 daysInMonth = DIM(monthlyTimeTemp,rowDimension);

 readingsPerDay = DIM(monthlyTimeTemp,columnDimension);

 CALL DYNAMIC_ARRAY(tempByTime, readingsPerDay, daysInMonth);

 CALL TRANSPOSE(monthlyTimeTemp, tempByTime);

 timeSum = getArrayRowSum(tempByTime, timeIndex);

 averageTimeTemp = (timeSum / daysInMonth);

 RETURN(averageTimeTemp);

 ENDSUB;

 /* Get the sum of the numbers in a specified row of an array. */

 FUNCTION getArrayRowSum(arrayToSum[*,*], rowIndex);

 columnDimension = 2;

 columns = DIM(arrayToSum, columnDimension);

 sum = 0;

 DO columnIndex=1 to columns;

 sum = (sum + arrayToSum[rowIndex, columnIndex]);

 END;

 RETURN(sum);

 ENDSUB;

 QUIT;

 DATA work.monthAvgs;

 AM6Avg = averageTempAtTime("work.monthTemps", 1);

 PM12Avg = averageTempAtTime("work.monthTemps", 2);

 PM6Avg = averageTempAtTime("work.monthTemps", 3);

 AM12Avg = averageTempAtTime("work.monthTemps", 4);

 RUN;

 PROC PRINT DATA=work.monthAvgs;

 RUN;

10

Here are the results of running the above SAS program:

Figure 7: Average Temperatures

In the “getAverageTemp” function, two more
special FCMP CALL routines are used:
DYNAMIC_ARRAY and TRANSPOSE. The
DYNAMIC_ARRAY CALL routine allows for
resizing an array that is declared within a
function. In this simplistic case, since the
month data can be 28–31 rows depending on
the month, the array to be transposed is sized
to the current monthly data array. This special
CALL routine can be very handy when the
possible size of the array varies drastically. For
example, an array could have 10 – 100,000
elements. Without the DYNAMIC_ARRAY
function, the array would have to be declared
for the maximum amount, 100,000, even
though most of the time the data contains only
a few hundred elements. This becomes even
more problematic when the function that
declares the array is called recursively.

The TRANSPOSE CALL routine basically
turns the array on its side. It takes the rows of
data for the days and transpose them into
columns. Likewise, the columns of times are
transposed into rows. The resulting array has
the dimensions of [4,31]. With the 4 rows now
containing the time interval data, summing up
the temperatures for a given time interval
becomes much easier.

Another thing to note in the “averageTempAtTime” and “getAverageTemp” functions is declaring the
ARRAY with /NOSYMBOLS. This means that the array does not include symbols - variable names for
each array element (that is array element variables “monthlyTimeTemp1”, “monthlyTimeTemp2”, …,
“monthlyTimeTemp124”). With the array declared with /NOSYMBOLS, the SAS program can access the
array elements only via an index. This is the same as declaring a DATA step array as _TEMPORARY_.

In the PROC FCMP code for the Average Temperatures example, notice how decomposition was used to
break the function into small, more easily understood functions while abstracting their functionality. Also, if

DYNAMIC_ARRAY Efficiencies

Does your SAS program initialize or set the array value
immediately after calling DYNAMIC_ARRAY? The
DYNAMIC_ARRAY special function automatically
initializes the created array with, “.”, a SAS missing
numeric value. If the SAS program sets all the values in
the array to a SAS missing numeric value immediately
after calling DYNAMIC_ARRAY, the SAS program is
doing an unnecessary (and possibly costly) action.

If the SAS program requires immediately filling the
whole array with values other than a SAS numeric
missing value, the DYNAMIC_ARRAY function can be
instructed to not initialize the elements in the array.
Again, this could be a significant time savings for a
large array. But, it is up to the SAS program to initialize
the array since running with uninitialized values can
have unexpected results.

To create an array without initialization, set the last
parameter in the DYNAMIC_ARRAY function to “.”, the
period character. For example, to create a 5 by 3
element array that is not initialized:

CALL DYNAMIC_ARRAY (arrayName, 5, 3, .);

11

others can use these functions, the functions could be made available to other programs – thereby
keeping from writing duplicate functions.

Anyone that has coded in SAS for a while is probably thinking, “I can do the same thing with SAS
macros.” And that statement would be true. But the SAS macro language has limitations. The following
are two obvious limitations:

1. Returning a macro value in the classic function style (x=SIN(y)) is not possible.

2. Macros treat all variables as character values making numeric computations tedious.

You do not have these limitations with functions created with PROC FCMP.

ADVANCED FEATURES

RUN_MACRO/RUN_SASFILE SPECIAL FUNCTIONS
With the basics covered, it is time to get into the more advanced features of using PROC FCMP. Have
you been coding a DATA step and thought, “I wish I could nest DATA steps” or “I wish I could call a
PROC from within a DATA step”? With an FCMP function, your wishes can come true by using two other
FCMP special functions, RUN_MACRO and RUN_SASFILE. As their names imply, these functions can
run a SAS macro or a SAS file respectively. Since the concepts of these 2 special functions are similar,
the example shows only the RUN_MACRO function:

 PROC FCMP OUTLIB=billsLib.paper.runMacro;

 FUNCTION writeJsonFile(dsName $, age);

 procRc = 0;

 rc = run_macro("jsonFileCreate", dsName, age, procRc);

 IF (rc NE 0)

 THEN DO;

 PUT "Problems with submitting JSON file macro (" rc ")";

 END;

 ELSE DO;

 IF (procRc NE 0)

 THEN DO;

 PUT "Problems with writing JSON file (" procRc ")";

 rc = procRc;

 END;

 END;

 RETURN(rc);

 ENDSUB;

 QUIT;

 %MACRO jsonFileCreate();

 %LOCAL/READONLY inDsName = %SYSFUNC(DEQUOTE(&dsName));

 %LOCAL/READONLY inAge = %SYSFUNC(DEQUOTE(&age));

 %LOCAL/READONLY outputFile = "./age_&inAge..json";

 PROC JSON OUT=&outputFile NOSASTAGS;

 EXPORT &inDsName (WHERE=(Age EQ &inAge));

 QUIT;

 %LET procRc = &syserr;

 %IF (&procRc EQ 0)

 %THEN %PUT Created file &outputFile;

12

 %MEND jsonFileCreate;

 %LET sortedAgeDataSetName=WORK.sortedAges;

 PROC SORT DATA=sashelp.class

 OUT=&sortedAgeDataSetName;

 BY age;

 RUN;

 DATA _NULL_;

 SET &sortedAgeDataSetName;

 BY age;

 IF (first.age)

 THEN DO;

 rc = writeJsonFile("&sortedAgeDataSetName", age);

 IF (rc NE 0)

 THEN ABORT;

 END;

 RUN;

In the previous example, the project requires writing data that is based on the “age” variable from the
sashelp.class data set to age-specific JSON files for consumption by another process. The DATA step
iterates over the sorted data by “age”. When the “age” variable value changes, the FCMP function is
called to write all of the observations that match the current “age” value to a specific JSON file. Note that
all of this processing is done from the middle of the DATA step. The same idea can be applied to nesting
DATA steps when the need arises.

An in-depth look at using RUN_MACRO is available in (Rhodes 2012).

RECURSION
Recursion can be a powerful tool in your development toolbox. A web search found a few techniques for
implementing recursion using SAS macro. While accomplishing the task, they were cumbersome and
unwieldy (as noted in the limitations listed above). The FCMP procedure supports recursion in a clean
and straightforward way. One of the classic examples used in teaching recursion is computing a factorial
of a nonnegative number. Here is the FCMP implementation of that classic example:

 PROC FCMP OUTLIB=billsLib.paper.factorial;

 FUNCTION factorial(currentValue);

 IF (currentValue EQ 0)

 THEN RETURN(1);

 ELSE RETURN(currentValue * factorial(currentValue - 1));

 ENDSUB;

 QUIT;

Here is the SAS program to exercise the function:
 DATA work.facts;

 DO number=5 TO 9;

 factorial=factorial(number);

 OUTPUT;

 END;

 RUN;

 PROC PRINT DATA=work.facts;

 RUN;

13

Figure 8: Output of Factorial Function

For a more involved usage and explanation of recursion, reference (Secosky 2007) for a directory tree
traversal example.

CALLING C FUNCTIONS
Another code reuse, and therefore efficiency scenario, is to leverage existing C functions. Say that your
company has a vast array of business rules that are coded in C functions and you would like to access
them from SAS. This can be accomplished by first using another Base SAS procedure, PROC PROTO.
The PROTO procedure is used to define within SAS the interface for accessing the C function. Once the
interface is defined, use PROC FCMP to create a function that uses the interface to call the C function
from within SAS. Here is an example that registers an external C function to compute a factorial of a
number:

 PROC PROTO PACKAGE=billsLib.proto.factFunc;

 LINK "factorial";

 int factorial(int currentValue);

 RUN;

 PROC FCMP INLIB=billsLib.proto

 OUTLIB=billsLib.paper.factorial;

 FUNCTION factorialProto(currentValue);

 RETURN(factorial(currentValue));

 ENDSUB;

 QUIT;

Here is the slightly modified version of the SAS program that is used to compute factorial values. Since
the PROC PROTO PACKAGE statement uses a different data set to store the factorial function interface
information, this path is added to the CMPLIB option value. The only modification to the DATA step is to
call the newly defined FCMP function that, in turn, calls the external C function to compute the factorial
values of some numbers:
 OPTION CMPLIB=(billsLib.paper billsLib.proto);

 DATA work.factsProto;

 DO number=5 TO 9;

 factorial=factorialProto(number);

 OUTPUT;

 END;

 RUN;

The output of this SAS program is the same as the previous recursion example.

Be sure to read (Henrick 2015) for detailed information about the PROTO procedure.

14

HASH OBJECTS
SAS 9.3 saw the introduction of hashing support in PROC FCMP. The HASH object allows for creating a
hash table that can store and retrieve data using a hashed index value. This can be an efficient retrieval
scheme based on the data, size, and composition of the data. In this next example, the task is to obtain
information from the sashelp.cars data set, specifically for a list of cars that are stored in the SAS data set
work.possCars. As noted in (Henrick 2013), a large number of values in a WHERE statement can
become unwieldy. Using an FCMP function called from the WHERE statement greatly cleans up the code
and allows for easily updating a dynamic list of WHERE statement values. This technique makes the
code easier to maintain.

 PROC FCMP OUTLIB=billsLib.paper.cars;

 FUNCTION isPossibleCar(model $);

 DECLARE HASH hashObj(DATASET:"work.possCars");

 rc = hashObj.definekey("model");

 rc = hashObj.definedone();

 rc = hashObj.check();

 checkRc = (not rc);

 RETURN(checkRc);

 ENDSUB;

 QUIT;

 DATA work.possCars;

 INPUT Model $40.;

 DATALINES;

 Element LX

 Malibu Maxx LS

 Rio Cinco

 Outback

 Rodeo S

 Matrix XR

 Xterra XE V6

 Murano SL

 Jetta GL

 Passat GLS 1.8T

 4Runner SR5 V6

 V40

 ;;;

 RUN;

 PROC PRINT DATA=work.possCars;

 RUN;

 DATA work.carDetails;

 SET sashelp.cars;

 WHERE isPossibleCar(strip(model));

 RUN;

 PROC PRINT DATA=work.carDetails(KEEP=make model type origin

 drivetrain msrp invoice);

 RUN;

The first 3 lines of the function create and load the hash table. The HASH object CHECK method
determines if the car’s model name, which is used as the hash key, is in the hash table. When the model

15

name matches a key, an “rc” value of zero is set. In order to indicate to the WHERE statement that the
current model should be included in the work.carDetails data set, the value returned from the
“isPossbileCar” function is set to the value 1 via the negation of “rc” in setting the “checkRc” return value.
Note that a DATA step hash object cannot be used in FCMP functions, but using FCMP hashing has an
advantage. In the example code, the DEFINEKEY and DEFINEDONE method calls are executed only
once no matter how many times the function is called. The “strip” function accomplished the needed
modification so that the matching key was found in the search of the hash table.

Here is the abbreviated output of the example. To make the output fit on the page, a number of data
columns were excluded:

Figure 9: Details of Possible Cars

Note that DATA step hash object cannot be used in FCMP functions, but using FCMP hashing has an
advantage. In the example code, the DEFINEKEY and DEFINEDONE method calls are only executed
only once no matter how many times the function is called. Once the hash object is defined with the
DEFINEDONE method, these method calls are no longer executed. This also applies to the
DEFINEDATA method (which is not used in the example as the data was assumed to equal the hash
key). If a DATA step hash object had been used, the DATA step would have had to have been coded to
only call those methods on the first loop through the data.

16

WHAT’S NEW IN SAS 9.4 MAINTENANCE 5

DICTIONARY OBJECTS
Dictionary objects are similar to the hash object. As such, the data is accessed via a key-value pair. Like
the hash object, a dictionary object supports access to numeric and character data, but also in-memory
storage of arrays, hash objects, and other dictionary objects. Also, a dictionary is not static in definition
like a hash object. If the need arises to later store a hash object at a key position that contains character
data, the dictionary object can gladly make the replacement. The dictionary object is available from the
FCMP procedure when running the SAS client. For more information about dictionaries, be sure to read
(Henrick 2017) as listed in the references section.

ASTORES
Astores are an advanced and specialized addition to the FCMP procedure. Astores are an analytic store
for scoring models. For information about Astores, refer to the FCMP Procedure in the Base SAS 9.4
Procedures Guide.

CONCLUSION
This paper demonstrates many of the basic FCMP statements and options. There are also
demonstrations of some of the more advanced features plus a preview of what is new in the latest release
of SAS 9.4 maintenance 5. The demonstrations have included techniques such as encapsulation,
decomposition, and abstraction to help understanding and maintenance of SAS programs that use PROC
FCMP. This paper only scratches the surface in the FCMP functionality (especially for analytics
programmers, as a number of the special functions are geared to analytic usage). Start coding with
PROC FCMP. The code you write with the demonstrated techniques will be appreciated by the
maintenance programmer (or maybe even yourself) who might need to modify the code in years to come.

All the programming example used in this paper are available for download from
https://support.sas.com/resources/sgf/507642_SAS2125-2018_Examples.zip

REFERENCES
Henrick, Andrew, Whitcher, Mike. and Croft, Karen. “Dictionaries: Referencing a New PROC FCMP Data
Type” Proceedings of the SAS Global 2017 Conference, 2017. Available at
http://support.sas.com/resources/papers/proceedings17/SAS0418-2017.pdf

Henrick, Andrew, Erdman, Donald. and Croft, Karen. “Helping You C What You Can Do with SAS”
Proceedings of the SAS Global 2015 Conference, 2015. Available at
https://support.sas.com/resources/papers/proceedings15/SAS1747-2015.pdf

Henrick, Andrew, Erdman, Donald. and Christian, Stacey. “Hashing in PROC FCMP to Enhance Your
Productivity” Proceedings of the SAS Global 2013 Conference, 2013. Available at
http://support.sas.com/resources/papers/proceedings13/129-2013.pdf

Rhoads, Mike. “Use the Full Power of SAS in Your Function-Style Macros” Proceedings of the SAS
Global 2012 Conference, 2012. Available at
https://support.sas.com/resources/papers/proceedings12/004-2012.pdf

https://support.sas.com/resources/sgf/507642_SAS2125-2018_Examples.zip
http://support.sas.com/resources/papers/proceedings17/SAS0418-2017.pdf
http://support.sas.com/resources/papers/proceedings15/SAS1747-2015.pdf
http://support.sas.com/resources/papers/proceedings13/129-2013.pdf
http://support.sas.com/resources/papers/proceedings12/004-2012.pdf

17

Secosky, Jason. “User-Written DATA Step Functions” Proceedings of the SAS Global 2007 Conference,
2007. Available at http://www2.sas.com/proceedings/forum2007/008-2007.pdf

ACKNOWLEDGMENTS
The authors would like the thank all the people that helped in putting this paper together: Stacey
Christian, Shameka Coleman, Diane Olson, Chris Johns, Elizabeth Downes, and Sandy McNeill.

RECOMMENDED READING
• Base SAS® Procedures Guide available at

http://documentation.sas.com/?docsetId=proc&docsetTarget=titlepage.htm&docsetVersion=9.4

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Bill McNeill
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Bill.McNeill@sas.com
http://www.sas.com

Andrew Henrick
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Andrew.Henrick@sas.com
http://www.sas.com

Mike Whitcher
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Mike.Whitcher@sas.com
http://www.sas.com

Aaron Mays
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Aaron.Mays@sas.com
http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www2.sas.com/proceedings/forum2007/008-2007.pdf
http://documentation.sas.com/?docsetId=proc&docsetTarget=titlepage.htm&docsetVersion=9.4
mailto:Bill.McNeill@sas.com
mailto:Andrew.Henrick@sas.com
mailto:Mike.Whitcher@sas.com
mailto:Aaron.Mays@sas.com

