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ABSTRACT  

Disease classification is a crucial element of biomedical research. Recent studies have demonstrated that 
machine learning techniques, such as Support Vector Machine (SVM) modeling, produce similar or 
improved predictive capabilities in comparison to the traditional method of Logistic Regression. In 
addition, it has been found that social network metrics can provide useful predictive information for 
disease modeling. In this study, we combine simulated social network metrics with SVM to predict 
diabetes in a sample of data from the Behavioral Risk Factor Surveillance System. In this dataset, 
Logistic Regression outperformed SVM with ROC index of 81.8 and 81.7 for models with and without 
graph metrics, respectively. SVM with a polynomial kernel had ROC index of 72.9 and 75.6 for models 
with and without graph metrics, respectively. Although this did not perform as well as Logistic Regression, 
the results are consistent with previous studies utilizing SVM to classify diabetes. 

INTRODUCTION  

Disease classification is a crucial element of biomedical research. Improved disease classification models 
aim to provide accurate and timely prediction to allow for earlier diagnosis and implementation of 
preventative measures. For example, in the US, approx. 29.1 million people (9.3%) are affected by 
diabetes, with 1/3 unaware of their disease status, and 57 million with pre-diabetes[1]. Diabetes and pre-
diabetes are known to increase the risk of heart disease and stroke[1] but these long-term effects can be 
prevented with lifestyle changes and/or medical intervention[2]. Early screening and predictive risk 
models built with simple clinical measurements (no lab tests required) are important for deployment of 
prevention strategies, especially in undiagnosed population[3]. 

Traditionally, biomedical data is modeled using Logistic Regression, a method that relies on fitting data to 
a pre-determined model. Alternatively, the Support Vector Machine (SVM) algorithm is a supervised 
machine learning method that is a “model-free” method that does not require assumptions of distribution 
and interdependency of predictor variables. In SVM each data point is represented as a n-dimensional 
vector and the algorithm constructs an n-1-dimensional separating hyperplane to discriminate 2 classes, 
with maximized distance between the hyperplane and data points on each side. Non-linear functions, 
kernels, can also be used to transform data into multidimensional space. Previous research demonstrates 
that SVM has similar or improved predictive capabilities for disease classification in comparison to 
Logistic Regression[4]. 

In addition, it has been found that graph theory metrics provide useful information for the disease 
classification problem. Studies classifying diseases such as Alzheimer’s[5] and Multiple Sclerosis[6] 
combined graph theory with machine learning methods, such as SVM, for improved prediction. I have not 
found previous research on the application of graph theory metrics to demographic and behavioral data 
for the prediction of disease.  

This project aims to assess the application of SVM for classification of diabetes in a sample of people in 
Georgia and apply graph theory metrics as potential predictors of disease in the model. This paper 
includes: Section 0 description of the dataset, Section 0 overview of SVM application to disease 
classification, Section 0 overview of graph theory application to disease classification, Section 0 social 
network simulation, Section 0 SVM algorithm, Section 0 Logistic Regression algorithm, Section Error! 
Reference source not found. results, and Section 0 discussion.  

DATASET DETAILS 
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Data from 2015 were obtained from Georgia’s Behavioral Risk Factor Surveillance System (BRFSS)[7], 
landline and cellphone-based survey conducted by the Centers for Disease Control and Prevention 
(CDC). A binary predictor variable was defined based on survey respondents reporting they had been 
informed by their physician they had diabetes or pre-diabetes. Once imputing missing data where 
possible, the analysis dataset included 2066 observations with 401 (19.4%) classified as having diabetes 
or pre-diabetes. BRFSS includes over 300 variables of various health behaviors and chronic conditions. 
For this study, I selected potential predictor variables based on literature review and the known 
conceptual model[8]. Variables considered based on the conceptual model included: sex, age, race, 
education, income, marital status, BMI, cholesterol, hypertension, arthritis, physical activity, and 
consumption of fruits and vegetables. Once cleaning the predictors of interest, the analysis dataset 
included a sample of 1284 people and households in Georgia. 

LITERATURE REVIEW 

SVM APPLICATION TO DISEASE CLASSIFICATION 

Yu, et al.[4] used the National Health and Nutrition Examination Survey (NHANES), an ongoing, cross-
sectional, probability sample of US population, to build SVM and Logistic Regression classification 
models for 2 classification schemes: persons with diabetes (diagnosed or undiagnosed) vs. persons 
without diabetes, and persons with undiagnosed diabetes or pre-diabetes vs. persons without diabetes. 
They used 14 potential predictors commonly associated with diabetes: family history, age, gender, race 
and ethnicity, weight, height, waist circumference, BMI, hypertension, physical activity, smoking, alcohol 
use, education, household income[4]. They found that the Radial Basis Function (RBF) kernel, and Linear 
kernel worked best for classification schemes I and II respectively, and there was no significant difference 
between Logistic Regression and SVM performance (AUC 0.83 & 0.73 for classification I and II, 
respectively, with both models)[4]. 

Additionally, Kumari et al[9]. also found success with the SVM model for classification of diabetes in the 
Pima India Diabetic Dataset from the UCI Machine Learning Laboratory. In this case, an 8 predictor SVM 
model, including lab data (plasma glucose concentration, 2-hr serum insulin) was validated with 78% 
accuracy using the RBF kernel.  

SVM has been used across diverse biomedical classification problems. This includes a patient financial 
risk model using health claims and clinical encounter data, and a patient response to flu awareness 
campaign model, both using weighted SVM[10]. A project comparing various machine learning 
techniques with Logistic Regression for prediction of heart disease also shows no significant difference 
between Logistic Regression and SVM, with the Linear kernel performing best[11]. 

GRAPH THEORY APPLICATION TO DISEASE CLASSIFICATION 

In Kocevar, et al. [6]. they combined graph metrics with SVM to classify various Multiple Sclerosis (MS) 
clinical profiles. Cortical and sub-cortical gray matter (GM) segmentation was performed on the advanced 
MRI imaging of 77 MS patients and 26 healthy controls (HC). Figure 1 shows the process of 
segmentation of the scans to create nodes, and anatomically constrained probabilistic streamline 
tractography is used to create edges between the segments. Edge weights are determined by a function 
of the number of fibers connecting the segments. The weakest connections are removed by applying a 
threshold 0 ≤ τ ≤ 1 on the weighted graph, generating an unweighted graph maintaining the τ% strongest 
connections in the network. Global network metrics calculated for the study on the unweighted graph 
included: graph density (D), assortativity (r), transitivity (T), global efficiency (Eg), modularity (Q), and 
characteristic path length (CPL).  
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Figure 1: Brain Imaging Graph Generation 

[6] 

The study found that global graph metrics were not significantly dependent on patients’ age or gender. 
Overall, significant difference in graph metrics were found when comparing MS patients with HC groups, 
as well as between different clinical classifications of MS. SVM classification with RBF kernel was then 
used to predict varying binary classifications of HC groups and clinical courses, with highest classification 
achieved using all graph metrics as a feature vector in the model at 91.8%. Using only one graph metric, 
the best in this case being modularity, the study could achieve accuracy of 88.9%.  

In Khazaee, et al., they found that using changes in brain connections from functional magnetic 
resonance imaging (MRI) provided strong predictive measures for classifying Alzheimer’s Disease (AD) 
patients from healthy controls (HC). 20 patients with AD and 20 age-matched HC from Alzheimer's 
disease neuroimaging initiative (ADNI) database were selected for study. MRI images were parcellated 
into 90 regions and edges were defined as connectivity of all pairs of regions using Pearson’s correlation 
coefficient. As in the previous study, thresholding was used to maintain the strongest connections in the 
network. Preserving a high proportion of the network results in a dense graph with noisy and less 
significant edges maintained. However, removing too many edges can result in a disconnected graph 
where global graph metrics cannot be calculated. From their previous research, this study found that a 
threshold of 12% was optimal[5]. The study maintained the bridge edges between any disconnected 
sections that resulted from thresholding, regardless of the edge weight. Figure 2 shows the weighted 
adjacency matrix for the complete and 12% threshold network. 

Figure 2: Weighted Adjacency Networks 

[5] 

Graph metrics calculated for this project included: functional segregation via clustering coefficient, local 
efficiency, and normalized local efficiency to measure specialized processing within densely 
interconnected groups of regions; functional integration via characteristic path length and global efficiency 
to assess ability of the brain to rapidly combine specialized information from distributed regions; and 3 
local measures including degree, participation coefficient, and betweenness centrality to measure 
properties of the 90 regions. An iterative feature selection algorithm using 7 different methods was then 
used to filter the most effective graph features for the classification problem. Linear SVM with a tuned C 
parameter using leave-one-out cross validation was used to perform the final feature classification.  

End results found that Fisher Score provided the best feature selection method for the discriminative 
algorithm. Figure 3 shows performance of the Fisher algorithm with increasing number of selected 
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features and various values of SVM C parameter. The best algorithm found could classify AD patients 
from HC group with a highest accuracy of 97.5%. 

Figure 3: PREDICTIVE PERFORMANCE OF VARIOUS # OF PREDICTIVE FEATURES AND C 
PARAMETER SELECTION 

[5] 

METHODOLOGY 

SAS® PROC HPSVM was used to build SVM models. PROC HPSVM is a SAS® Enterprise Miner™ high 
performance data mining procedure built to take advantage of parallel processing with both single 
machine and distributed multiple-machine mode. The data were split into 80% training, 20% validation 
datasets. I ran PROC SVM comparing 3 common kernels: Linear, Polynomial, and RBF. I used 5-fold 
cross validation for each kernel to determine the best penalty parameter, C. This controls for overfitting of 
the model by specifying allowable misclassification. SAS® PROC LOGISTIC was used to build the 
Logistic Regression model for comparison. The models were compared based on sensitivity, specificity, 
and area under the receiver operating characteristic (ROC) curve, using Enterprise Miner™. 

SOCIAL NETWORK SIMULATION 

To test the application of graph theory metrics as potential predictors in a classification model, it was 
necessary to simulate a social network within the BRFSS dataset. The Watts-Strogatz small world 
network model was selected to represent the sample social network for this application due to its ability to 
simulate the interconnected groups (clusters) that exist in real-world networks, as well as the existence of 
random irregular connectivity patterns[12]. This model was first introduced by Duncan Watts and Steven 
Strogratz in Nature in 1998Error! Reference source not found..  

Watts-Strogatz is a variation of the lattice network where nodes are connected to their nearest neighbors 
only. Figure 4 illustrates the adjustment of a lattice network to the Watts-Strogatz network. Watts-Strogatz 
randomly rewires some of the lattice edges, resulting in high clustering and short paths. This network is 
undirected. Ideally, the data studied would include some network characteristics, but I did not have 
access to a public use dataset that includes both demographic and network characteristics. For the 
purposes of testing the application of graph metrics to a predictive model, a simulated network will suffice. 
To incorporate an element of the demographic data into the social network simulation, I weighted each 
edge by the average standardized number of adults in the respondents’ household. 
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Figure 4:LATTICE AND WATTS-STROGATZ NETWORK MODELS 

[12] 

The algorithm for creating a Watts-Strogatz network starts with a lattice network where each node is adjacent to a 

defined L neighbors. If each node has degree kL, and kL is even, then the global clustering coefficient, C  , of the 

network is 

C   = 0.75(kL – 2)/( kL -1) (1) 

To randomly rewire the lattice network, each edge has a defined probability, pw, of being re-wired. Each 
edge can only have one end re-wired and the edges are replaced so that total number of edges and 
mean degree is the same as the original lattice[12].  The reason why the Watts-Strogatz model maintains 
high clustering coefficient, but low average path length, as compared with a random network, is that the 
global clustering coefficient is based on the average of the local measure; rewiring a small number of 
connections will only affect the local clustering coefficient of a small number of nodes. However, average 
path length is a global measure of the average of shortest path length between every combination of 
nodes. Changing even one edge can create shortcuts between many pairs of nodes, greatly affecting the 
average path length[12]. In addition, even if we select a rewiring probability of 1, a Watt-Strogatz network 
will not be the same as a random network with same size and average degree because the Watts-
Strogatz algorithm does not allow nodes to have degree less than n/2, where the random network does 
allow this[12]. Figure 5 shows the simulated BRFSS network for 10% of the data. 

Figure 5:WATTS-STROGATZ SIMULATED NETWORK 

 

The R igraph package was used to create the Watts-Strogatz network using 1284 nodes, kL = 4 (degree 
of every node in the initial lattice), and rewiring probability pw 0.5. The resulting edge-list was imported 
into SAS® and merged with the household variable in the analysis dataset to create the edge weights as 
described above. SAS® PROC OPTGRAPH was used to calculate various graph characteristics to be 
used in the SVM and Logistic Regression model application, including: local clustering coefficient, degree 
centrality, closeness centrality, betweenness centrality, and eigenvector centrality. 

SUPPORT VECTOR MACHINE 
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SVM is a supervised learning algorithm that represents instances of data as points in space and then 
builds a model to assign new instances to one category or another. Each data point is represented as a 
n-dimensional vector, then SVM constructs an n-1-dimensional separating hyperplane to discriminate 2 
classes, with maximized distance between the hyperplane and data points on each side. SVM aims to 
find the best hyperplane for separation of both classes[11]. 

Data are represented as 

 (2) 

where yi is either 1 or -1, indicating to which class xi belongs. Each xi is p-dimensional vector representing 
all of the characteristic values (variables) of xi.. The hyperplane that best separates the group of xi vectors 
where yi = 1 from the group of vectors where yi = -1 is 

 (3) 

Where is the normal vector to the hyperplane and b is the offset of the hyperplane from the origin. If 
the data points are linearly separable, the hard margin can be represented as  

 (4) 

Figure 6 shows a maximum margin separation for linearly separable data. The samples that fall on the 
margin are known as the support vectors.  

Figure 6:MAXIMUM MARGIN HYPERPLANE 

[9] 

For data that is not linearly separable we can include a hinge loss function, ‘C’, to determine the trade-off 
between increasing the margin and whether an instance of xi lies on the correct side of the margin. In 
addition, we can implement kernel functions to adjust the inner dot product of the maximum margin 
hyperplane optimization algorithm. This transforms the data into a higher dimensional space. Figure 7 
shows the transformation of features into higher dimension space.  
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Figure 7:KERNEL TRANSFORMATION OF FEATURE SPACE 

[11] 

SAS® PROC HPSVM from the Enterprise Miner™ High Performance Procedures was used to build the SVM models. 
5-fold cross validation was used to determine best soft margin parameter C in each kernel: Linear, RBF, and 
Polynomial. Macro programming was used to automatically evaluate several values of RBF kernel parameter, γ, and 
then choose the best C/γ combination.  

LOGISTIC REGRESSION 

Logistic Regression examines the non-linear relationship between a binary outcome and categorical or 
continuous predictor variables. The logistic model outputs a probability of an event between 0 and 1 as 
the log of the odds ratio (3) 

(5) 

where β is the parameter coefficient and x is the value of the independent variable.  

SAS® PROC LOGISTIC was used to build the model and stepwise elimination with α = 0.05 was used to 
eliminate redundancy and keep the strongest predictors in the model. 10-fold cross validation was used 
for model evaluation. 

RESULTS 

Table 1 and Table 2 illustrate the significant effects remaining in the Logistic Regression models, for 
models with and without network characteristic metrics included. Age, BMI, hypertension, and cholesterol 
all have increased odds of diabetes outcome, while education has decreased odds. This is consistent 
with outcomes of previous research and known risk factors for diabetes. In the model with graph metrics 
included, only closeness centrality remains as significant, in addition to the same demographic variables 
from the previous model. If this were a real network in the dataset (not simulated), this would indicate that 
people with shorter total paths to other people in the network would have increased risk of diabetes. 

Table 1: LOGISTIC REGRESSION SIGNIFICANT EFFECTS 
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Table 2: LOGISTIC REGRESSION SIGNIFICANT EFFECTS 

 

Table 3 shows the model performance results for models with and without the social network graph 
characteristics. The models were evaluated based on the sensitivity, specificity, and ROC index for the 
validation data set. The logistic model performs best for models with and without graph metrics included, 
and the SVM model with polynomial kernel is comparable but the ROC index is affected by lower 
sensitivity. Figure 8 and Figure 9 provide a visual comparison of the area under the ROC curves for 
models with and without graph metrics, respectively.  

Table 3: LOGISTIC REGRESSION AND SVM RESULTS 

 

Figure 8: COMPARISON OF ROC CURVES: MODELS INCLUDING GRAPH METRICS 

 

Figure 9: COMPARISON OF ROC CURVES: MODELS NOT INCLUDING GRAPH METRICS 

 

MODEL GRAPH METRICS KERNEL BEST C SENSITIVITY SPECIFICITY ROC INDEX (TEST)

LOGISTIC NO NA NA 34.2 97.7 81.7
LOGISTIC YES NA NA 36.8 97.2 81.8
SVM NO LINEAR 0.2 0 100 80.4
SVM YES LINEAR 0.5 0 100 78.9
SVM NO POLY 0.2 26.3 96.4 75.6
SVM YES POLY 0.2 23.7 97.3 72.9
SVM NO RBF 1 0 100 70.9
SVM YES RBF 0.2 0 100 71.1
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DISCUSSION & FUTURE RESEARCH 

Support Vector Machines and graph metrics are important tools to be considered for disease 
classification problems. While SVM did not perform as well as Logistic Regression in this study, it’s results 
were comparable to previous research. SVM is known to be less sensitive to high dimensionality, and 
sparse datasets, so would likely perform better than Logistic Regression in studies with biomedical data 
of that nature.  

Including graph metrics in the model did improve predictive performance slightly using a simulated 
network. Ideally, future research will include a dataset with both demographic and network characteristics 
included. Future improvements to this study will include: 

 Parameter selection using machine learning such as Random Forest 

 Creating a custom kernel for SVM using deep learning techniques 

RELEVENT SAS® CODE 

Figure 10: R code for Watts-Strogatz network generation 

 
 

Figure 11: SAS® PROC OPTGRAPH 

 

 

Figure 12: SAS® PROC HPSVM 
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Do not change the heading style or the text “CONCLUSION” of the preceding heading  

This paragraph uses the PaperBody style. 

The conclusion summarizes your paper and ties together any loose ends. You can use the conclusion to make any final points such 
as recommendations, predictions, or judgments. 
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