
1

Paper SAS1906-2018

How to Load Relational Data into SAS® Cloud Analytic Services Using Java

Salman Maher SAS Institute Inc., Cary, NC

ABSTRACT

Java is one of the most popular programming languages available today. Did you know that you can
easily use Java with SAS® Cloud Analytic Services (CAS)? This presentation shows you how to do this
and more. During this presentation, we cover the following tasks:

• how to load the Java libraries required to invoke CAS actions within your Java program

• how to invoke CAS actions from Java

• how to load data from a relational database into CAS

You will walk away from this presentation confident that you can read and write data from CAS to a
relational database using a Java program.

INTRODUCTION

The SAS Java Client interface for SAS® Viya® provides a Java interface to interact with SAS Cloud
Analytic Services (CAS), the analytics engine for the SAS Viya platform. With this software, you can write
Java programs that load data into CAS and invoke CAS actions to transform, summarize, model, and
score the data. Classes are provided that correspond to each CAS action, and you can use Java to post-
process CAS result tables. This paper will show you how to use the Java interface to connect to relational
data sources using a caslib and will discuss some of the CAS actions that can be used with data source
caslibs.

GETTING STARTED

To use Java with CAS, you must have a Java 8 run-time environment. SAS recommends that you use the
latest version of Java 8 that is available. In addition, the following three JAR files are required:

• SAS Viya for Java JAR file. Download it from
https://support.sas.com/downloads/package.htm?pid=1976

• ANTLR JAR. Download it from http://www.antlr.org/download.html or
https://mvnrepository.com/artifact/org.antlr/antlr-runtime

• Google Protocol Buffers JAR file. Download it from
https://mvnrepository.com/artifact/com.google.protobuf/protobuf-java

The SAS Viya cas-client JAR file provides the Java interface to interact with CAS. In addition to the cas-
client JAR file, you will also need to have ANTLR run-time JAR 3.5.2 or later and Google Protocol Buffers
JAR 2.6.1 or later. Once you have the Java 8 installed and the three JAR files on your CLASSPATH, you
are ready to start.

CONNECTING TO CAS SERVER

Before you can submit any actions to the CAS server, you need to create a CAS client instance. To make
a connection, you will need to know the host name and the port number of the CAS server, in addition to
your user name and password. The Java code to create your CAS client instance would look like the
following example:

CASClientInterface client = new CASClient("server-name.mycompany.com", 5570,

"username", " password");

https://support.sas.com/downloads/package.htm?pid=1976
http://www.antlr.org/download.html
https://mvnrepository.com/artifact/org.antlr/antlr-runtime
https://mvnrepository.com/artifact/com.google.protobuf/protobuf-java

2

You can also supply your credentials by creating an authinfo file. For more information, see Client
Authentication Using an Authinfo File in the Getting Stared with SAS Viya for Java documentation. When
using an authinfo file, you will only pass in the host and port to the CASClient constructor when you
create your CAS client instance. Here is an example:

CASClientInterface client = new CASClient("server-name.mycompany.com", 5570)

The instance of the CASClient class is used to connect to CAS services and start your session. Once you
are connected, all resources are only available to that CASClient instance. Any action that you want to
submit to the CAS server is submitted by passing a CAS action option object to the CASClient.invoke
method. No action is taken on the CAS server unless it is submitted via the CASClient.invoke method.

CREATING A CASLIB

Now that you have a CASClient instance, you are ready to define your caslib for your data source. Using
SAS Studio, you would create your caslib using a caslib statement. For example, your caslib for a
PostgreSQL data source will look like this:

 /* creates new caslib */

 caslib pgLib sessref=mysess

 datasource=(srctype="postgres",

 server="server",

 database="test",

 username="user",

 password="password"

);

In Java you will create a caslib definition using a specific data source class, such as Dspostgres for
PostgreSQL. All the data source classes are part of the com.sas.cas.actions package, with the two-letter
prefix “Ds” for data source. To define a data source caslib instance for PostgreSQL like the caslib
statement shown above, the Java code would resemble the following:

 Dspostgres dsPostgreSQL = new Dspostgres();

 dsPostgreSQL.setServer("server");

 dsPostgreSQL.setUser("user").setPassword("password");

 dsPostgreSQL.setDatabase("test").setSchema("mySchema");

Creating the Dspostgres instance does not create the caslib on the CAS server. You must also associate
the Dspostgres instance with a caslib action and invoke that action on the CAS client that you created
earlier. The Java code to create a caslib named “pgLib” for your PostgreSQL data source instance is as
follows:

 // Define the casLib for dsPostgreSQL using the AddCaslibOptions class.

 AddCaslibOptions addCasLibOptions = new AddCaslibOptions();

 addCasLibOptions.setName(“pgLib”);

 // assign the data source to the action

 addCasLibOptions.setParameter(AddCaslibOptions.KEY_DATASOURCE,

 dsPostgreSQL);

The com.sas.cas.actions.table.AddCaslibOptions class identifies the set of caslib action options to invoke.
The AddCaslibOptions.setName method specifies the name of your caslib. You will pass this name via a
call to setCaslib on all the Table actions that are covered in this paper. The
AddCaslibOptions.setParameter is used to associate the data source reference, in this case Dspostgres,
to your caslib.

We should note here that you should not use the AddCaslibOptions.setDataSource methods. The SAS
Viya 3.3 Java API for AddCasLibOptions does not have a utility method to associate relational data

http://go.documentation.sas.com/?docsetId=authinfo&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en&showBanner=develop
http://go.documentation.sas.com/?docsetId=authinfo&docsetTarget=titlepage.htm&docsetVersion=9.4&locale=en&showBanner=develop
http://go.documentation.sas.com/?cdcId=pgmcdc&cdcVersion=8.11&docsetId=caspg3java&docsetTarget=titlepage.htm&locale=en&showBanner=develop

3

source instances with an AddCaslibOptions class. You must instead use the generic setParameter
method with the AddCasLibOptions.KEY_DATASOURCE value to successfully assign a relational data
source to an AddCasLibOptions class. If you do not add the data source instance to your
AddCaslibOptions class, you will get the following error when the action is invoked:

 com.sas.cas.CASException: The action was not successful.

 (severity=2 reason=0 statusCode=2640504)

 5 ERROR: Missing path or data source options on caslib object pgLib.

 5 ERROR: The action stopped due to errors.

 debug=0x887fc1f8:PERM_MISSING_INFO

Now that we have the data source definition created and associated with an AddCaslibOptions action, it is
time to create the caslib on the CAS server. We can create it by passing the AddCaslibOptions instance
to the CASClient.invoke method. Here is an example:

 CASActionResults<CASValue> results = client.invoke(addCasLibOptions);

The results of invoking the addCasLibOptions are returned as a com.sas.cas.CASValue class. A simple
toString() call on the CASValue object returns the following:

addCasLibOptions:

{

CASLibInfo=CASLibInfo

Name Type Description Path Definition Subdirs Local Active Personal Hidden Transient

----- -------- ----------- ---- ----------------- ------- ----- ------ -------- ------ ---------

pgLib postgres uid = 'user' 0 1 1 0 0 0

pgLib pwd = '*****'

pgLib server = 'server'

pgLib schema = 'mySchema'

pgLib database = 'test'

5 rows

}

WORKING WITH CAS ACTIONS

A CAS action is a task that is performed by the CAS server at your request. The server parses the
arguments of the request and invokes the action function. Actions that can be used with a data source
caslib are loadTable, columnInfo, fileInfo, save, deleteSource, and fedsql.execdirect. In this paper, we will
discuss loadTable, save, deleteSource, and fedsql.execdirect.

LOADTABLE ACTION

The loadTable action directs the server to load a table from a specified caslib data source into the CAS
server. The action at a minimum takes a caslib parameter that describes the origin of the table to load, a
path parameter that is the table name of the DBMS table to load, and a casout parameter for specifying
the location for the output table. For example, if you have a table in your PostgreSQL DBMS named
"cars" that you want to load into CAS with the name “mycars,” you could use the following PROC CAS
loadTable statement:

 proc cas;

 session mysess;

 action loadTable / caslib="pgLib" path="cars" casout="mycars";

 quit;

In your Java program, you would use the com.sas.cas.actions.table.LoadTableOptions class to invoke
this action. The above PROC CAS statement would map to the following Java code:

4

 LoadTableOptions loadTableAction = new LoadTableOptions();

 loadTableAction.setCaslib(“pgLib”); // Set the input casLib

 loadTableAction.setPath("cars"); // identify that table to load

 loadTableAction.setCasOut(new Casouttablebasic().setName("mycars"));

 CASActionResults<CASValue> results = client.invoke(loadTableAction);

The set methods map one-to-one with the parameters of the loadTable action. The setCaslib and setPath
are simple options, taking only a string as input; however, setCasOut is a complex option, taking a
specific class, in this case com.sas.cas.actions.Casouttablebasic, which defines all the options for an
output CAS table. The following code will pull the CASLogEvent from the CASActionResults class that is
returned from invoking the loadTable action on your CAS client instance:

 List<CASLogEvent> l = results.getLogEvents();

 if (l.size() != 0) {

 Iterator<CASLogEvent> iter = l.iterator();

 while (iter.hasNext()) {

 CASLogEvent logEvent = iter.next();

 System.out.println(" " + logEvent);

 }

 }

The output log for the above example is as follows:

CASLogEvent [time=2018-02-20 18:17:07.125, type=3, message=NOTE: Performing

serial LoadTable action using SAS Data Connector to PostgreSQL.]

CASLogEvent [time=2018-02-20 18:17:07.686, type=3, message=NOTE: Cloud

Analytic Services made the external data from cars available as table mycars

in caslib pgLib.]

The output message is the same as you would see in your SAS log for PROC CAS.

Subset Your Columns

To subset the resulting columns from a loadTable action, you would pass in an array of
com.sas.cas.actions.Casinvardesc instances to the loadTableOptions.setVars method. It is similar to
setting the vars= option on the PROC CAS loadTable action. For example, if the "cars" table from the
above example contained the columns "make," "model," "year," "color," and "units," but you were only
interested in bringing the columns "color" and "make” into CAS, you would create the following
Casinvardesc instances to pass to the loadTableOptions.setVars method:

 Casinvardesc storeID = new Casinvardesc().setName("color");

 Casinvardesc retailName = new Casinvardesc().setName("make");

 loadTableAction.setVars(new Casinvardesc[] {storeID,retailName});

Filter Your Data

The loadTableOptions.setWhere method enables you to filter data before it is loaded into a CAS table.
The filtering occurs either in the database or on the CAS server as the data is read. If the target database
is able to prepare the specified "where" statement, the filtering occurs in the database, and only filtered
data is transferred to the CAS server. If the prepare call fails, the filtering of the data is performed on the
CAS server. For example, Java code to subset on the "year" column and read in all the cars built in 2016
from the same "cars" table mentioned above is as follows:

 loadTableAction.setWhere("year = 2016");

5

Specify Data Source Options

The LoadTableOptions.setDataSourceOptions method allows you to set data source-specific options to
apply during a loadTable action invocation. The setDataSourceOptions method takes a simple
java.util.Map instance of key-value pairs. The keys are the data source option names, as documented in
the SAS Viya System Programming Guide, and the values are the values to be applied to the specific
data source option. For example, to set the number of read nodes to 3 for the above loadTable action, the
Java code will be as follows:

 Map<String, Object> datasourceOptions = new HashMap<String, Object>();
 datasourceOptions.put("numReadNodes", "3");

 loadTableAction.setDataSourceOptions(datasourceOptions);

SAVE TABLE ACTION

The Save table action allows you to write in-memory CAS tables back to your DMBS. To invoke this
action, use the com.sas.cas.actions.table.SaveOptions class. At minimum, the action requires a caslib
where the table is written, SaveOptions.setCaslib(), the name of the table to be created,
SaveOptions.setName(), and a table object that describes the source table to write out,
SaveOptions.setTable(). For example, if you wanted to write the “mycars” table that was loaded into CAS
from the above loadTable action back to your PostgreSQL DMBS as “myCarsFromCAS”, the Java code
would be as follows:

 SaveOptions save = new SaveOptions();

 save.setCaslib(“pgLib”);

 save.setName("myCarsFromCAS");

 Castable inTable = new Castable();

 inTable.setCaslib("pgLib");

 inTable.setName("mycars");

 save.setTable(inTable);

 CASActionResults<CASValue> results = client.invoke(save);

The PROC CAS call to perform the same Save action is as follows:

 proc cas;

 session mysess;

 action save / caslib="pgLib" name="myCarsFromCAS"

 table={caslib="pgLib" name="mycars"};

 run;

You can use the Castable.setWhere() and Castable.setVars() methods to filter data and columns that will
be saved. For example, to subset the “cars” table to include only vehicle makes from 2016 and later, and
create a new table in PostgreSQL named “my2016Cars” with only one column, named “makes,” issue the
following two method calls on the Castable instance:

 inTable.setWhere("year = 2016");

 inTable.setVars(new Casinvardesc[] {new Casinvardesc().setName("make")});

DELETESOURCE ACTION

The deleteSource action, invoked on the com.sas.cas.actions.table.DeleteSourceOptions class, gives you
the ability to drop a table from a caslib’s data source. In this example, you are dropping the
“myCarsFromCAS” table that was created previously in the Save table section:

 DeleteSourceOptions dropTable = new DeleteSourceOptions();
 dropTable.setCaslib("pgLib");

http://go.documentation.sas.com/?cdcId=pgmcdc&cdcVersion=8.11&docsetId=pgmdiff&docsetTarget=titlepage.htm&locale=en

6

 dropTable.setSource("myCarsFromCAS");
 CASActionResults<CASValue> results = client.invoke(dropTable);

The one slight difference between the DeleteSourceOptions class and the other action that we have
discussed is that you call setSource() to specify the name of the table that you want to drop.

FEDSQL ACTION

The fedSQL action, invoked on the com.sas.cas.actions.fedsql.ExecDirectOptions class, allows you to

load results of a SQL query against a data source caslib into a CAS table. To submit a fedSQL query to a
data source caslib, make sure that the table referenced in the “from” clause is fully qualified using your
caslib. For example, the following code will return all 2016 Fords with 6 cylinders from the “cars” table
referenced by the PostgreSQL caslib “pgLib”:

 ExecDirectOptions fedSQL = new ExecDirectOptions();

 fedSQL.setQuery("select make, model, Cylinders, msrp

 from \"pgLib\".\"cars\"

 where make='Ford' and Cylinders=6");

 client.loadActionSet(fedSQL, fedSQL.getActionSetName());

 CASActionResults<CASValue> results = client.invoke(fedSQL);

The results of the above invocation are as follows:

CASLogEvent [time=2018-02-25 14:41:53.138, type=3, message=NOTE: The

SQL statement was fully offloaded to the underlying data source via

full pass-through]

Key: Result Set

{

 Result Set=FedSQL Result Set

make model cylinders msrp

---- -------------------------- --------- -----

Ford Explorer XLT V6 6 29670

Ford Escape XLS 6 22515

Ford Taurus LX 4dr 6 20320

Ford Taurus SES Duratec 4dr 6 22735

Ford Freestar SE 6 26930

Ford Mustang 2dr (convertible) 6 18345

Ford Taurus SE 6 22290

7 rows

}

A message stating “NOTE: The SQL statement was fully offloaded to the underlying data source via full
pass-through” indicates that the query was successfully passed down to the target database and
executed. No additional SQL processing was done on the CAS server for the query.

CONCLUSION

SAS Viya provides many ways of interacting with other programming languages. With our relatively
simple example, you now have the basic steps to leverage Java and SAS Viya to access your data
sources. For more information, see “Getting Started with SAS® Viya™ for Java™”

REFERENCES

SAS Institute Inc. 2017. “Getting Started with SAS® Viya® for Java™.” Available
https://developer.sas.com/guides/java.html.

https://developer.sas.com/guides/java.html
https://developer.sas.com/guides/java.html

7

ACKNOWLEDGMENTS

The author extend his heartfelt thanks and gratitude to these individuals:

Joel Odom, SAS Institute Inc., Cary, NC

Jeff Bailey, SAS Institute Inc., Cary, NC

Susan Pearsall, SAS Institute Inc., Cary, NC

RECOMMENDED READING

Meng, Xiangxiang and Kevin Smith. 2017. “I Am Multilingual: A Comparison of the Python, Java, Lua, and
REST Interfaces to SAS® Viya®.” Proceedings of the SAS Global Forum 2017 Conference. Cary, NC:
SAS Institute Inc. Available http://support.sas.com/resources/papers/proceedings17/SAS0668-2017.pdf.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Salman Maher
100 SAS Campus Drive
Cary, NC 27513
SAS Institute Inc.
Salman.Maher@sas.com
https://www.sas.com/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/resources/papers/proceedings17/SAS0668-2017.pdf
mailto:Salman.Maher@sas.com

