Monte Carlo K-Means Clustering SAS Enterprise Miner

Donald K. Wedding, PhD Director of Data Science Sprint Corporation dwedding@acm.org

What Is Clustering?

K-Means Clustering

- Technique can be used on other data such as CUSTOMER data
- K-Means clustering allows for grouping multiple variables simultaneously
- More sophisticated treatment of customers than is possible from simple segmentation

K-Means Clustering Clusters based on AGE and INCOME

How many clusters do you see?

AGE

K-Means Clustering Visual Inspection "proc eyeball"

There are FOUR clusters.

K-Means Clustering

A bank might use these clusters for "cross sell"

- **Recent Graduates** : Overdraft Protection
- Peak Income
 : Mortgage, Heloc , Investment Account
- Retired : Trust Fund, Retirement Account, Estate Planning
- Unemployed

: Unprofitable – "Choose to Lose"

What Affects Cluster Quality?

Copyright © SAS Institute Inc. All rights reserved

What Affects Cluster Results?

- How many clusters are there?
- Cluster Starting Points ("Seeds")?

What Affects Cluster Results?

- How many clusters are there?
- Cluster Starting Points ("Seeds")?

How Many Clusters?

Given the Following Data Points

- Find the cluster centers for N=2 Clusters
- Find the cluster centers for N=3 Clusters
- Find the cluster centers for N=4 Clusters

How Many Clusters: Example 2 Clusters

How Many Clusters: Example 3 Clusters

Summary

Given the Following Data Points

- Find the cluster centers for N=2 Clusters
- Find the cluster centers for N=3 Clusters
- Find the cluster centers for N=4 Clusters

Summary

K-Means Clustering Clusters based on AGE and INCOME

How many clusters do you see?

What Affects Cluster Results?

- How many clusters are there?
- Cluster Starting Points ("Seeds")?

What Affects Cluster Results?

- How many clusters are there?
- Cluster Starting Points ("Seeds")?

What Are The Center Points?

Copyright © SAS Institute Inc. All rights reserved.

Cluster Seeds: Example

Given the Following Data Points

- Find the cluster centers for N=3 Clusters
- Find the cluster centers using Starting Point "A"
- Find the cluster centers using Starting Point "B"

Cluster Seeds: Example

Summary

Summary

K-Means Clustering Clusters based on AGE and INCOME

How many clusters do you see?

Summary

Summary

What Affects Cluster Results?

- How many clusters are there?
- Cluster Starting Points ("Seeds")?

What Affects Cluster Results?

- How many clusters are there?
- Cluster Starting Points ("Seeds")?

Approximate The Number of Clusters

Copyright © SAS Institute Inc. All rights reserved.

Diagram 4300

Copyright © SAS Institute Inc. All rights reserved

1	General		1	
I	Node ID	Clus2		
	Imported Data		1	
I	Exported Data		1	
E	Notes		1	
	Train			
E	Variables			Set the number of
L	Cluster Variable Role	Segment		
1	Internal Standardizat	idStandardization		clusters to automatic
E	Number of Clusters			
L	Specification Method	Automatic	×	
Ŧ	Maximum Number of C5			
E	Selection Criterion	AND IN		Set the Following Parameters:
	Clustering Method	Ward		 Preliminary Max = 50
L	Preliminary Maximum	50		Assume that initially there might
	Minimum	2		
	Final Maximum	20		be as many as 50 clusters
T	-CCC Cutoff	3		• Minimum = 2
E	Encoding of Class Vari			When complete there will be at
L	Ordinal Encoding	Rank	8	
L	-Nominal Encoding	GLM	8	least 2 clusters.
E	Initial Cluster Seeds			 <u>Final Maximum = 20</u>
L	Seed Initialization MetlFirst		8	When complete, there will be no
L	-Minimum Radius	0.0		more than 20 clusters
L	Drift During Training	No	8	more than 20 clusters.

- SAS Enterprise Miner allows user to "guess" at the number of clusters within a RANGE (example: at least 2 and at most 20 is default)
- SAS Enterprise Miner will estimate the optimal number of clusters
- Optimal number of clusters will vary depending upon clustering parameters.
- STEP1: Narrow the "Search Range" by clustering using multiple parameters

General	Beneral					
Node ID	Clus2					
Imported Data						
Exported Data						
Notes						
Train						
Variables						
Cluster Variable Role	Segment					
Internal StandardizaticStandardization						
Number of Clusters	Concession in the second se					
Specification Method	Automatic					
-Maximum Number of	d5					
Selection Criterion						
Clustering Method	Ward					
Preliminary Maximum	Average					
Minimum	Centroid					
-Final Maximum	Ward					
-CCC Cutoff	3					
Encoding of Class Var	ik .					
Ordinal Encoding	Rank					
-Nominal Encoding	GLM					
Initial Cluster Seeds	Initial Cluster Seeds					
Seed Initialization MetlFirst						
-Minimum Radius	0.0					
L Drift During Training	No					

Measurement of cluster distances

- Average
- Centroid
- Ward (Default)

Cluster Selection Methods SAS Enterprise Miner

Average

Calculate the average distance from every point in one cluster to every point in another cluster

<u>Centroid</u>

Find the distance from one cluster center point to another cluster center point

• Ward (Default Method)

Cluster measurement is based on the ANOVA sum of squares of the two clusters

General					
Node ID	Clus2				
Imported Data					
Exported Data					
Notes					
Train					
Variables					
Cluster Variable Role	Segment				
Internal Standardizat	Standardization				
Number of Clusters					
Specification Method	Automatic				
-Maximum Number of (5				
-Selection Criterion					
-Clustering Method	Ward				
Preliminary Maximum	50				
Minimum	2				
Final Maximum	20				
LCCC Cutoff	3				
Encoding of Class Vari,					
Ordinal Encoding	Rank				
-Nominal Encoding	GLM				
Initial Cluster Seeds					
Seed Initialization Me	t First 🛶				
-Minimum Radius	Default				
-Drift During Training	First				
Training Options	MacQueen				
Use Defaults	Full Replacement				
Settings	Princomp				
-Missing Values	Partial Replacement				
Interval Variables	Default				
Nominal Variables	Default				
Ordinal Variables	Default				
Scoring Imputation M	eNone				

How are Initial Clusters Centers Chosen?

- First "n" Records
- MacQueen Drifting
- Full Replacement
- Princomp
- Partial Replacement (Default)

Cluster Seed Selection SAS Enterprise Miner

- <u>First "N" Records Method</u>
 - Use the first "N" records in the list as seeds
- Partial Replacement Method (Default)
 - Select "N" records that are far away from each other
- <u>Full Replacement Method</u>
 - Select "N" records that are <u>very</u> far away from each other by looking for outliers.
- <u>Principal Component Method</u>
 - Select "N" evenly spaced records along the first Principal Component Vector
- <u>MacQueen "Drifting" Method</u>
 - Use the first "N" records in the list as seeds. Assign records to clusters one by one and recomputes center after each record is assigned aka "drifting".

Approximate Number Of Clusters Diagram 4300

Example 1: Random Seeds – Synthetic Data SAS Program to generate synthetic data

- Program creates 1000 data points with two values: X,Y
 - 200 points centered at (3,3)
 - 200 points centered at (5,5)
 - 200 points centered at (4,6)
 - 200 points centered at (6,4)
 - 200 points centered at (4,4)
- Each X and Y value has noise added to
 - Normally distributed random number
 - Random number is multiplied by a weight of **0.5**

Example 1: Random Seeds – Synthetic Data

%let CC %let WE %let SE	DUNT IGHT ED	=	200 0.5; 1;
%let IN %let OU	IFILE JTFILE	=	INFILE; RANDOM_DATA;
<pre>data &J do I = end; dron I</pre>	NFILE.; 1 to &COUNT. X NOISE_X NOISE_Y output; X Y NOISE_Y NOISE		<pre>3.0; 3.0; rannor(&SEED.); rannor(&SEED.); 5.0; 5.0; rannor(&SEED.); rannor(&SEED.); rannor(&SEED.); f.0; 6.0; 4.0; f.0; f.0; f.0; f.0; f.0; f.0; f.0; f</pre>
run; data &OUTFILE. set &INFILE. X Y drop NOISE_X; drop NOISE_Y:		=	X + &WEIGHT.*NOISE_X; Y + &WEIGHT.*NOISE_Y;
run;			

Noise Level 0.5

Random Seeds – Shuffle Cards

```
%let INFILE
                   = RANDOM DATA;
                   = TEMPFILE;
%let TEMPFILE
%let OUTFILE
                   = SORTED DATA;
data &TEMPFILE.;
set &INFILE.;
SORT = ranuni( &SEED. );
run;
proc sort data=&TEMPFILE.;
by SORT;
run;
data &OUTFILE.;
set &TEMPFILE.;
drop SORT;
run;
proc print data=&OUTFILE.(obs=5);
run;
```

= 1;

%let SEED

Random Seeds – Shuffle Cards

Ward / First = 7 clusters

Ward / MacQueen = 3 clusters

Ward / Full = 5 clusters

Ward / Princomp = 5 clusters

Ward / Partial = 3 clusters

Average / First = 5 clusters

Average / MacQueen = 5 clusters

Average / Full = 7 clusters

Average / Princomp = 5 clusters

Average / Partial = 5 clusters

Centroid / First = 4 clusters

Centroid / MacQueen = 5 clusters

Centroid / Full = 6 clusters

Centroid / Princomp = 5 clusters

Centroid / Partial = 6 clusters

Cluster	Ward	Average	Centroid
First	7	5	4
MacQueen	3	5	5
Full	5	7	6
Princomp	5	5	5
Partial	3	5	6

Number of Cluster	Count
3 clusters	2
4 clusters	1
5 clusters	8
6 clusters	2
7 clusters	2

Number of Cluster	Count	
3 clusters	2	
4 clusters	1	
5 clusters	8	
6 clusters	2	
7 clusters	2	

Number of Cluster	Count	
3 clusters	2	
4 clusters	1	
5 clusters	8	
6 clusters	2	
7 clusters	2	

The Number of Clusters Found Depends Upon

- Cluster Starting Points
- Clustering Method

Certain Numbers occur more frequently than others

- Trial and Error suggests 3 to 7 Clusters
- Probably 5 Clusters is optimal

Starting Points Affect Clusters "Your Mileage May Vary"

Diagram 4400

Copyright © SAS Institute Inc. All rights reserved

Different Seed Selection Methods: Diagram 4400

Random Seeds – Synthetic Data

%let COUNT = 200 %let WEIGHT = 0.2;%let SEED = 1; %let INFILE = INFILE; = RANDOM DATA; %let OUTFILE data &INFILE.; do I = 1 to &COUNT.; Х = 3.0; Y = 3.0; NOISE X = rannor(&SEED.); = rannor(&SEED.); NOISE Y output; Х = 5.0; Y = 5.0; NOISE X = rannor(&SEED.); NOISE_Y = rannor(&SEED.); output; Х = 4.0; Y = 6.0: = rannor(&SEED.); NOISE X NOISE Y = rannor(&SEED.); output; Х = 6.0; Y = 4.0; NOISE X = rannor(&SEED.); NOISE Y = rannor(&SEED.); output; Х = 4.0; Y = 4.0; NOISE X = rannor(&SEED.); NOISE_Y = rannor(&SEED.); output; end; drop I; run; data &OUTFILE.; set &INFILE.; Х = X + &WEIGHT.*NOISE X; Υ = Y + &WEIGHT.*NOISE Y; drop NOISE X; drop NOISE Y; run;

Random Seeds – Synthetic Data

Random Seeds – Shuffle Cards

```
%let INFILE
                   = RANDOM DATA;
%let TEMPFILE
                   = TEMPFILE;
%let OUTFILE
                   = SORTED DATA;
data &TEMPFILE.;
set &INFILE.;
SORT = ranuni( &SEED. );
run;
proc sort data=&TEMPFILE.;
by SORT;
run;
data &OUTFILE.;
set &TEMPFILE.;
drop SORT;
run;
proc print data=&OUTFILE.(obs=5);
run;
```

= 2;

%let SEED

Random Seeds – Shuffle Cards

General			
Node ID	Clus		
Imported Data		G.	
Exported Data			
Notes			
Train			
Variables			
Cluster Variable Role	Segment		
Internal Standardization	Standardization		
Number of Clusters			Set the numbers to
Specification Method	User Specify		
Maximum Number of Clusters	5	E	exactly 5 clusters
Selection Criterion			,
Clustering Method	Ward		
-Preliminary Maximum	50		
Minimum	2		
Final Maximum	20		Use first 5 data points as
-CCC Cutoff	3		
Encoding of Class Variables			cluster seeds
Ordinal Encoding	Rank		
-Nominal Encoding	GLM		Repeat for "Partial"
Initial Cluster Seeds			
-Seed Initialization Method	First		 Repeat for "Full"
-Minimum Radius	0.0		
-Drift During Training	No		Repeat for "MacQueen"
Training Options			
-Use Defaults	Yes		 Repeat for "Princomp"
Settings		-	
Missing Values			

First "N" Selection Method

MacQueen Selection Method

Full Selection Method

Partial Selection Method

Princomp Selection Method

AGE

AGE

AGE

What Are The Cluster Centers?

Different Starting Points and Settings Can Yield Different Results

- Occasionally sub-optimal clusters are found
- Usually the same optimal clusters are found regardless of starting points and settings

Five different settings

- 2 of 5 have sub optimal Clusters
- 3 of 5 have optimal cluster
 - Even sub-optimal Clusters have some similarity to optimal clusters

Monte Carlo Clustering

Copyright © SAS Institute Inc. All rights reserved

Monte Carlo Macros

Copyright © SAS Institute Inc. All rights reserved

Monte Carlo Clustering

Cluster data repeatedly:

- Use different methods for determining starting points
- Use different clustering methods

After each clustering algorithm finishes:

- After each iteration, record the number of clusters
- After each iteration, record the cluster centers

After numerous iterations:

- Determine the correct number of clusters
- Cluster the "Cluster Centers"

SAS Macro: Sleep

- Macro will cause the SAS Program to "sleep" for a specified number of seconds.
- This gives the operating system time to write files to disk and prevents deadlocks.

Parameters

%SLEEP(HOWLONG);

- HowLong : How many seconds should the program "sleep"

SAS Macro: Sleep

```
%macro SLEEP( HOWLONG );
data;
time_slept=sleep(&HOWLONG.,1);
run;
%mend;
```

SAS Macro: Save_Cluster_Info

- Stores the number of clusters and the cluster centers found by
 - SAS Enterprise Miner Cluster Node
 - SAS Enterprise Miner SOM/Kohonen Node
- Results are collected from Enterprise Miner nodes and appended to SAS data files
- Clusters with rare membership are deleted

SAS Macro: Save_Cluster_Info

SAS Macro: Save_Cluster_Info Sample Run: Second Run found "5" Clusters

SAS Macro: Save_Cluster_Info Sample Run: Third Run found "5" Clusters

How Many Clusters File:

0bs _HOWMANY_ 1 7 2 5 3 5

Cluster Center File:

<u>е</u> .	Oha		v	v
С.	UDS	_HOWMANY_	X	Ŷ
	1	7	3.03363	2.74416
	2	7	4.16234	3.71581
	3	7	6.03689	3.95565
	4	7	4.00574	4.82218
	5	7	2.71785	3.49664
	6	7	3.96880	6.14890
	7	7	5.12917	5.06041
	8	5	2.90993	3.03597
	9	5	4.06764	3.98039
	10	5	6.01687	3.95821
	11	5	5.02613	5.04958
	12	5	3.94580	6.00564
	13	5	6.02094	3.95189
	14	5	3.95058	6.00808
	15	5	5.05562	5.05453
	16	5	4.07909	4.01951
	17	5	2.92715	3.03838

SAS Macro: Save_Cluster_Info (page 1 of 3)

```
%macro CLUSTER SLEEP( HOWLONG );
        data;
        time slept=sleep(&HOWLONG.,1);
        run;
%mend;
%macro SAVE CLUSTER INFO ( CENTERFILE,
                        OUTFILE CENTERS,
                        OUTFILE HOWMANY,
                                     = TEMPFILE,
                        TEMPFILE
                        HOWMANY
                                      = HOWMANY ,
                        CUTOFFPCT = \overline{0}.1,
                                       = 1 );
                        HOWLONG
data & TEMPFILE.;
set &CENTERFILE.;
drop RADIUS ;
drop CRIT
            XCONV FCONV RMSSTD
                                    NEAR
                                          GAP
                                                SEGMENT ;
drop CRIT XCONV FCONV SOM SEGMENT RMSSTD NEAR GAP
SOM DIMENSION1 SOM DIMENSION2 SOM ID;
run;
```

SAS Macro: Save_Cluster_Info (page 2 of 3)

```
data;
set &TEMPFILE.;
retain &HOWMANY.;
if N = 1 then &HOWMANY. = 0;
\&HOWMANY. = \&HOWMANY. + FREQ ;
call symput("HOWMANYCOUNT", & HOWMANY.);
run;
data &TEMPFILE.;
set &TEMPFILE.;
if FREQ / &HOWMANYCOUNT. * 100 < &CUTOFFPCT. then delete;
run;
data;
set &TEMPFILE.;
retain &HOWMANY.;
if N = 1 then &HOWMANY. = 0;
\&HOWMANY. = \&HOWMANY. + 1;
call symput("HOWMANYCOUNT", &HOWMANY.);
run;
data &TEMPFILE.;
length &HOWMANY. 8.;
set &TEMPFILE.;
\&HOWMANY. = \&HOWMANYCOUNT.;
drop FREQ ;
run;
```

SAS Macro: Save_Cluster_Info (page 3 of 3)

```
%cluster sleep(&HOWLONG.);
proc append data=&TEMPFILE. out=&OUTFILE CENTERS. force;
run;
%cluster sleep(&HOWLONG.);
data &TEMPFILE.;
set &TEMPFILE.(obs=1);
keep &HOWMANY.;
run;
%cluster sleep(&HOWLONG.);
proc append data=&TEMPFILE. out=&OUTFILE HOWMANY. force;
run;
%cluster sleep(&HOWLONG.);
%mend;
```


%include the MACRO

Project Start Code

Enter code to execute when this project is opened or a node is run. Enter SAS OPTIONS statements, LIBNAME statements, TITLE will affect the environment of the SAS code submitted by Enterprise Miner.

<pre>%include "D:\Worksl</pre>	<pre>hop\Winsas\BPCASGF\MACROS\bpca_clusterCenters.sas";</pre>	
<pre>%include "D:\Worksl</pre>	nop\Winsas\BPCASGF\MACROS\bpca sleep.sas";	
%let PATH	= D:\Workshop\Winsas\BPCASGF;	
%let NAME	= SGFLIB;	
%let LIB	= GNAME;	
libname «NAME.	"&PATH. \DATA";	
	<pre>%include "D:\Works! %include "D:\Works! %let PATH %let NAME %let LIB libname &NAME.</pre>	<pre>%include "D: \Workshop \Winsas \BPCASGF \MACROS \bpca_clusterCenters.sas"; %include "D: \Workshop \Winsas \BPCASGF \MACROS \bpca_sleep.sas"; %let PATH = D: \Workshop \Winsas \BPCASGF; %let NAME = SGFLIB; %let LIB = &NAME libname &NAME. "&PATH. \DATA";</pre>

23	<pre>%include "D:\Works) %include "D:\Works) </pre>	nop\Winsas\BPCASGF\MACROS\bpca_clusterCenters.sas"; nop\Winsas\BPCASGF\MACROS\bpca_sleep.sas";
5	%let PATH	= D:\Workshop\Winsas\BPCASGF;
6	%let NAME	= SGFLIB;
7	Slet LIB	= GNAME;
0	libname aware.	"&PAIN. (DAIA";
10		
11		

EXAMPLE-Using the Macro: Diagram 5100

Cluster Node Data Collection

- 1. Use same Synthetic Data Program as Example 3 of Lecture 4. The Noise factor is set to 0.5
 - 200 points centered at (3,3)
 - 200 points centered at (5,5)
 - 200 points centered at (4,6)
 - 200 points centered at (6,4)
 - 200 points centered at (4,4)
- 2. Use same "shuffle program" use SEED = -1
 - A value of -1 causes the computer clock to be used as a "seed".
 - This results in a different random seed being used every time the program is executed.

Cluster Node Data Collection

3. Cluster Node Settings

- Ward Clustering (but any method will do)
- Partial Replacement Cluster Seed (but any method will do)
- Automatic Cluster Selection
 - Max 7: (Maximum Value from Example 3 of Lecture 4)
 - Min 3: (Minimum Value from Example 3 of Lecture 4)

4. Save the Cluster Centers using the Save_Cluster_Info Macro.

Cluster Node Data Collection

5. Rerun Numerous Times

- Shuffle
- Cluster
- Save_Cluster_Info

6. Cluster the Clusters Centers

, Property	Value	
General	and a later	*
Node ID	EMCODE9	
Imported Data		
Exported Data		
Notes		
Train		
Variables		
Code Editor		
Tool Type	Utility	
Data Needed	No	
Rerun	Yes	
Use Priors	Yes	
Score	1000	-
Advisor Type	Basic	1
Publish Code	Publish	
Code Format	DATA step	
Status		
Create Time	4/15/17 1:39 PM	
Run ID	359ff78f-97ba-4b50-b77f	
Last Error		
Last Status	Complete	
Last Run Time	4/23/17 10:40 AM	
Run Duration	0 Hr. 0 Min. 13.17 Sec.	
Grid Host		-
Liser-Added Node	No	•

Set the "Rerun" to "Yes" so that this code node will rerun every time and will reshuffle the data.

Property	Value	
General	1	
Node ID	Clus	
Imported Data]
Exported Data		j
Notes		J
Train		
Variables		E
Cluster Variable Role	Segment	
Internal Standardization	n None	
Number of Clusters		
Specification Method	Automatic	
Maximum Number of Clu	ust5	
Selection Criterion		
Clustering Method	Ward	
Preliminary Maximum	7	
Minimum	3	
Final Maximum	7	
CCC Cutoff	3	
Encoding of Class Varial	ble	
Ordinal Encoding	Rank	
Nominal Encoding	GLM	
Initial Cluster Seeds		
Seed Initialization Meth	od Partial Replacement	
Minimum Radius	0.0	
Drift During Training	No	-

Number of clusters is set to "Automatic". The MAX is set to "7" and the MIN is set to "3" because that was the range found in Lecture 4 Example 3. The Clustering Method is set to "Ward", but "Average" or "Centroid could also be used.

Seed Intitialization is set to "Partial Replacement" but other methods could be used.

Cluster Node Data Collection Results: Run 1

Cluster Node Data Collection Center Points After 1 Run

Cluster Node Data Collection Results: Run 2

Cluster Node Data Collection Center Points After 2 Runs

Cluster Node Data Collection Results: Run 4

Cluster Node Data Collection Center Points After 4 Runs

Cluster Node Data Collection Center Points After 10 Runs

Looping in SAS Enterprise Miner

Copyright © SAS Institute Inc. All rights reserved

Automated Data Collection

Manually executing the Data Collection Program is time consuming

SAS Enterprise Miner has a "Looping" Structure to automate Cluster Data Collection

IMPORTANT: Occasionally when SAS Enterprise Miner is "Looping", then a error might occur. This is usually a result of a file deadlock state. It does not matter. Just exit Enterprise Miner and start running it again if you wish. You might have already collected enough samples by that point in time, so rerunning may not be necessary.

General	2	1
Node ID	Grp	E1
Imported Data		
Exported Data		
Notes		
Train		
Variables	-	
Rerun	Yes	
General		
Mode	Index	
Target Group	No	
Index Count	3	Ε
L.Minimum Group Size	10	
-Bagging		
Туре	Percentage	
Observations	4	
Percentage	10.0	
Random Seed	12345	
Status		
Create Time	1/14/17 1:09 PM	
Run ID	2f2c7da7-fe65-4650-8b29	
Last Error		
Last Status	Complete	
Last Run Time	4/24/17 3:00 PM	
Pup Duration	0 Hr 0 Min 9 74 Sec	+

• Rerun = Yes

Mode:

- Index Informs SAS that it will loop "N" number of time.
- Index Count:
- The Number of times the loop will execute. In this case the number will be "3" but the number can be set to a much higher value if a person plans to be away from their computer for a while.


```
%let CENTERFILE = SGFLIB.y5100_CENTERFILE;
%let HOWMANYFILE = SGFLIB.y5100_HOWMANYFILE;
proc print data=&CENTERFILE.(obs=100);
run;
proc print data=&HOWMANYFILE.(obs=100);
run;
proc freq data=&HOWMANYFILE.;
table _HOWMANY_ /missing;
run;
```

			Cumulative	Cumulative
HOWMANY	Frequency	Percent	Frequency	Percent
3	6	2.58	6	2.58
4	6	2.58	12	5.15
5	161	69.10	173	74.25
7	60	25.75	233	100.00

After running 233 time, it is observed that

- 70% of the time, 5 clusters are found
- 26% of the time, 7 clusters are found

Note: Because of the nature of the random number generator, rerunning this model might yield slightly different results.

Automated Data Collection Clusters = 5 Center Points

Automated Data Collection Clusters = 7 Center Points

Cluster the Centers

Copyright © SAS Institute Inc. All rights reserved

Cluster the Cluster Centers Enterprise Miner Diagram

Cluster the Cluster Centers Enterprise Miner Diagram


```
*%let CENTERFILE
                   = SGFLIB.y5100 CENTERFILE;
*%let HOWMANYFILE = SGFLIB.y5100 HOWMANYFILE;
%let CENTERFILE = SGFLIB.z5100 CENTERFILE;
%let HOWMANYFILE = SGFLIB.z5100 HOWMANYFILE;
%let OUTFILE = &EM EXPORT_TRAIN.;
proc print data=&CENTERFILE.(obs=100);
run;
proc print data=&HOWMANYFILE. (obs=100);
run;
proc freq data=&HOWMANYFILE.;
table HOWMANY /missing;
run;
data &OUTFILE.;
set &CENTERFILE.;
run;
```


Cluster the Cluster Centers Enterprise Miner Diagram


```
%let INFILE = &EM_IMPORT_DATA.;
%let OUTFILE = &EM_EXPORT_TRAIN.;
%let HOWMANY = 5;
proc print data=&INFILE.(obs=100);
run;
data &OUTFILE.;
set &INFILE.;
if _HOWMANY_ = &HOWMANY.;
drop _HOWMANY_;
run;
```


Example 3: Cluster the Cluster Centers Cluster of Center Points = 5

Example 3: Cluster the Cluster Centers Cluster of Center Points = 7

Cluster the Cluster Centers Applied to Original Data

Example 3: Clusters = 5 Applied to Original Data

Example 3: Clusters = 7 Applied to Original Data

Kohonen/SOM Clusters

Cluster Node Data Collection Enterprise Miner Diagram

```
%let INFILE
                    = &EM LIB..&EM METASOURCE NODEID. OUTMEAN;
%let CENTERFILE
                    = SGFLIB.y6100 CENTERFILE;
                    = SGFLIB.y6100 HOWMANYFILE;
%let HOWMANYFILE
proc print data=&INFILE.;
run;
%save cluster info( &INFILE., &CENTERFILE., &HOWMANYFILE.);
proc print data=&CENTERFILE.(obs=30);
run;
proc print data=&HOWMANYFILE.(obs=10);
run;
proc freq data=&HOWMANYFILE.;
table HOWMANY /missing;
run;
data & EM EXPORT TRAIN.;
set &CENTERFILE.;
run;
```

Cluster Node Data Collection Enterprise Miner Diagram

Questions?

pyright © SAS Institute Inc. All rights reserved