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ABSTRACT 

Many organizations need to process large numbers of time series for analysis, decomposition, 
forecasting, monitoring, and data mining. The TSMODEL procedure provides a resilient, distributed, 
optimized generic time series analysis scripting environment for cloud computing. It comes equipped with 
capabilities such as automatic forecast model generation, automatic variable and event selection, and 
automatic model selection. It also provides advanced support for time series analysis (in the time domain 
or in the frequency domain), time series decomposition, time series modeling, signal analysis and 
anomaly detection (for IoT), and temporal data mining. This paper describes the scripting language that 
supports cloud-based time series analysis. Examples that use SAS® Visual Forecasting software 
demonstrate the use of this scripting language. 

INTRODUCTION 

More information than ever before is being collected with associated timestamps. Computers, cell 
phones, smart devices, detectors, and other devices record timestamped data. These timestamped data 
can be modeled, forecasted, or mined (or any combination of these) for better decision making. In most 
cases, the decisions are critical and have immense financial and ethical implications. For example: 

 Retailers rely on both seasonal and nonseasonal forecasts of product demand in order to make 
profitable decisions about staff scheduling and stocking levels for millions of products across 
thousands of stores (such as Walmart, Food Lion, and The Home Depot). 

 Manufacturers rely on accurate forecasts of time to component failure in order to make decisions 
about the maintenance schedule of critical machinery components. 

 Railroad companies rely on accurate time series forecasts of shipping demand per region of the 
country in order to preemptively stock their railroad cars across different regions. Accurate 
forecasts enable them to better meet the predicted demand, minimize shipping delays, and 
improve customer satisfaction. 

 Energy companies rely on the ability to both monitor and analyze, in real time, sensor data that 
stream from wind turbines. Time series of sensor data are analyzed in order to quickly detect and 
respond to critical anomalous behavior and to maintain high turbine performance over time. 

 Hospitals can aggregate patient sensor data, lab results, and physician notes in order to monitor 
patient progress and better predict patient outcome. Similarly, a physician can monitor a patient’s 
pacemaker remotely in order to quickly determine when the patient’s heart is behaving 
anomalously. 

 Governments rely on time series decomposition techniques in order to decompose series of 
economic variables into their long-term trends and short-term seasonal effects so that they can 
gain a better insight into the real status of the economy. 

In recent years, there has been an enormous increase in the amount of timestamped data being 
collected. It is now commonplace for companies (such as banks, manufacturers, retailers, websites, 
hospitals, universities, governments, and taxi, insurance, stock trading, phone, energy, and many more 
companies) to maintain large databases of timestamped data whose sizes range from hundreds of 
gigabytes to hundreds of terabytes. These databases are gold mines for insights into consumer behavior. 
These insights can help organizations optimize their internal processes to better meet consumer 
demands. 
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In addition, the amount of timestamped data being collected is expected to further escalate because of 
the ongoing proliferation of the Internet of Things (IoT). IoT enables all types of objects (cars, toasters, 
pacemakers, water and gas meters, and so on) to be discovered, monitored, and controlled remotely via 
the existing internet infrastructure. In short, “big data” has become pervasive in today’s society; it is 
everywhere and anything, it is here to stay, and it has a lot to say. Processing this ever-increasing 
amount of timestamped data in an intelligent way poses both architectural and analytical challenges. For 
example, because of the sheer amount of data and the ever-increasing demand to gain decision-making 
insights from data in close to real time, time series analysis of big data is inherently a distributed 
computing problem and is thus an architectural challenge. In addition, big data solutions must be generic 
enough to accurately handle the time series analysis requirements of different applications and thus are 
an analytical challenge. 

SAS Visual Forecasting provides procedures for some of the most common analyses that are performed 
on timestamped data: forecasting, decomposition and price analysis, time series monitoring and anomaly 
detection, and temporal data mining. This paper provides an overview of the SAS Visual Forecasting 
Procedures—in particular of the TSMODEL procedure, which was specifically designed to support 
advanced, efficient, and cloud-based time series analysis of big data. 

HOW DOES THE TSMODEL PROCEDURE WORK? 

The goal of cloud-based time series analysis and forecasting is to perform an analytical task in a single 
pass through the data and by using a distributed file system or distributed computing environment (or 
both). Moving data can be I/O intensive, whether internal to a node, external (between computing nodes), 
or both. A single pass through the data allows for enormous performance gains. By providing a system 
that both moves data and computes efficiently, time series analysis and forecasting are possible on an 
enormous scale. The TSMODEL procedure provides a scalable, cloud-based time series analysis 
environment, which includes distributed file system, scripting, and parallel reading, execution, and writing. 
The following sections describe these elements in more detail. 

DISTRIBUTED FILE SYSTEMS 

The TSMODEL procedure is designed to enable your analysis to use a distributed file system (DFS). A 
DFS allows for redundant and resilient storage of data; it breaks up large files into chunks and stores 
each chunk on several storage media. In addition, it makes several redundant copies of each chunk in 
order to forgo the need for making periodic backup copies. If a particular file system fails, the distributed 
file system can resiliently heal itself without needing to restore backup copies, which can cause delays. 
However, the data are not stored contiguously in such a file system, so sorting on a particular file system 
is not possible. This is particularly problematic for time series analysis, where the ordering of the data is 
crucial. In addition, the data that are needed for time series analysis might be stored in several files. 
These distributed files must be read, sorted, and merged with respect to time in a scalable and efficient 
way. The SAS Visual Forecasting procedures automatically perform all these operations on the input time 
series data in preparation for the analysis. 

Figure 1 illustrates a distributed file system that contains two tables, A and B. Each table is organized by 
classification (BY) variables that delineate the time series rows, which are grouped into seven BY groups. 
Each BY group represents one time series. One or more computing (worker) nodes are connected to the 
distributed file system; neither the tables nor the BY groups are stored on a single machine. 
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Figure 1. Distributed File System (DFS) 

SCRIPTING LANGUAGE, DISTRIBUTION, AND COMPILATION 

The vast amount of data that cloud computing can support calls for a time series analysis scripting 
environment in order to process the data efficiently. SAS Visual Forecasting provides a scripting language 
that facilitates the use of various capabilities, such as the following: 

 automatic forecast model generation, automatic variable and event selection, and automatic 
model selection 

 advanced support for time series analysis (in the time domain or in the frequency domain), time 
series decomposition, time series modeling, signal analysis and anomaly detection (for IoT), and 
temporal data mining 

 preparation of the input data prior to analysis and postprocessing of the final results in the same 
script 

 reading of multiple input data files and creation of multiple output data files 

These features make the scripting language very flexible and useful for numerous applications. Figure 2 
illustrates the use of a script. The script is created outside the computing server and can be submitted to 
the computing server by SAS, Python, Lua, or R clients. 

 
Figure 2. Scripting Language 
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The distributed network can consist of one or more computing (worker) nodes. After being submitted to 
the computing server, the user-specified script is distributed to each computing (worker) node to permit 
parallel execution of the specified analysis, as shown in Figure 3. 

 
Figure 3. Script Distribution 

The user-specified script is then compiled on each of the computing nodes. The compiler optimizes the 
resulting executable for the specific operating system of the computing node (Linux, Windows, and so 
on). This optimized executable permits very fast execution of the specified analysis. 

Figure 4 illustrates the script compilation. After the script is distributed to the computing (worker) nodes, it 
is optimally compiled. 

 
Figure 4. Script Compilation 

PARALLEL READ 

All the computing nodes read one or more input data files simultaneously. Each input data file contains 
unsorted, timestamped transactional data that might be recorded at no fixed interval. However, time 
series analysis algorithms typically require that the input time series data be stored contiguously in 
memory, in temporal order, and with a fixed-time interval. Therefore, the transactional data must be 
transformed into a suitable form prior to analysis. The TSMODEL procedure relies on the properties of the 
input data in order to determine how to transform the data with optimal performance. For example, when 
the input data consist of multiple time series (BY groups), then the transformation occurs via a two-step 
process that is illustrated in Figure 5 and subsequently described in detail. 
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Figure 5. Parallel Read 

Each time series is read from the DFS, shuffled, assigned to contiguous memory on a single computing 
(worker) node, and finally accumulated prior to the execution of the compiled script in the following two 
steps: 

1. Automatic partitioning (auto-partitioning): This first step of the parallel read process involves 
reading and “shuffling” the transactional data so that each time series (each BY group) is copied 
into the memory of a single computing node. BY groups are delineated based on the distinct 
values of one or more columns of the input data files (BY-group variables). In the TSMODEL 
procedure, you can optionally specify BY-group variables via the BY statement. The TSMODEL 
procedure expects the main input data file, which you specify in the DATA= option in the PROC 
TSMODEL statement, to include all the BY-group variables. Any remaining auxiliary input data 
files, which you specify in the AUXDATA= option in the PROC TSMODEL statement, can include 
either all or none of the BY group variables. The TSMODEL procedure currently does not support 
partial BY-group variable matching. 

One of the goals of auto-partitioning is to evenly distribute the BY-group load across the 
computing nodes such that each node receives a balanced amount of both small and large BY 
groups. In this way, the overall computational load across the worker nodes is evened out. The 
shuffling process occurs differently for input data files that contain all the BY-group variables than 
it does for input data files that contain none of them. In the first case (the files contain all the BY-
group variables), the process starts with worker nodes reading in parallel all the rows of the input 
data file from the DFS. Because of the unordered distribution of time series rows across the DFS, 
worker nodes end up with only chunks of different BY groups (partial BY groups) rather than 
complete time series in memory. Consequently, in order to attain complete BY groups, worker 
nodes must then transport the rows of these partial BY groups to their destination nodes 
(shuffling). In order to determine the destination node for each partial BY group, worker nodes 
convert the formatted text value of the ordered set of the BY-group variables that identify the BY 
group into a unique numeric hash value modulo the total number of computing nodes. The 
resulting numeric value corresponds to the ID of the computing node that will receive the partial 
BY-group data rows. After shuffling the rows of the partial BY groups, worker nodes then merge 
the rows that they received from other nodes into complete BY groups that are stored in 
contiguous memory. At the end of this process, the distributed transactional data that belong to 
each BY group are migrated via the network to the memory of a single computing node. At this 
stage, the input data file is said to have been “auto-partitioned.” Moreover, the resulting new, in-
memory data file is marked with metadata fields that prevent it from being auto-partitioned by the 
same ordered set of BY-group variables in the future. In turn, the TSMODEL procedure 
recognizes these metadata fields in input data files and skips the auto-partitioning step 
accordingly. In contrast, input data files that contain none of the BY-group variables are replicated 
across all computing nodes; each worker sends the data rows that it receives from the DFS to all 
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other nodes. Subsequently, these replicated transactional data are added to every BY group 
during the second step, the accumulation step. Figure 6 illustrates the auto-partitioning step for a 
single table, Table A.  

 
Figure 6. BY-Group "Auto-Partitioning" during Parallel Read 

In Figure 6, Table A contains five BY groups that are color coded: elements of BY-group 1 in red, 
BY-group 2 in green, BY-group 3 in blue, BY-group 4 in yellow, and BY-group 5 in gray. The 
elements of each BY group (for example, 1a, 1b, and 1c) correspond to table rows that contain 
timestamped transactional data. The BY-group rows are spread in an unordered fashion across 
the different storage units of the DFS. Each BY-group is read from the DFS, shuffled, and 
assigned to contiguous memory on a single computing (worker) node. At the end of the auto-
partitioning step, the computing nodes have approximately equal numbers of time series (BY 
groups) stored in memory awaiting execution. However, these time series remain unsorted and 
have no fixed interval; they are not yet suitable for analysis. 

2. Accumulation occurs immediately prior to the execution of each BY group. This step involves 
taking the in-memory transactional data of each BY group that resulted from the previous step 
(auto-partitioning) and accumulating them into sorted, fixed-interval, and fixed-length time series 
that are suitable for analysis. In the TSMODEL procedure, the time span of the main data set, 
which you specify in the DATA= option, is used to determine the fixed length of all accumulated 
BY groups. Alternatively, you can specify the lower bound and upper bound (or both) of the 
accumulation time span in the START= and END= options, respectively, in the ID statement. In 
addition, the transaction data from the replicated input data files that contained none of the BY-
group variables are accumulated to each BY group during this step. The resulting time series are 
supplied as array variables to the compiled script for processing by program statements. Figure 7 
illustrates the accumulation step for the input Table A that is depicted in Figure 6. The worker 
nodes accumulate the five BY groups of Table A to fixed-length time series prior to executing the 
compiled script. 
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Figure 7. BY-Group "Accumulation" during Parallel Read 

When you do not specify BY-group variables in a BY statement, the TSMODEL procedure assumes that 
all input data files that you specify in the DATA= and AUXDATA= options correspond to a single 
overarching time series. When compared to the previous case, this assumption is equivalent to working 
with a single BY group (although no BY group variables are actually involved). Consequently, data rows 
from all input files must be collected into the contiguous memory of a single worker node prior to the 
analysis. This scenario poses a potential network transport bottleneck because a single worker node acts 
as the sole recipient of the auto-partitioning (shuffling) step. In contrast, all worker nodes in the previous 
case evenly shared the burden of distributing the input data during the shuffling process. In this current 
scenario, the TSMODEL procedure minimizes the burden on the destination node by compressing the 
time series data prior to transport. This compression is achieved via an additional accumulation step that 
is performed by the worker nodes prior to sending their data to the destination node. 

As in the previous case, the process starts with the worker nodes reading in parallel all the rows of an 
input data file from the DFS. Worker nodes end up with chunks of the single time series (partial time 
series) rather than the complete time series in memory. Because the DFS provides data redundancy, 
duplicate data rows appear in the partial time series of multiple worker nodes. These extraneous data 
simply increase the network transport time. Next, and in contrast to the previous case, worker nodes then 
perform an accumulation step on their partial time series prior to sending their data to the single 
destination node (shuffling). This accumulation step tends to significantly reduce the cardinality of the 
partial time series (such as when data that are collected every second or minute are accumulated into 
weeks). In other words, the smaller accumulated (compressed) partial time series can be more quickly 
transported to the single destination node. After the destination node receives the accumulated partial 
time series from all other worker nodes, it merges and accumulates them into a complete time series that 
is ready for analysis by the compiled script. At the end of this process, the distributed transactional data 
that was stored across the DFS has been efficiently migrated via the network to the contiguous memory 
of a single computing node. 

PARALLEL AND THREADED EXECUTION 

Each computing node executes (in parallel) the compiled, optimized script for each time series that has 
been assigned to it. Each time series is executed on one thread of the computing node. Each of the 
computing node’s threads is kept busy until all the time series that have been assigned to it have been 
processed. If any problems occur during the execution of a particular time series (BY group), they are 
logged into an in-memory table so that you can investigate them further. 
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Figure 8 illustrates the parallel execution. Each time series is executed independently on a computing 
(worker) node. 

 
Figure 8. Parallel Execution 

Optimization 

The time series modeling and forecasting capabilities of the TSMODEL procedure have been optimized in 
order to ensure that parallel execution remains efficient and scalable with increased thread usage. The 
optimization helps ensure a graceful degradation of service when concurrent sessions of the TSMODEL 
procedure are spawned in a shared computing server. A single session can tax the server’s hardware 
resources. The optimization focuses primarily on efficiently reusing allocated memory in order to minimize 
the load that is placed by increased thread usage on the computing server’s virtual memory (VM) 
subsystem. The VM subsystem requests (allocates) or returns (deallocates) memory in a serial fashion, 
one thread at a time, in order to prevent a race condition from corrupting its internal data structures. Both 
of these actions are commonplace in any program. Consequently, in multithreaded architectures, threads 
can stall for a significant amount of time as they wait in the queue for their turn to interact with the VM 
subsystem. Increased thread usage can severely exacerbate this problem. For optimal performance, it is 
crucial to minimize the amount of time that is wasted by threads being stalled. 

Memory Management 

The TSMODEL procedure has an efficient memory management strategy that minimizes the number of 
VM subsystem queries that are performed by the BY-group threads during the parallel execution step. As 
a result, thread stalls are prevented, and more time is spent performing useful time series modeling and 
forecasting computations. Furthermore, this strategy also enables a graceful degradation of service when 
multiple PROC TSMODEL sessions are run in parallel on a shared computing server. The following 
memory management strategy performs the costly memory allocations once and reuses the memory 
across BY groups: 

1. At the start of a BY-group processing step, BY-group threads allocate large chunks of memory, 
called “memory containers,” from the VM subsystem. This momentarily creates contention on the 
VM subsystem. 

2. Each BY-group thread then subdivides its containers into smaller blocks of memory in order to 
instantiate both the required data objects (time series arrays) and the computational objects (time 
series models). As the execution of the compiled script progresses, each thread requests more 
memory containers on-demand from the VM subsystem as their local resources are exhausted. 
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3. As a BY-group thread finishes processing a BY group, it does not give back its memory 
containers to the VM subsystem. Instead, the BY-group thread retains its containers and reuses 
them first to process subsequent BY groups, requesting another container only when needed. 
This results in a significantly reduced number of memory allocation queries to the VM subsystem. 
To accomplish this, the portions of the memory containers that hold the computational objects are 
left intact, enabling the reuse of time series modeling and forecasting objects across BY groups. 
Critical portions of the computational objects are reset and made ready to build new time series 
models. This effectively eliminates the need to perform costly instantiations of computational 
objects at the start of every BY-group process. In contrast, the portions of the memory containers 
that hold data objects are released to hold the subsequent BY-group data. 

4. After all BY groups have been processed, all BY-group threads then give back their memory 
containers to the VM subsystem, which momentarily causes some contention. 

This memory management strategy reduces the BY-group threads’ contention on the VM subsystem to 
only the amount that is generated by the execution of the first few BY groups, when the majority of 
queries for memory containers occur. The contention for interaction with the VM subsystem is greatly 
diminished after that. Also, in the worst-case scenario, each BY-group thread owns at any time just 
enough memory to process its largest BY group. This strategy enables the time series modeling and 
forecasting capabilities of the TSMODEL procedure to scale extremely well with increased thread usage. 

PARALLEL WRITE TO THE DISTRIBUTED FILE SYSTEM 

After the specified analysis is executed for a particular time series, the computing nodes write one or 
more output data sets asynchronously and independently. Multiple output data files can be created 
simultaneously.  

Figure 9 illustrates the parallel write. Each time series analysis result is written back to the distributed file 
system. 

 
Figure 9. Parallel Write 

IMPLEMENTATION 

SAS Visual Forecasting enables you to use a variety of methods to implement solutions to your time 
series forecasting problems. You can use procedures, scripts, packages, and actions. 

THE TSMODEL PROCEDURE 

The TSMODEL procedure is a SAS® Viya® procedure that executes user-defined programs (scripts) on 
time series data. The TSMODEL procedure analyzes timestamped transactional data with respect to time 
and accumulates the data into a time series format. 
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The TSMODEL procedure forms time series from timestamped, transactional input data and writes the 
accumulated time series variables to an output table. Time series are delineated by distinct values of the 
variables that are specified in the BY statement. 

Timestamped transactional data are not usually recorded at a fixed interval. Because analysts often want 
to use time series analysis techniques that require fixed-time intervals, the transactional data must be 
transformed into a fixed-interval time series, such as daily, weekly, or monthly. 

The TSMODEL procedure forms time series vectors from timestamped data and then provides these 
vectors as array variables for subsequent processing by program statements (a script). The script is 
processed independently for each BY group. The syntax of the TSMODEL procedure is the same as that 
of the TIMEDATA procedure, which is similar to the SAS DATA step for time series data. The SAS DATA 
step processes data row by row, whereas the TSMODEL procedure processes time series vectors 
(columns) for the BY groups. 

For more information about the TSMODEL procedure, see SAS Visual Forecasting 8.2: Forecasting 
Procedures. 

SCRIPTS 

Scripts consist of actions, which perform the desired analysis on each time series. For more information 
about scripts, see the FCMP procedure in Base SAS® Procedures Guide. 

PACKAGES 

Packages contain computational services that can be used in your script. A package is a set of related 
specialized objects and functions that tackles a unique facet of the time series analysis problem. You can 
use specialized objects and functions to write custom SAS code in order to gain access both to cutting-
edge data analysis tools and to utilities that are designed to significantly speed up code development and 
improve the quality of the resulting code. The following packages are available for the TSMODEL 
procedure: 

SFS (simple forecast service)—Tools for automatic forecasting of time series with a simple-to-
use interface; these tools use only exponential smoothing (ESM) and ARIMA models 

ATSM (automatic time series modeling and forecasting) —Tools for automatic modeling and 
forecasting of time series by using various model families such as exponential smoothing 
(ESM), ARIMA, intermittent demand (IDM), and unobserved component (UCM) models 

TSA (time series analysis) —Tools for efficient statistical analysis of time series 
(transformations, decompositions, statistical tests for intermittency, seasonality, 
stationarity, forecast bias, and so on) 

TFA (time-frequency analysis) —Tools for efficient analysis of time series in both time domain 
and frequency domain 

 TSM (time series modeling) —Tools for efficient time series modeling and forecasting 

SSA (singular spectrum analysis) —Tools for decomposing a time series into additive 
components and categorizing those components based on the magnitudes of their 
contributions 

MTF (time series motif discovery) —Tools for the discovery of frequent patterns or repeated 
subsequences in time series 

UTL (utility) —Tools for performing basic statistical computations on pairs of actual and 
predicted time series 

Some of these packages were developed as cloud-based analogues of traditional SAS products and 
procedures. For example, the ATSM, SFS, and TSM packages carry the features available in SAS® 
Forecast Server. Similarly, the TSA, TFA, and SSA packages carry various features that are available in 
SAS/ETS®. For more information about these packages, see SAS Visual Forecasting 8.2: Time Series 
Packages. 
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ACTIONS 

Actions are executed on the computing server and can be invoked by using a variety of languages: SAS, 
Python, Lua, and R. For more information about actions, see SAS Visual Forecasting 8.2: Programming 
Guide. 

EXAMPLES 

This section provides two examples that demonstrate the capabilities of the TSMODEL procedure. The 
first example illustrates how you can use the procedure to perform automatic time series forecasting. The 
second example shows the procedure’s ability to perform fast time series analysis on big data. 

AUTOMATIC TIME SERIES FORECASTING 

This example demonstrates how to use the TSMODEL procedure to perform automatic forecast model 
generation, automatic variable and event selection, and automatic model selection. This example uses 
the objects in the ATSM package to automatically model the Sashelp.PriceData data set, which provides 
simulated monthly sales data that are hierarchically organized by region, line, and product. The 
Sashelp.PriceData data set contains 1,020 observations, which are divided into 17 BY groups. Although 
this data set is relatively small, the sample code provided in this section can also readily handle time 
series data sets that contain millions of BY groups. 

The first step of the analysis is to appropriately configure the DIAGSPEC and DIAGNOSE objects. 
Combined, the DIAGSPEC and DIAGNOSE objects are the cloud-based analogue of the HPFDIAGNOSE 
procedure from SAS® High-Performance Forecasting. You use the DIAGSPEC object to specify model 
diagnostic control options for the DIAGNOSE object. For example, you can specify which model families 
should be diagnosed (ESM, ARIMA, IDM, and UCM). After that, the FORENG object is used to produce 
the analysis results, which are based on the model diagnostic choices that the DIAGNOSE object makes. 
Various results are then collected from the FORENG object and saved into output tables. The program 
comments provide a detailed description of these execution steps (for clarity, all SAS keywords, 
commands, package names, object method names, and object method parameters that are immutable 
are presented in upper case letters in the program). 

/* 

 * A connection to the CAS server (that is, a session) is established, and  

 * a CAS library called ‘mycas’ is created. The ‘mycas’ library enables you  

 * to transfer data sets to the CAS server where the distributed time  

 * series analysis is performed. 

 */ 

 

CAS mycas; 

LIBNAME mycas CAS SESSREF = mycas; 

 

/* 

 * A DATA step transfers the Sashelp.PriceData into the CAS ‘mycas’  

 * library. 

 */ 

 

DATA mycas.pricedata; 

  SET sashelp.pricedata; 

RUN; 

 

/* 

 * The PROC TSMODEL statement specifies the input data set 

 * (‘mycas.pricedata’) and a variety of output tables (‘mycas.priceFor’, 

 * ‘mycas.priceEst’, and so on). It also specifies the output table where 

 * the execution logs are to be stored (‘mycas.priceLog’). 

 */ 
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PROC TSMODEL DATA=mycas.pricedata OUTLOG=mycas.priceLog 

  OUTOBJ=(priceFor=mycas.priceFor priceEst=mycas.priceEst 

  modInfo=mycas.modInfo priceSelect=mycas.priceSelect); 

 

  /* 

   * The ID statement specifies the variable ‘date’ as the time index  

   * variable, and the INTERVAL= option indicates that the data are  

   * monthly. 

   */ 

 

  ID date INTERVAL = MONTH; 

 

  /* 

   * The BY statement specifies that each unique combination of the data  

   * set variables ‘regionname’, ‘productline’, and ‘productname’  

   * correspond to a unique time series BY group. BY groups are processed 

   * independently. 

   */ 

 

  BY regionname productline productname; 

 

  /* 

   * The first VAR statement specifies the input data set variable ‘sale’.  

   * This is the dependent series (also called the Y series) to be modeled.  

   * The ACC=SUM option requests a total sum accumulation for the ‘sale’  

   * variable. 

   */ 

 

  VAR sale / ACC = SUM; 

 

  /* 

   * The second VAR statement specifies the input data set variable  

   * ‘price’. This is an independent series (also called an X series). The  

   * ACC=AVG option requests an average value accumulation for the ‘price’  

   * variable. 

   */ 

 

  VAR price / ACC = AVG; 

 

  /* 

   * The REQUIRE statement specifies the ATSM package, which is needed for  

   * the analysis. 

   */ 

 

  REQUIRE ATSM; 

 

  /* 

   * The PRINT OUTLOG statement causes the contents of the OUTLOG= table to  

   * be automatically displayed on the client. Printing this table is  

   * useful if you need to debug your program. This statement is valid only  

   * when the OUTLOG= option is specified. 

   */ 

 

  PRINT OUTLOG; 

 

  /* 
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   * The program statements between the SUBMIT and ENDSUBMIT statements use  

   * the ATSM package objects to perform the actual analysis on the CAS  

   * server. 

   */ 

 

  SUBMIT; 

 

    /* 

     * The first part of the program creates a variable ‘dataFrame’, which  

     * is a TSDF object that contains the necessary analysis variables. The  

     * variable roles (target or input) and the default season length that  

     * is associated with the data frame are also assigned in this step. In  

     * addition, the predefined events ‘Easter’ and ‘Christmas’ are added  

     * to the data frame. When an event is added to the data frame, a  

     * corresponding dummy variable is automatically created for use during  

     * the event selection process. 

     */ 

 

    DECLARE OBJECT eventDB(EVENT); 

    rc = eventDB.Initialize(); 

 

    DECLARE OBJECT dataFrame(TSDF); 

    rc = dataFrame.INITIALIZE(); 

    rc = dataFrame.ADDY(sale); 

    rc = dataFrame.ADDX(price); 

    rc = dataFrame.SETOPTION('SEASONALITY', 12); 

    rc = dataFrame.ADDEVENT(eventDB, 'CHRISTMAS', 'REQUIRED', 'YES'); 

    rc = dataFrame.ADDEVENT(eventDB, 'EASTER', 'REQUIRED', 'NO'); 

 

    /* 

     * The second part of the program configures the model identification  

     * process in two steps. First a DIAGSPEC object, ‘priceDiagSpec’, is  

     * configured. Next, it is used to initialize a DIAGNOSE object,  

     * ‘priceDiag’. The DIAGSPEC object in this example uses the default  

     * settings, which amounts to selecting the best-fitting model from two  

     * model families: exponential smoothing models (ESMs) and ARIMAX  

     * models. As a result of setting the HOLDOUT parameter for the  

     * DIAGNOSE object to 12, the best-fitting model is chosen within each  

     * family on the basis of the root mean square error (RMSE) criterion  

     * (the default CRITERION choice) in the holdout region (the last 12  

     * observations). 

     */ 

 

    DECLARE OBJECT priceDiagSpec(DIAGSPEC); 

    rc = priceDiagSpec.OPEN(); 

    rc = priceDiagSpec.SETESM(); 

    rc = priceDiagSpec.SETARIMAX(); 

    rc = priceDiagSpec.CLOSE(); 
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    DECLARE OBJECT priceDiag(DIAGNOSE); 

    rc = priceDiag.INITIALIZE(dataFrame); 

    rc = priceDiag.SETSPEC(priceDiagSpec); 

    rc = priceDiag.SETOPTION('HOLDOUT', 12); 

    rc = priceDiag.RUN(); 

 

    /* 

     * The third part of the program uses a FORENG object, ‘priceEng’, to  

     * select the final model based on the DIAGNOSE object results and to  

     * produce forecasts. This FORENG object is initialized by using the  

     * ‘priceDiag’ object that is created in the second part of the  

     * program. 

     */ 

 

    DECLARE OBJECT priceEng(FORENG); 

    rc = priceEng.INITIALIZE(priceDiag); 

    rc = priceEng.SETOPTION('LEAD', 12); 

    rc = priceEng.RUN(); 

 

    /* 

     * The following IF statement requests that the script execution stop  

     * if the FORENG object fails to produce a forecast. You should always  

     * check the return code of every function and object method call.  

     * Negative return codes generally indicate that an error has occurred.  

     * The STOP statement ceases the execution of the script for the  

     * current BY group. 

     */ 

 

    IF (rc < 0) then STOP; 

 

    /* 

     * The last part of the program uses collector objects of appropriate  

     * type to create various output tables. These output tables carry  

     * parameter estimates, model forecast information, and model selection 

     * information for all of the BY groups. 

     */ 

 

    DECLARE OBJECT modInfo(OUTMODELINFO); 

    rc = modInfo.COLLECT(priceEng); 

 

    DECLARE OBJECT priceFor(OUTFOR); 

    rc = priceFor.COLLECT(priceEng); 

 

    DECLARE OBJECT priceEst(OUTEST); 

    rc = priceEst.COLLECT(priceEng); 

 

    DECLARE OBJECT priceSelect(OUTSELECT); 

    rc = priceSelect.COLLECT(priceEng); 

 

  ENDSUBMIT; 

RUN; 
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The TSMODEL procedure prints a summary of the time series processing that is performed, as shown in 
Output 1. This summary includes the number of BY groups that are processed, the total processing time, 
and some information about the accumulation process. 

 
Output 1. Summary of Time Series Processing for Sashelp.PriceData 

Shown next are the time series analysis results for the first BY group in the Sashelp.PriceData data set. 
Output 2 shows the results of the final model selection step, which were collected into the 
mycas.priceSelect output table by the OUTSELECT collector object and are printed by the following 
PRINT procedure step: 

PROC PRINT DATA=mycas.priceSelect NOOBS; 

  VAR _MODEL_ _SELECTED_ _LABEL_; 

  WHERE regionname='Region1' & productline='Line1' & productname='Product1'; 

RUN; 

 

 
Output 2: Choice between the ESM and ARIMAX Models 

Output 3 shows the parameter estimates of the selected ARIMAX model, which were collected into the 
mycas.priceEst output table by the OUTEST collector object and are printed by the following PRINT 
procedure step: 

 
PROC PRINT DATA=mycas.priceEst NOOBS; 

  VAR _COMPONENT_ _EST_ _STDERR_ _TVALUE_ _PVALUE_; 

  WHERE regionname='Region1' & productline='Line1' & productname='Product1'; 

RUN; 
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Output 3. Parameter Estimates for the Selected ARIMAX Model 

Output 4 shows the forecasts according to the selected ARIMAX model, which were collected into the 
mycas.priceFor table by the OUTFOR collector object and are printed by the following PRINT procedure 
step. The ‘predict’ variable corresponds to the forecast series, ‘std’ corresponds to the standard error, and 
‘upper’ and ‘lower’ correspond to the bounds of the confidence interval: 

 
PROC PRINT DATA=mycas.priceFor NOOBS; 

  FORMAT date DATE.; 

  VAR date predict std upper lower; 

  WHERE regionname='Region1' & productline='Line1' & productname='Product1'  

        & YEAR(date)>=2003; 

RUN; 

 

 
Output 4: Forecasts Based on the Selected ARIMAX Model 

LIGHTNING-FAST BIG DATA ANALYSIS 

This example demonstrates the TSMODEL procedure’s ability to perform fast time series analysis on big 
data. The objects in the ATSM package are used to perform automatic forecasts of product demand on a 
large industrial data set. The input data file, 89 GB in size, contains 375.11 million observations, which 
are divided into 1.56 million BY groups in a hierarchy of store location, product, and customer. On 
average, each BY group contains 4.3 years of weekly historical data that are available for analysis. The 
data set offers a total of 15 independent variables as input to the potential ARIMA models that are 
automatically generated during the automatic model diagnostics stage. This exercise was conducted 
using 144 worker nodes and 32 BY-group threads per node. Worker nodes contain Intel Xeon processors 
with 32 cores running at 2.7 GHz and 252 GB of RAM. 

The first step of the analysis is to appropriately configure the DIAGSPEC and DIAGNOSE objects. After 
that, the FORENG object is used to produce the analysis results that are based on the model diagnostic 
choices that the DIAGNOSE object made. Various results are then collected from the FORENG object 
and saved into output tables. Comments in the program provide a detailed description of these execution 
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steps. For clarity, all SAS keywords, commands, package names, object method names, and object 
method parameters that are immutable are presented in upper case letters in the program: 

/* 

 * A connection to the CAS server (a session) is established and a CAS  

 * library called ‘mycas’ is created. The ‘mycas’ library enables you  

 * to transfer data sets to the CAS server where the distributed time  

 * series analysis is performed. 

 */ 

 

CAS mycas; 

LIBNAME mycas CAS SESSREF = mycas; 

 

/* 

 * The CAS procedure loads the 89 GB input file called ‘bigdata.sashdat’  

 * into the CAS ‘mycas’ library as the data set ‘mycas.bigdata’. The 375.11  

 * million observations that make up the 1.56 million BY groups are  

 * randomly distributed across the 144 worker nodes. 

 */ 

 

PROC CAS; 

  TABLE.LOADTABLE / 

    CASOUT={CASLIB="CASUSERHDFS(&CASUSER)",NAME="bigdata"} 

    CASLIB="BigDataCASLib" 

    PATH="bigdata.sashdat"; 

  RUN; 

QUIT; 

 

/* 

 * The PROC TSMODEL statement specifies the input data set (‘mycas.bigdata)  

 * and a variety of output tables (‘mycas.outFor’, ‘mycas.outEst’, and so  

 * on). It also specifies the output table where the execution logs will be  

 * stored (‘mycas.outLog’). 

 */ 

 

PROC TSMODEL DATA=mycas.bigdata OUTLOG=mycas.outLog 

  OUTOBJ=(outset = mycas.outEst 

          outfor = mycas.outFor 

          outstat = mycas.outStat 

          outfmsg = mycas.outFmsg 

          outselect = mycas.outSelect 

          outmodelinfo = mycas.outModelinfo 

          ); 

 

  /* 

   * The ID statement specifies the variable ‘date’ as the time index  

   * variable, and the INTERVAL= option indicates that the data are weekly. 

   */ 

 

  ID date INTERVAL = WEEK; 

 

  /* 

   * The BY statement specifies that each unique combination of the data  

   * set variables ‘location, ‘product’, and ‘customer’ correspond to a  

   * unique time series BY group. BY groups are processed independently. 

   */ 
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  BY location product customer; 

 

  /* 

   * The first VAR statement specifies the input data set variable  

   * ‘demand_qty’. This is the dependent series (Y series) to be modeled 

   * The ACC=SUM option requests a total sum accumulation for this  

   * variable. 

   */ 

 

  VAR demand_qty / ACC = TOTAL; 

 

  /* 

   * The 15 subsequent VAR statements specify a total of 15 data set  

   * variables, ‘ind1’ through ‘ind15’. These are the independent series (X  

   * series). The ACC=AVERAGE option requests an average value accumulation  

   * for the independent variables. Alternatively, you can use a single VAR  

     * statement as follows: 

   *                  VAR ind1-ind15 / ACC = AVERAGE; 

   */ 

 

  VAR ind1 / ACC = AVERAGE; 

  VAR ind2 / ACC = AVERAGE; 

  VAR ind3 / ACC = AVERAGE; 

  VAR ind4 / ACC = AVERAGE; 

  VAR ind5 / ACC = AVERAGE; 

  VAR ind6 / ACC = AVERAGE; 

  VAR ind7 / ACC = AVERAGE; 

  VAR ind8 / ACC = AVERAGE; 

  VAR ind9 / ACC = AVERAGE; 

  VAR ind10 / ACC = AVERAGE; 

  VAR ind11 / ACC = AVERAGE; 

  VAR ind12 / ACC = AVERAGE; 

  VAR ind13 / ACC = AVERAGE; 

  VAR ind14 / ACC = AVERAGE; 

  VAR ind15 / ACC = AVERAGE; 

 

  /* 

   * The REQUIRE statement specifies the ATSM package, which is needed for  

   * the analysis. 

   */ 

 

  REQUIRE ATSM; 

 

  /* 

   * The PRINT OUTLOG statement causes the contents of the OUTLOG= table to  

   * be automatically displayed on the client. Printing this table is  

   * useful if you need to debug your program. This statement is valid only  

   * when the OUTLOG= option is specified. 

   */ 

 

  PRINT OUTLOG; 

 

  /* 

   * The program statements between the SUBMIT and ENDSUBMIT statements use  

   * the ATSM package objects to perform the actual analysis on the CAS  

   * server. 

   */ 
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  SUBMIT; 

 

    /* 

     * The first part of the program creates the variable ‘dataFrame’,  

     * which is a TSDF object that contains the necessary analysis   

     * variables. The variable roles (target or input) are assigned in this  

     * step. 

     */ 

 

    DECLARE OBJECT dataFrame(TSDF); 

    rc = dataFrame.INITIALIZE(); 

    rc = dataFrame.ADDY(demand_qty); 

    rc = dataFrame.ADDX(ind1); 

    rc = dataFrame.ADDX(ind2); 

    rc = dataFrame.ADDX(ind3); 

    rc = dataFrame.ADDX(ind4); 

    rc = dataFrame.ADDX(ind5); 

    rc = dataFrame.ADDX(ind6); 

    rc = dataFrame.ADDX(ind7); 

    rc = dataFrame.ADDX(ind8); 

    rc = dataFrame.ADDX(ind9); 

    rc = dataFrame.ADDX(ind10); 

    rc = dataFrame.ADDX(ind11); 

    rc = dataFrame.ADDX(ind12); 

    rc = dataFrame.ADDX(ind13); 

    rc = dataFrame.ADDX(ind14); 

    rc = dataFrame.ADDX(ind15); 

 

    /* 

     * The second part of the program configures the model identification  

     * process in two steps. First a DIAGSPEC object, ‘diagSpec’, is  

     * configured. Then it is used to initialize a DIAGNOSE object,  

     * ‘diagnose’. The DIAGSPEC object in this example specifies the  

     * selection of the best fitting model from among three model families:  

     * intermittent demand (IDM), exponential smoothing (ESM), and ARIMAX  

     * models. 

     */ 

 

    DECLARE OBJECT diagSpec(DIAGSPEC); 

    rc = diagSpec.OPEN(); 

    rc = diagSpec.SETIDM('INTERMITTENT', 2); 

    rc = diagSpec.SETESM('METHOD', 'BEST'); 

    rc = diagSpec.SETARIMAX('IDENTIFY', 'BOTH'); 

    rc = diagSpec.CLOSE(); 

 

    DECLARE OBJECT diagnose(DIAGNOSE); 

    rc = diagnose.INITIALIZE(dataFrame); 

    rc = diagnose.SETSPEC(diagSpec); 

    rc = diagnose.RUN(); 

 

    /* 

     * The third part of the program uses a FORENG object, ‘forecast’, to  

     * select the final model based on the DIAGNOSE object results and to  

     * produce forecasts. This FORENG object is initialized by using the  

     * ‘diagnose’ object that is created in the second part of the program. 

     */ 
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    DECLARE OBJECT forecast(FORENG); 

    rc = forecast.INITIALIZE(diagnose); 

    rc = forecast.SETOPTION('LEAD',12); 

    rc = forecast.SETOPTION('CRITERION','RMSE'); 

    rc = forecast.SETOPTION('HOLDOUT',2); 

    rc = forecast.RUN(); 

 

    /* 

     * The following IF statement requests that the script execution stop  

     * if the FORENG object fails to produce a forecast. You should always  

     * check the return code of every function and object method call.  

     * Negative return codes generally indicate that an error has occurred.  

     * The STOP statement ceases the execution of the script for the  

     * current BY group. 

     */ 

 

    IF (rc < 0) then STOP; 

 

    /* 

     * The last part of the program uses collector objects of appropriate  

     * type to create various output tables. These output tables carry  

     * parameter estimates, model forecast information, and model selection  

     * information for all the BY groups. 

     */ 

 

    DECLARE OBJECT outest(OUTEST); 

    rc = outest.COLLECT(forecast); 

 

    DECLARE OBJECT outfor(OUTFOR); 

    rc = outfor.COLLECT(forecast); 

 

    DECLARE OBJECT outstat(OUTSTAT); 

    rc = outstat.COLLECT(forecast); 

 

    DECLARE OBJECT outfmsg(OUTFMSG); 

    rc = outfmsg.COLLECT(forecast); 

 

    DECLARE OBJECT outselect(OUTSELECT); 

    rc = outselect.COLLECT(forecast); 

 

    DECLARE OBJECT outmodelinfo(OUTMODELINFO); 

    rc = outmodelinfo.COLLECT(forecast); 

 

  ENDSUBMIT; 

RUN; 

 

The TSMODEL procedure prints a summary of the time series processing that is performed, as shown in 
Output 5. 
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Output 5: Summary of Time Series Processing for the Large Industrial Data Set 

The last row of the table in Output 5 reports that PROC TSMODEL required only 59.91 seconds to 
process all of the 1.56 million BY groups. This elapsed time is the sum of two quantities: 49.51 seconds 
(reported in the fourth row), which were spent reading and shuffling the input data set (see the section 
“Parallel Read” for a detailed description of this process), and the remaining 10.39 seconds, which were 
spent performing the actual automatic forecasts for all 1.56 million BY groups. These results attest to 
PROC TSMODEL’s scalability and efficiency when it comes to solving time series forecasting problems 
for big data. 

CONCLUSION 

The TSMODEL procedure enables both scalable and optimized time series analysis in a cloud 
environment. PROC TSMODEL comes equipped with a generic scripting environment, which enables you 
to develop custom time series analysis algorithms and prepare your data for analysis (clean, transform, 
preprocess, and postprocess), all within the same script. This contributes to reduced data movement 
(because the data remains in the same contiguous memory throughout the analysis) and also optimizes 
code development. PROC TSMODEL also comes equipped with various specialized time series analysis 
packages that provide advanced support for time series analysis (in the time domain or in the frequency 
domain), time series decomposition, time series modeling, signal analysis and anomaly detection (for 
IoT), and temporal data mining. Because of these features, what can be accomplished by PROC 
TSMODEL is limited only by your imagination. As is illustrated by the second example, PROC 
TSMODEL’s distributed nature (BY groups are processed in parallel), efficiency and scalability (disk IO is 
minimized, all data operations are performed in memory, allocated memory is efficiently reused across BY 
groups), and optimized time series modeling and forecasting capabilities enables big data forecasting 
problems to be solved with unprecedented speeds. For example, it is estimated that the run time of the 
analysis shown in the second example would increase from 1 minute to 76 hours if executed on a single 
processor. In summary, TSMODEL can efficiently perform time series analysis of big data in close to real 
time. 
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