
1 

Paper SAS2023-2018 

Looking Beyond the Model with SAS® Simulation Studio:  
Data Input, Collection, and Analysis 

Ed Hughes, SAS Institute Inc. 
 

ABSTRACT  

Discrete-event simulation as a methodology is often inextricably intertwined with many other forms of 
analytics. Source data often must be repaired or processed before being used (indirectly or directly) to 
characterize variation in a simulation model. Collection of simulated data needs to coordinate with and 
support the evaluation of performance metrics in the model. Or it might be necessary to integrate other 
analytics into a simulation model to capture specific complexities in the real-world system that you are 
modeling.  

SAS® Simulation Studio is a component of SAS/OR® software that provides an interactive, graphical 
environment for building, running, and analyzing discrete-event simulation models. In a broader sense, it 
is also an integral part of the SAS® analytic platform. This paper illustrates how SAS Simulation Studio 
enables you to tackle each of these discrete-event simulation challenges. You have full control over the 
use of input data and the creation of simulated data. Strong experimental design capabilities mean you 
can simulate for all needed scenarios. In addition, you can embed any SAS analytic program—
optimization, data mining, or otherwise—directly into the execution of your simulation model. 

INTRODUCTION  

Much has been said and written about the intuitive interface and strong modeling capabilities of SAS 
Simulation Studio. Several recent SAS® Global Forum papers (including Bélanger, Couture, and Neusy 
2011; Hevener, Flinchum, and Lada 2013; DeRienzo et al. 2014; and Hughes et al. 2016) have explored 
the advantages and the practical benefits of modeling with SAS Simulation Studio. However, strength in 
modeling is just one aspect of SAS Simulation Studio that sets it apart from other discrete-event 
simulation software. 

This paper focuses on how simulation models need to work effectively within their surroundings, because 
on a practical basis, simulation modeling is never done in isolation. It’s essential that your simulation 
modeling work effectively coordinates with some equally significant elements of the data and analytic 
environments in which simulation models are created and used. These include descriptive analytics, 
predictive analytics, and experimental design.  

The paper begins by briefly reviewing key features and capabilities of SAS Simulation Studio. The 
sections that follow show how SAS Simulation Studio helps you supply input data to a simulation model, 
fit probability distributions to input data, and produce simulated status and performance data for the 
system that you are simulating. These sections also describe SAS Simulation Studio’s capabilities in 
experimental design, which help ensure that you are running your simulation model for a useful set of 
scenarios. Finally, the paper discusses how SAS Simulation Studio enables you to integrate other forms 
of analytics directly into your simulation model. The purpose of this integration could be to provide or 
evaluate input data before the simulation model runs, to analyze output data produced by the simulation 
model, or to take an active role in the internal decision-making of the simulation model as it runs. 

Hands-on experience with discrete-event simulation in general and SAS Simulation Studio specifically is 
helpful but not necessary for readers of this paper. A general familiarity is sufficient. For more detailed 
information about SAS Simulation Studio, see the “References” section. 

  



2 

SAS SIMULATION STUDIO: KEY FEATURES 

SAS Simulation Studio is a Java-based application in SAS/OR that provides an interactive graphical 
environment for building, running, and analyzing discrete-event simulation models. It was added to 
SAS/OR in July 2009, and its capabilities have expanded and improved at a steady pace since then. The 
graphical user interface requires no programming and provides all the tools needed to build, execute, and 
analyze discrete-event simulation models. An accompanying programmatic interface enables you to run 
simulation models in batch mode. SAS Simulation Studio is supported on Windows and Linux clients. 
Windows support began with the first release, and Linux support was added in September 2017 (SAS 
Simulation Studio 14.3).  

GRAPHICAL USER INTERFACE ELEMENTS 

The SAS Simulation Studio graphical user interface, shown in Figure 1, uses a hierarchical structure to 
assist in organizing your work.  

 
Figure 1. SAS Simulation Studio Graphical User Interface 

At the top level of this hierarchy is the “project.” A project is a collection of models and experiments that 
correspond to the system being studied. Each Model window contains one simulation model. Each 
Experiment window coordinates one or multiple runs of a simulation model in a corresponding Model 
window; you can also use an Experiment window to parameterize and configure a model. Within a 
project, you can create as many Model windows and as many Experiment windows as you need. One 
Experiment window can correspond to one or several Model windows, or vice versa. 

Building Models 

A discrete-event simulation model typically depicts the movement of entities (individuals or objects) 
between blocks that represent components of a workflow-oriented system. Examples include customers 
in a store, patients in a hospital, and components and finished goods in an inventory system.  



3 

To build a simulation model in SAS Simulation Studio, you drag blocks from one of five block templates at 
the left edge of the interface (the Standard template is shown) and drop them in a Model window. You 
connect the blocks in a model by creating links (again, by dragging and dropping) between ports on the 
blocks. As shown in Figure 1, links between blue ports on the top and bottom edges of blocks carry data 
and information; links between red ports on the left and right sides of blocks carry entities. Examples of 
information flows include inputs such as the service time for a Server block or the interarrival time (time 
between successive entity arrivals) for an Entity Generator block. Output performance metrics include the 
current length and the wait time for a Queue block. 

Compound blocks and submodels are hierarchical structures that you can add to models. You can group 
individual blocks into compound blocks to, for example, denote major functional areas or conceal detail 
(by collapsing compound blocks). You can create multiple independent copies of a compound block and 
edit them individually. You can also convert a compound block into a submodel, so that any change to its 
definition is automatically reflected in every copy you have created.  

Running Models 

You can run a model by using the control menus and buttons at the upper left corner of the SAS 
Simulation Studio interface (Figure 1). To run a model, first select an Experiment window that has at least 
one design point in it. For each new project, SAS Simulation Studio creates one Model window and one 
Experiment window. The Experiment window includes columns that denote the start time, the end time, 
and the planned number of replicates.  

In an Experiment window, you must include the start time, end time, and number of replications to run for 
a model. If you have created factors to define scenarios for your model and responses to measure its 
performance, you can include them in a corresponding Experiment window to investigate the effects of 
varying factor values on responses. This topic is discussed further in the “Experimental Design” section of 
the paper. 

For more information, see Chapter 4, “Simulation Models,” in SAS Simulation Studio 14.3: User’s Guide 
(SAS Institute Inc. 2017b). 

Modeling Resources 

Resources (with limited or unlimited capacity) are special objects that provide services of some sort to 
entities (SAS Institute Inc. 2017b). To increase the realism and depth of detail in models and to maintain 
model clarity, SAS Simulation Studio enables you to create two types of resources. Stationary resources 
are blocks (for example, a Queue block or a Server block) that entities visit and occupy temporarily during 
the run of a simulation model. Mobile resources are a special class of entity—resource entities—that can 
move between blocks in a simulation model and can be treated in largely the same way as any other 
entity. An entity seizes and holds a resource entity to indicate that it is occupying the corresponding 
resource. 

Resource entities provide you with many modeling advantages. Although an entity can occupy only one 
stationary resource block, it can seize and hold an unlimited number of resource entities, and it can 
continue to do so as it travels through a model. Resource entities can be seized or released at any point 
in a model. The availability and operational status of a resource entity can change during the run of a 
model, according to a schedule or randomly. In short, adding resource entities to a model significantly 
increases your ability to accurately and transparently reflect the use and impact of resources in the 
system you are modeling. 

For more information, see Chapter 10, “Resources,” in SAS Simulation Studio 14.3: User’s Guide (SAS 
Institute Inc. 2017b). 

WORKING WITH DATA 

The chief purpose of discrete-event simulation modeling (aside from providing valuable insights, as 
modeling invariably does) is to produce data on the performance of the system that you are simulating. 
To ensure that your simulation model realistically depicts the system you want to model, it must include 
descriptive information that is relevant to the system. Often this takes the form of direct or indirect input 



4 

data. You might also use predictive data as input in order to, for example, characterize demand in a future 
period that you want to simulate.  

Thus, both input data and output data are vitally important in simulation modeling. SAS Simulation Studio 
provides you with many ways to supply input data to and write output data from simulation models, and 
enables you to control when, where, and how input data is used and output data is created. 

USING INPUT DATA 

Input data plays a critical role in simulation modeling. Input data that describes the structure, internal 
logic, capacities, or other important characteristics of the system to be simulated is the primary means of 
ensuring that these elements are accurately depicted in a simulation model. Sometimes this data is drawn 
from direct observation of a system or an analogue. At other times, the input data might be extrapolated 
from observed data or based on expert conjecture; this is more likely to occur when a hypothetical system 
is simulated. 

Data Input Methods 

Regardless of the source, SAS Simulation Studio provides you with multiple ways in which to supply input 
data to a simulation model. The Numeric Source block and the Text Source block read the variable that 
you designate (numeric or textual, respectively) from a SAS data set or JMP® table. Each time an entity 
arrives at the block, it advances to the next observation in the data source to read the value of the 
designated variable. The Observation Source block expands on this mode of operation and reads an 
entire observation (or row) from the data source. The Observation Source block can be especially useful 
if you use input data to assign attributes to entities, as shown in Figure 2. 

 
Figure 2. Two Methods of Assigning Attributes to Entities 



5 

The Observation Source block enables you to assign numerous attributes in one step by connecting a 
Modifier block to a single Observation Source block instead of multiple Numeric Source blocks and Text 
Source blocks. In both models in Figure 2, a Modifier block assigns five attributes to each entity; in 
Model0, three Numeric Source blocks and two Text Source blocks each read one variable from the same 
input SAS data set and pass the variable’s value to the Modifier block as an independent value. 

But in Model1, a single Observation Source block reads an entire observation (which contains all five 
variables) from the same SAS data set and passes the observation to the Modifier block. When a Modifier 
block accepts an observation as input, you can specify whether to use all or part of the observation to 
assign attributes, as shown in Figure 3. In this case the Modifier block accepts the entire observation and 
assigns all five attributes accordingly. 
 

 
Figure 3. Modifier Block Dialog Box 

Another block enables you to move beyond reading a single variable value or a single observation from 
an input data source. The Dataset Holder block accepts an entire SAS data set or JMP table as input and 
makes it available for repeated query throughout the run of your simulation model. You can query a 
selected row or cell (defined by a unique combination of row and column) from the data source, and you 
can repeat any query as many times as needed.  

Figure 4 shows a model of a machining center that processes five types of parts at four different stations. 
Parts of each type visit the stations in a distinct sequence. For example, type 1 parts visit stations 3, 2, 4, 
and 1, but type 2 parts visit stations 1, 2, 4, 3, and 2. A SAS data set specifies these type-specific 
sequences. An Observation Source block (labeled “Read Dataset”) reads in the entire data set and 
passes it to a Dataset Holder block. Each observation of the data set contains the machining sequence 
for one type of part. The entire routing SAS data set is displayed in the Table block at the lower left corner 
of the model. 

In this model, an entity that represents a part repeatedly queries the row of the Dataset Holder block that 
corresponds to its type to determine the next station to visit. In each query, the entity reads a single cell 
from the stored SAS data set; the InRow value that it sends to the Dataset Holder block remains the 
same, but the InColumn value increases by 1 with each new query. Collectively, the InRow and InColumn 
values direct the Dataset Holder block to retrieve the value in the data cell that specifies the next station 
to be visited by the part. 



6 

This method of storing the routing data for repeated query by all part entities is far more economical than 
the alternative—storing the routing information for each part as attribute values, which would result in 
potentially massive duplication of data. 

 
Figure 4. Machining Center Model, Featuring a Dataset Holder Block 

Fitting a Distribution 

The models in the previous section make direct use of input data, but in other situations it’s advisable to 
use input data more indirectly. For example, suppose you are modeling a retail store and your input data 
describes interarrival times (times between successive arrivals) of customers. If you sample directly from 
this data, then you can simulate only for the period—an afternoon, a day, and so on—that the data 
covers. In contrast, if you choose to fit a probability distribution to the data and then sample from the 
distribution in your model, the model will reflect the variation in the input data and you can simulate for as 
much time as needed.  

SAS Simulation Studio supports the use of both SAS and JMP to fit distributions to input data. Distribution 
fitting with SAS uses SAS programming. JMP distribution fitting uses the JMP menu-based interface and 
is integrated into the dialog box for the Numeric Source block. 

Several SAS procedures can fit a probability distribution to input data. One such procedure is PROC 
SEVERITY in SAS/ETS® software. This program invokes PROC SEVERITY: 
   proc severity data=mydata.FitDataEx crit=aicc;  

   loss bvar; 

        dist _predefined_; 

   run; 

Note that if you use a SAS procedure to fit a distribution, you must specify the resulting distribution 
manually in SAS Simulation Studio, by using the Theoretical button in the Numeric Data Source Block 
Properties dialog box. 

In the model shown in Figure 5, a distribution is being fit to input data that describes the service times for 
entities in a Server block. In the dialog box for the connected Numeric Source block, the Fitted option is 



7 

selected. The File Path field indicates the path to the input data (in this case, a plain text file), and the 
Column Name field specifies that a distribution should be fitted to the variable named bvar. 

 
Figure 5. Simulation Model and Numeric Source Block Properties Dialog Box 

Clicking the Fit Distribution (JMP) button sends this information to JMP and uses the JMP Fit All option 
to fit distributions to the selected variable. JMP displays the Distribution for Simulation Studio window as 
shown in Figure 6. (The top and bottom halves of the window are split in this figure.) 

     
Figure 6. JMP Distribution for Simulation Studio Window 



8 

After selecting a distribution, click the Commit to Simulation Studio button to send the distribution and 
its calculated parameters back to SAS Simulation Studio for use in the simulation model. The selected 
Weibull distribution appears in the Numeric Source block properties dialog box in Figure 7. 

 
Figure 7. Distribution Fitted with JMP and Transferred to SAS Simulation Studio 

COLLECTING AND SAVING OUTPUT DATA 

The primary goal of any discrete-event simulation model is the creation of simulated data regarding the 
performance and status of the system that is being studied. SAS Simulation Studio provides many means 
of creating and saving both summarized and detailed, time-indexed system data. Controls that are related 
to output data are available both for individual blocks and at the model-wide level. You can save periodic 
data at any point during the run of a simulation model, and you can also save data on the entire run after 
it concludes. 

Data-Collecting Blocks 

SAS Simulation Studio includes nine types of blocks that can collect and store data: the Bucket, Probe, 
Number Holder, String Holder, Dataset Writer, Queue Stats Collector, Resource Stats Collector, Server 
Stats Collector, and Stats Collector blocks. This section discusses a few of these blocks. For more 
extensive documentation of the data-collecting blocks and their capabilities, see SAS Simulation Studio 
14.3: User’s Guide (SAS Institute Inc. 2017b). 

Figure 8 shows a model of an incoming call center for which the goal is to track the outcomes of the 
individual calls (successful conclusion or hanging up after an excessive wait) and their duration. Call 
Center operators staff two stations, Order Placement and Customer Service, and operators are also on 
hand to assist callers who prefer not to use the center’s automated routing service. A caller might hang up 
whenever he or she has been on hold for an excessive amount of time while waiting for an operator. 



9 

 
Figure 8. Model of an Incoming Call Center 

Accordingly, the model includes Number Holder blocks to tally the successful calls and hang-ups of all 
varieties. In addition, Bucket blocks record the elapsed time for each concluded call or hang-up and pass 
this data to corresponding Number Holder blocks. The data that is collected by each block includes a 
separate time-stamped observation corresponding to each entity that visits the block. For any of these 
blocks, you can open the Save tab in the Block Properties dialog box to enable data-saving. The Save 
tab for the Number Holder block that receives data on the length of completed calls is shown in Figure 9. 

 
Figure 9. Save Tab in a Block Properties Dialog Box 

SAS Simulation Studio also provides centralized control of data collection and saving at the model level. 
Right-click on the model name in the Project Explorer window and select Auto Save Results to open the 
Auto Save Results dialog box, shown in Figure 10.  



10 

 

Figure 10. Auto Save Results Dialog Box 

This dialog box provides a hierarchical listing of every data-collecting block in the model. You can enable 
data collection at a block simply by checking the box next to the block name. 

In some cases, you are interested in collecting periodic data that corresponds to system behavior in one 
or more specific periods during the run of your simulation model. SAS Simulation Studio fully supports the 
collection of periodic data by providing Boolean input ports on several of the data-collecting blocks that 
you can use, for example, to signal a block to save or clear its collected data. By controlling how and 
when blocks save and clear their data, you can create periodic output data.  

The project shown in Figure 11 illustrates this technique. In this model, assume that simulated time is 
measured in minutes. Entities arrive in batches of four, at intervals of one minute. They are assigned 
attributes (using an Observation Source block), wait in a Queue block, and receive service in a Server 
block. Before each entity exits the system, it passes through a Bucket block, whose function is to record 
the entity’s age and other attributes. 

As indicated in the Experiment window, this simulation runs for 100 minutes. The factor 
Num_CheckPts=10 indicates that you want to collect 10 sets of periodic data, and the factor 
Period_Length=5 specifies that each such set will cover 5 minutes of simulated time. Thus, periodic data 
is being collected on the first half of the simulation run. 

An auxiliary flow in the compound block “Periodic Data Signal” controls periodic data collection. At 5-
minute intervals, an auxiliary entity is created and (via a Gate block) causes a Boolean “True” value to be 
sent to the InSaveNow input port of a Dataset Writer block that receives data from the Bucket block. This 
signal causes all the data that is currently held by the Bucket block to be saved. A Formula block that is 
connected to the InPolicy input port of the Dataset Writer block supplies the name “resultN” for the SAS 
data set that is saved at simulation time N. 



11 

 

 
Figure 11. A Project That Collects and Saves Periodic Data 

Next, the Gate block sends another Boolean “True” value to the InClearData input port of the Bucket 
block, clearing its collected data. Now the Bucket block collects data until the next 5-minute interval 
elapses, and the process repeats. Ten SAS data sets are created, one for each 5-minute period. Figure 
12 shows the data set result35.sas7bdat, which corresponds to the simulated period from just after 30 
minutes until precisely 35 minutes—or in mathematical notation, the interval (30,35]. Note that the sum of 
Age and BirthTime for each entity is the simulated time at which the entity exits the model. For each of 
the four entities that are described, this sum is in the interval (30,35].  

 
Figure 12. Sample Periodic Data 

Model-Wide Output Data Collection Controls  

In some cases, you might need to coordinate the control of data collection by several blocks in a model, 
possibly encompassing all data-collecting blocks in a model. Two additional SAS Simulation Studio 
blocks are designed to provide you with broad control over how other blocks collect output data. This kind 



12 

of model-wide control is especially useful when you need to specify when several or all data-collecting 
blocks in a model should start or stop data collection. 

The Data Trimmer block enables you to signal any data-collecting block to clear (reset) all data that it has 
collected—the equivalent of sending a Boolean “True” value to the block’s InClearData input port. The 
Data Trimmer block properties dialog box provides a hierarchical check-box listing of every data-collecting 
block in a model; selected blocks are targeted for data clearing. Whenever a Data Trimmer block receives 
a Boolean “True” value via its InTrimNow input port, it signals all selected blocks to clear their data. 

The call center model from Figure 8 is reproduced as Figure 13, but in this view, the Data Trimmer block 
in the upper left quadrant of the model is labeled and is outlined in red.  

 
Figure 13. Call Center Model with Data Trimmer Block Highlighted 

This model, like many, uses the Data Trimmer block to discard data that is gathered during the “warm-up” 
period of the simulation run. Although this simulation model starts execution with no entities in the 
system—essentially “empty and idle”—the 24/7 call center that is modeled always has calls in progress. 
Therefore, data that the simulation model collects while it is transitioning from an initial empty and idle 
status to a steady load of callers (during the warm-up period) should be discarded.  

This model takes a conservative approach to estimating the warm-up period by running for two simulated 
days and trimming all data at the end of the first day. When 86,400 seconds (one day) of simulated time 
has elapsed, a Value Generator block sends a Boolean “True” value to the InTrimNow input port of the 
Data Trimmer block. Every block in the model that is collecting data is selected in the Data Trimmer block 
interface, so all data that is collected during the first day is discarded. Only the data from the second day 
is retained for analysis. 

The Data Trimmer block provides a retroactive means of excluding data that is gathered during the warm-
up period of a simulation model by discarding this data after it has been collected. The Steady State block 
takes a more comprehensive and proactive approach. This block is designed to manage the run of a 
steady-state simulation model so that enough data is gathered to generate a confidence interval for a 
selected performance metric. Detecting the warm-up period (so that data collection can begin after it 
elapses) is just one component of this task. The Steady State block also determines the length of the 
simulation run; it terminates the run either when the end time as specified in the Experiment window is 
reached or when enough data has been collected to calculate a confidence interval of the desired 
precision and coverage probability for the specified metric (whichever occurs first). 



13 

Figure 14 shows a model that uses the Steady State block to calculate a confidence interval for the long-
term average number of parts in a repair system. The Steady State block, located in the right half of the 
model, is labeled and is outlined in red. 

 
Figure 14. Steady State Block Example 

The corresponding Experiment window specifies an infinite EndTime value, so this simulation run 
continues until the requested confidence interval for the mean number of parts in the system can be 
calculated, based on the collected data. The connection of the NumberHolder block labeled 
“NumberInSystem” to the InValue input port of the Steady State block establishes the performance metric 
for which the confidence interval is to be calculated. The output of the Steady State block includes the 
mean value, the upper and lower limits of the confidence interval, and the length of the warm-up period. 
These values are displayed in the Number Holder blocks that are connected to the corresponding output 
ports of the Steady State block. 

In practice, the Data Trimmer block and the Steady State block can both be used very effectively in 
distinct stages of the same simulation study. For example, in work done at Duke Children’s Hospital 
(DeRienzo et al. 2014), the Steady State block was used in an exploratory model to gauge the length of 
the warm-up period for a model of a neonatal intensive care unit. When it was time to run the model in 
production and generate volumes of data, the Steady State block was removed and a Data Trimmer block 
was signaled to clear all collected data at the end of the warm-up period (as calculated by the Steady 
State block). 

EXPERIMENTAL DESIGN 

The data that is collected from simulation models is analyzed to create statistical inferences about the 
behavior of the system that is simulated. Typically, these inferences concern the connections between 
system inputs, including configuration choices and operating conditions, and specified measures of 
system performance. For these inferences to be useful in the management of real-world systems, the 
simulated data must come from simulating a range of scenarios that approximate the variation that can 
occur in the real world. Thus, good experimental design is another crucial element of simulation modeling 
and analysis. 

SAS Simulation Studio includes a strong emphasis on experimental design. Every Model window is 
paired with an Experiment window that details every scenario (or design point) for which the model in the 
Model window is to be run. Design points are distinguished from one another by variation in the value of 
factors, which are input parameters and variables that define model elements such as system capacities, 
routing logic, or demand patterns. The performance of the simulation model in each design point is 



14 

tracked through responses, which are metrics like throughput, waiting time, and queue length that are 
generated directly from the operations of the model. Both factors and responses are defined in SAS 
Simulation Studio at the project level, so they can be used in any model in the project. Anchors in any 
such model connect factors and responses to specific elements of the model.  

THE EXPERIMENT WINDOW 

The Experiment window enables you to include the factors and responses that are of interest to you. It 
displays the different factor values that distinguish the various design points, and after the simulation 
model runs, it also displays the response values for each replication that was run for each design point. 
You can save the detailed results in the Experiment window as a SAS data set or JMP table for later 
analysis, and you can also submit it directly to JMP for immediate analysis (a JMP license is required). 

Factors can take many forms, and they describe, for example, numeric parameters, paths to external 
input data sources, or a probability distribution that is to be sampled in the model. For a probability 
distribution, a factor can specify the entire distribution, including the type (normal, Poisson, and so on), or 
it can specify values for the parameters of a particular distribution type. Figure 15 shows part of an 
Experiment window for the call center model discussed earlier.  

 

Figure 15. Experiment Window with Numeric Factors 

Because the purpose of this model is to study the effects of variation in capacity on the call center’s 
performance, the factors (with yellow column headers) specify the number of telephone lines available 
and the number of operators on staff at three different stations. Responses (with pink column headers) 
count the number of successful and unsuccessful calls, along with the duration of each type of call. For 
each design point, the displayed value is the average among the five replications that were run. 

Figure 16 shows an Experiment window that uses two factors to specify probability distributions. 

 
Figure 16. Experiment Window with Factors Specifying Probability Distributions 

These two factors specify distributions for two processing times in the corresponding model. The first 
processing time is known to be exponential, so the factor ExponentialMean specifies just the mean of an 
exponential distribution. The distribution of the second processing time is not as easily characterized, so 
the factor ProcessTime2 specifies both the type of the distribution and its associated parameters. 
Between the two design points, only the mean of the first distribution changes, but the second distribution 
changes from normal to uniform.  

AUTOMATIC INTERACTIVE EXPERIMENTAL DESIGN WITH JMP 

With SAS Simulation Studio, you can use design points to parameterize and control the execution of a 
simulation model in many ways. But as you might imagine, creating a set of design points that accurately 
represents the range of variations among possible operational scenarios for even a moderately complex 
simulated system is no trivial task. Fortunately, SAS Simulation Studio enables you to coordinate closely 
with JMP’s experimental design capabilities (a JMP license is required).  



15 

Even though creating individual design points manually is perfectly acceptable—and, in the case of 
narrowly targeted investigation of scenarios, preferable—JMP can provide valuable assistance in creating 
experimental designs. The result is more comprehensive designs that are quicker and far easier to 
complete than those that you create manually.  

Figure 17 shows an Experiment window for the call center model discussed earlier. Factors and 
responses have been defined, anchored to specific elements of the model, and included in this 
Experiment window.  

 
Figure 17. Initiating Automated Experimental Design with JMP 

Currently no design points are defined. When the JMP server is running in the background, right-click in 
the Experiment window and select Make Design to create an experimental design with the JMP Custom 
Design platform. JMP creates the experimental design that is partially displayed in Figure 18.  

 
Figure 18. Experimental Design Created with JMP 

By default, JMP creates a main-effects screening (or optimal) design (SAS Institute Inc. 2017a). If you 
need to modify this design, you can open the Simulation Studio DOE window in JMP, make the 
necessary changes, and send the modified design back to SAS Simulation Studio. Figure 19 shows this 
window, with the user in the process of adding second-order interaction terms. After clicking Make 
Design to create a design that includes these interaction terms, the user would click Commit at the top of 
the window to send the modified design to SAS Simulation Studio for execution. 

The Custom Design platform is not the only experimental design platform in JMP. To access other JMP 
experimental design platforms, follow the steps that are outlined in the section “Using Other JMP Design 
of Experiment Platforms” in “Appendix C: Design of Experiments,” in SAS Simulation Studio 14.3: User’s 
Guide (SAS Institute Inc. 2017b). 



16 

 
Figure 19. Modifying an Experimental Design 

EXPERIMENTAL DESIGN WITH SAS 

You can also write a SAS program to create an experimental design (SAS Institute Inc. 2017b). First, 
define your factors and responses and anchor them in your model. Include the factors and responses in 
an Experiment window. Ensure that your Experiment window contains at least one design point (by 
default, an Experiment window contains one design point), then right-click in the window and select Save 
Design to save its contents as a SAS data set.  

Now you can use a SAS program to create an experimental design. Several procedures are available in 
SAS/STAT® (SAS Institute Inc. 2017d) and SAS/QC® (SAS Institute Inc. 2017c) software that you can use 
to create a design. This program uses PROC PLAN in SAS/STAT to create a full factorial design for a 
repair shop model with three factors that denote staffing levels at three stations in the model: 
proc plan seed=87654; 

   factors NumService=3 NumRepair=3 NumQC=3 / noprint; 

   output out=Project.Exp 

      NumService nvals=(1,2,3) 

      Numrepair nvals=(1,2,3) 

      NumQC nvals=(1,2,3); 

run; 

quit; 

The output SAS data set, Exp.sas7bdat, in the library Project is the same SAS data set that was 
created when you saved the contents of the Experiment window, so the full factorial design that is created 
by PROC PLAN overwrites the original design. To import the new design into the Experiment window, 
right-click in the Experiment window, select Load Design, and navigate to the location of the newly 
created SAS data set. Figure 20 shows the Experiment window after you load the full factorial design.  

 



17 

 
Figure 20. Experimental Design Created Using SAS 

INTEGRATING WITH OTHER ANALYTICS 

Like any form of analytics, discrete-event simulation is never done in isolation. People who work in 
discrete-event simulation rarely focus solely in this area. Thus, integration between simulation and other 
analytics is essential. This paper has discussed how simulation uses descriptive and predictive input 
data, which is customarily produced by corresponding forms of analytics. In addition, output data that is 
produced by discrete-event simulation is almost universally subjected to formal or informal descriptive 
analysis. With SAS Simulation Studio, you have a unique ability to perform all such analyses within a 
unified framework, because SAS Simulation Studio is just one component of a broad spectrum of SAS 
analytic products and features. 

The SAS Program block in SAS Simulation Studio provides even deeper integration with other SAS 
analytics because it enables you to execute a SAS program or a JMP script within your simulation model. 
The code that is specified by this block can be run automatically after all replications of all selected design 
points have executed, or the model can signal it to run (repeatedly, if necessary) via a Boolean “True” 
value sent to an input port on the block. The code can run on the same SAS client as SAS Simulation 
Studio or on a remote SAS workspace server (as specified by you in the Configuration dialog box). 

You can use the SAS Program block, for example, to preprocess input data for your model. You might 
need to reformat some data or synthesize several data sources before you use them in your model. You 
can also use this block to analyze simulated data. Figure 21 shows a partial view of a model of a walk-in 
urgent care medical facility. The SAS Program block is located at the bottom of the Model window and is 
outlined in red. The SAS Program block properties dialog box is expanded on the right side of the figure 
and indicates that the program “Generatereport_UCModel.sas” is to be run. Because the Auto Submit 
box is checked, the program runs at the end of the simulation model run. The program performs a 
statistical analysis of the data that the model collects by using PROC MEANS and PROC UNIVARIATE in 
Base SAS® software. Part of the output from the program appears in Figure 22. The program analyzes 
length and waiting times for the queues and utilization of the servers and the resources. 



18 

 
Figure 21. The SAS Program Block in an Urgent Care Model 

 

 
Figure 22. Univariate Analysis Output 



19 

Instead of running the indicated SAS program or JMP script after the run of a simulation model 
concludes, you can trigger the SAS Program block to run the code during the simulation run. As 
mentioned before, you can use this feature to, for example, preprocess input data or perform other tasks 
that must be completed before the simulation model runs. You can also use the SAS Program block to 
run code that takes an active role in the internal logic of your model. For example, you can use this 
feature to periodically calculate an optimal production plan or update statistics that affect service goals.  

Figure 23 shows a model of a pharmaceutical clinical trial. In the first phase, a new drug is tested on 50 
patients for each of four proposed doses. When the first phase ends, an auxiliary entity flows through a 
Gate block that sends a Boolean “True” value to the InSubmitCode input port of a SAS Program block at 
the bottom of the Model window. The SAS program that is specified by this block executes a power and 
sample size calculation to determine how many additional patients should be tested at each dose so that 
the testing produces statistically significant results with sufficient probability (SAS Institute Inc. 2017d). 
This program calls PROC TTEST and PROC POWER in SAS/STAT. 

 

Figure 23. Clinical Trial Model Using the SAS Program Block 

CONCLUSION 

Discrete-event simulation modeling with SAS Simulation Studio has always been notable for its power 
and flexibility. These traits are also reflected in its capabilities in data input, data use, output data 
creation, and experimental design, and in the ways in which it integrates with and incorporates other 
forms of analytics. The intuitive graphical user interface of SAS Simulation Studio offers you many options 
in building simulation models. This same freedom of choice extends well beyond simulation modeling, 
giving you great latitude in determining how your simulation work interacts with your overall analytic 
environment. 



20 

REFERENCES 

Bélanger, Y., Couture, K., and Neusy, E. (2011). “An Application of SAS Simulation Studio: The 
Microsimulation of a Computer Assisted Telephone Interviewing System.” In Proceedings of the SAS 
Global Forum 2011 Conference. Cary, NC: SAS Institute Inc. 

DeRienzo, C., Tanaka, D., Lada, E., and Meanor, P. (2014). “Creating a SimNICU: Using SAS Simulation 
Studio to Model Staffing Needs in Clinical Environments.” In Proceedings of the SAS Global Forum 2014 
Conference. Cary, NC: SAS Institute Inc. 

Hevener, G., Flinchum, T., and Lada, E. (2013). “Projecting Prison Populations with SAS Simulation 
Studio.” In Proceedings of the SAS Global Forum 2013 Conference. Cary, NC: SAS Institute Inc. 

Hughes, E., and Lada, E. (2015). “Practical Applications of SAS Simulation Studio.” In Proceedings of the 
SAS Global Forum 2015 Conference. Cary, NC: SAS Institute Inc. 

Hughes, E., Lada, E., Lopes, L., and Pólik, I. (2016). “Using SAS Simulation Studio to Test and Validate 
SAS/OR Optimization Models.” In Proceedings of the SAS Global Forum 2016 Conference. Cary, NC: 
SAS Institute Inc. 

SAS Institute Inc. (2017a). JMP 13 Design of Experiments Guide. 2nd ed. Cary, NC: SAS Institute Inc. 

SAS Institute Inc. (2017b). SAS Simulation Studio 14.3: User’s Guide. Cary, NC: SAS Institute Inc. 

SAS Institute Inc. (2017c). SAS/QC 14.3 User’s Guide. Cary, NC: SAS Institute Inc. 

SAS Institute Inc. (2017d). SAS/STAT 14.3 User’s Guide. Cary, NC: SAS Institute Inc. 

Yi, J., Lada, E., Smith, A., and Gray, C. (2014). “Work Area Optimization at a Major European Utility 
Company.” In Proceedings of the SAS Global Forum 2014 Conference. Cary, NC: SAS Institute Inc. 

ACKNOWLEDGMENTS 

Emily Lada contributed very substantially to the content and form of this paper while she was a SAS 
employee.  Emily is now a faculty member at Meredith College in Raleigh, NC.The author is grateful for 
her many valuable thoughts and suggestions. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author: 

Ed Hughes  
SAS Institute Inc.  
Ed.Hughes@sas.com  
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

mailto:Ed.Hughes@sas.com

