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ABSTRACT  

ARIMA (AutoRegressive Integrated Moving Average) models for data taken over time were 
popularized in the 1970s by Box and Jenkins in their famous book. SASTM software procedures 
PROC ESM (Exponential Smoothing Models) and PROC UCM (Unobserved Components 
Models which are a simple subset of statespace models – see PROC SSM) have become 
available much more recently than PROC ARIMA.  Not surprisingly, since ARIMA models are 
universal approximators for most reasonable time series, the models fit by these newer 
procedures are very closely related to ARIMA models. In this talk, some of these relationships 
are shown and several examples of the techniques are given.  At the end, the listener will find 
that there is something quite familiar about these seemingly new innovations in forecasting and 
will have more insights into how these methods work in practice.  The talk is meant to introduce 
the topics to anyone with some basic knowledge of ARIMA models and the examples should be 
of interest to anyone planning to analyze data taken over time. 

INTRODUCTION  
In this paper some relatively recent additions to the SAS/ETS toolkit are introduced. These are PROC 
ESM for exponential smoothing models and PROC UCM for unobserved components models.  This 
second set of models is a subset of what are called statespace models and SAS provides PROC SSM for 
dealing with this more general class.  Interestingly, the models underlying these procedures are related, 
sometimes very closely, to the autoregressive integrated moving average (ARIMA) models that have 
been in popular use in time series analysis for decades,  hence the paper’s title.  This link will be 
explained with the hope of making these newer procedures understandable to those readers familiar with 
ARIMA models. 

1. NONSTATIONARY ARIMA MODELS. 
The notation ARIMA(p,d,q) stands for an AutoRegressive Integrated Moving Average model with p 
autoregressive lags (lags of response Y after d differences are taken) , and q moving average  lags (lags of 
the white noise error term e).  For the purposes this paper, a white noise series et is a series of 
independent identically distributed random variables where t is a time index, t=1,2,3,…  A first 
differenced series is Yt-Yt-1 where Yt is the response at time t. A first difference is indicated by d=1 in the 
ARIMA(p,d,q) notation. Anyone familiar with news broadcasts is familiar with differenced series.  The up 
or down numbers for the Dow Jones Industrials Average and the S&P 500 are examples of first 
differences of the series levels. Differencing the differences, d=2, results in Yt -2Yt-1+Yt-2 as a target series. 
Differences with d>1 are rare in practical situations but d=1 is fairly common. Seasonal differences of the 
form Yt-Yt-s, where s=12 for monthly data, are also common, possibly in combination with ordinary 
differences.  Why do analysts difference series?  In the stock market the differences may be of more 
interest to investors than the levels.  
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From a mathematical standpoint, differencing is used to ensure (1) a constant mean for the resulting 
series and (2) a covariance between the time t difference and that at time t-j which depends only on the 
time separation j.  These two properties define a condition known as stationarity of the series.  
Much theory is worked out for stationary series so that getting a series stationary by differencing or 
otherwise has been the historical approach to analysis.  
Here is a graph of U.S. coal futures, western area, from the New York Mercantile Exchange as reported 
by the U.S. Energy Information Agency and to its right, the series of first differences or changes in the 
futures price. The series on the left does not appear to have a constant mean, while that to the right 
seems closer to a constant mean.  
 

      
 
Figure 1.  Coal futures prices 
 
The series will be analyzed treating the observations as contiguous even though futures prices are not 
reported sometimes, weekends for example. A random walk is a series symbolized as ARIMA(0,1,0) and 
the one step ahead forecast from such a series is just the previous observed value.  The model for an 
ARIMA(0,1,0) is thus  

1t t tY Y e−− = or 1t t tY Y e−= +  

where et is a white noise series.  Notice that if the left graph in Figure 1 is such a random walk then the 
right plot is simply et versus t. Note also the absence of a mean in the model.  There is thus no tendency 
of the forecasts to return to a historical mean and no reason to use the relative position of the most 
recent value with respect to the historical mean as a key to investing in a financial product that follows 
this model. One might question the identical distribution assumption as there are a few unusually large 
positive or negative values suggesting possibly contaminating outliers or just an unusually heavy tailed 
distribution.  
 
Based on the model, a random walk forecast predicts the next value from the current one. The forecast 
one step into the future is thus just the last observed value.  Going two steps into the future, there is no 

observed predecessor value so the one step ahead forecast, 1t̂Y +  replaces 1tY + . For j>1, the forecast is a 

recursion, namely  1
ˆ ˆ
n j n jY Y+ + += .  Beyond the end of the series, each forecast is just its predecessor, so 

the random walk forecast infinitely far into the future is just the last observed value nY . The forecast is 

just a constant. Recursions are the key to the newer procedures detailed here.  



 
A model related to the random walk is the random walk with drift β given by  

1t t tY Y eβ−= + + . 

If the observations end at nY then it is seen that the forecast one step into the future is  

1n̂ nY Y β+ = +  
Two steps ahead the forecast is  

2 1
ˆ ˆ 2n n nY Y Yβ β+ += + = +  

and the j step ahead forecast is, in the same fashion,  

1
ˆ ˆ
n j n j nY Y Y jβ β+ + −= + = +  

The form of the forecast is that of a line with slope β   emanating from the last observation. Of course 

the slope would have to be estimated from the differenced data.  Since 1t t tY Y eβ−− = +  the best 

estimate of the slope is the average value of the differences and since the sum of these differences is 

just 2 1 3 2 1 1( ) ( ) ... ( ) ( )n n nY Y Y Y Y Y Y Y−− + − + + − = − the estimates slope is 1
ˆ ( ) / ( 1)nY Y nβ = − − . Thus 

the forecast is an extension of the line connecting the first observation to the last.  See the slanted 
(green) line in Figure 2.  
 
Models related to random walks are popular, perhaps in part because the random walk model captures 
the overall pattern of a slowly varying time series.  For example, even though the one step ahead 
forecast is just the preceding value, a plot of the coal futures forecast overlaid on the data series looks at 
first to do a very good job one step ahead as shown in Figure 2.  
 
In that figure the data are plotted as (red) circles. There is a (blue) line that appears visually to connect 
the data points, but in fact the blue line is a random walk forecast.  Each forecast is just the previous 
observed value. Despite the apparently excellent forecast through the historical data, each forecast 
from the random walk is just a short (blue) horizontal line emanating from the previous observation. 
One reason that the forecast seems so accurate is that the series does not change extremely rapidly in 
much of the graph and another, more important reason, is that the human eye tends to judge closeness 
in two dimensions rather than by vertical deviations as the model does. Note that the vertical deviations 
from the random walk forecast are just the points in the right hand panel of Figure 1. Some are quite 
large. 
 
The random walk with drift forecast follows the slanted line in Figure 2 after the end of the data which is 
marked by a vertical reference line. Within the historical data, the one step ahead forecasts add a small 
drift ˆ 0.0079435β =  to the random walk forecast. These differ imperceptibly from the random walk 
forecasts within the historical data.  Despite this historical closeness, beyond the end of the series the 
linearly increasing forecast and the horizontal forecast become clearly distinct from each other.  That 
drift term changes the forecast into the future dramatically. Finally, if the data were treated (obviously 
incorrectly) as a mean plus uncorrelated errors, the forecasts would simply form a horizontal line at 
height equal to the average observed value, indicated by the horizontal reference line stretched across 
the width of the graph.  Using a mean as the forecast comes nowhere close to reproducing the historical 
data as does the random walk forecast with or without drift.   



 

 
 
Figure 2. Data with three forecasts – random walk (higher horizontal line segment) simple mean (lower 
horizontal line) and random walk with drift (slanted line).  
 
Detail: Figure 2 shows a few relatively long almost vertical blue line segments in the historical data.  One 
of these is near the middle of the time period.  The point near the top of that line segment is, with a 
random walk, the forecast of the point at the bottom so the error in the forecast is approximately the 
length of the line, a fairly large error.  It is only because the horizontal distances (each being one time 
unit) from the points to the line segments are small that the forecast appeals to the eye, misleadingly 
appearing to be excellent.  In other words, in a random walk, the one step ahead forecast has the same 
vertical coordinate as the preceding observation (by definition of a random walk) and is only one time 
unit to the right. In fact the forecast errors are in the vertical direction. The forecast errors are thus just 
the differences of the data which appear, as shown in Figure 1, to vary from about -1 to 1.4.  
 
In summary, the random walk forecast uses the last observation in the data as a forecast into the 
foreseeable future, ignoring all the data in the past.  The alternate assumption of a mean plus 
uncorrelated errors uses all the data in the series with equal weights no matter how far in the past are 
the data points, to get a different horizontal line forecast. 

2. EXPONENTIAL SMOOTHING FORECASTS 

PROC ESM offers several forecasting models depending on whether trends or seasonal patterns exist. 
Using the coal example to illustrate a simple case, two horizontal forecasts have been described, one 
that gives 0 weight to the past data and weight 1 to the most recent observation and another, the 
sample mean, that gives equal weights (1/n) to the n data points in a data set. These can be thought of 
as two extremes on a continuum – bookends so to speak.  Why would we use the old data up through 
about October of 2016?  These data seem to represent a temporary past trend that appears to have 
minimal relevance to the recent data.  The random walk forecast downplays past data, in fact it 
completely ignores all but the most recent observation.  On the other hand, why should we ignore all 
data points except the last?  A compromise might be had by downweighting data from the past with 
weights that exponentially decrease as we move further into the past. A prediction formula such as  



1
0

ˆ (1 ) j
t t j

j
Y Yω ω

∞

+ −
=

= −∑  

with 0<ω<1 would do the job since raising a number less than one, like 1-ω, to higher and higher 
powers, as one goes back into the past, causes early data to receive very small weights and thus to have 

little influence on the computed simple forecasts.  Notice that 
0
(1 ) 1j

j
ω ω

∞
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− =∑ making the above 

expression a true weighted average for 0<ω<1.  For example, if 0.99ω =   then  
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= + ∑  which is close to the random walk forecast tY .   Computing a 

forecast in this way is, for hopefully obvious reasons, called exponential smoothing. For this reason, 
assuming all values of Y prior to the observed series are 0 would not too badly affect the forecast if ω is 
not too close to 0 and the observed series is long.  As shown above, an ω near 1 suggests a very strong 
discounting of past data and thus the possibility that a random walk forecast, one that that totally 
ignores all but the most recent data point, might be appropriate. Suppose, in estimating ω, we see the 
estimates moving toward 1 and being stopped at the software imposed boundary 0.999. This results in a 
nonconvergence warning. One response based on the above discussion would be to try a random walk 
forecast.    
 
In contrast, an ω near 0 suggests persistent weights going into the distant past and thus suggests that 
using the sample mean plus stationary errors might be appropriate.  Again, a sequence of estimates 
approaching 0 and stopped at 0.001 results in nonconvergence and may result when the series is just a 
mean plus stationary errors.  
 
In Figure 3, the coal futures data are shown along with the two horizontal forecasts just described.  The 
top horizontal line with height equal to the last observation is the random walk forecast and the 
horizontal reference line extending left to right across the graph is the sample mean. Along with these 
are plotted five other forecasts using exponential smoothing with exponential decay rate w=(1-ω) = 0.99 
(thick cyan line nearest the random walk forecast) 0.985 (thin black line just below the light cyan line), 
0.80, 0.40, and 0.10 (nearest to the bottom horizontal line).  
 



 
 
Figure 3. Various coal futures Forecasts. 

3. ANOTHER EXAMPLE AND MORE ON WEIGHTS. 

Figure 4 shows April snowfall amounts in Denver.  When the record showed T (trace amount), 0.05 was 
substituted, this being the average of 0 and the lowest recorded nonzero amount 0.10. Trace amounts 
are shown as circles and were more commonly recorded in 1900-1950 than after 1950.  
 

 
 
Figure 4. Denver snowfall in April 1882-2015. 
 
In Figure 5 the same plot is shown with two means (ordinary mean 8.92 and weighted average 6.35 with 
decay rate 1-ω=0.80 being used) and a least squares regression line indicating a decreasing trend in April 
snow. Should 8.92 or 6.35 or something else be reported as average April snowfall? Is it relevant now to 
give equal weight to observations carefully made with modern equipment and measurements made 
only a decade or so after the civil war? Does the linear trend represent what is happening? One might 
find motivation for downweighting the past based on the fact that modern observations should have 
less inherent error variability (better accuracy) than those made several decades ago.  



 

 
 
Figure 5. Ordinary and weighted (ω=0.2) means and regression line.  
 
The effect of weighting can be illustrated by adding a right side axis and plot of the weights ω(1-ω)j as in 
Figures 6 and 7.  
 

 
 
Figure 6. Adding weights ω(1-ω)j to the graph with ω = 0.20 (decay rate 1−ω = 0.80).  
 
A decay rate of (1-ω)=0.8 seems close enough to 1 that it should incorporate several recent years in the 
weighted average. However, years prior to 1994 or so have weights visually indistinguishable from 0 in 
Figure 6.  Data inspection shows all these weights are less than 1/500 and in fact their total is less than 
0.01.  Two more weights are illustrated, using omega = 0.02 and 0.60, in the left and right panels of 
Figure 7. This begs the question of how to choose the weights. 
 



     
 
Figure 7. Comparing ω = 0.02 (decay rate 0.98) to ω = 0.60 (rate 0.40).  

4. CHOOSING THE WEIGHTS. 
Notice that up until now, the exponential smoothing process has been considered as just that – a 
process that has intuitive appeal and is simple to compute. It has been seen that the process and 
resulting forecasts can be sensitive to the weights chosen.  There has been no discussion of how to 
estimate and test the weights nor has there been a discussion of forecast standard errors.   
 
Historically, fixed weights for various scenarios were suggested. This evolved into the suggestion of 
computing error sums of squares for a grid of weights and picking the weight that minimized it. This 
would be termed estimation using a least squares methodology.  If the exponential smoothing process 
can be viewed as arising from an ARIMA model, which we show it can, then all of the extensive 
estimation machinery for those models can be brought to bear on the weight estimation problem.  
 
As an example, consider forecasting from an ARIMA(0,1,1) or IMA(1,1) given by 1 1t t t tY Y e eθ+ += + − . We 

assume 0< θ <1.  A sequence of algebraic manipulations allow us to express 1t̂Y +  as an exponentially 

weighted average of current and past Y values as follows:  

1 1t t t te Y Y eθ+ += − +  which holds at all times so 1 1t t t te Y Y eθ− −= − +  and substituting we have 

1 1t t t te Y Y eθ+ += − +  = ( )1 1 1 1( )t t t t t te Y Y Y Y eθ θ+ + − −+ − + − + = 2
1 1 1 1( ) ( )t t t t t te Y Y Y Y eθ θ+ + − −+ − + − +  

 
Repeated back substitution in this fashion results in  

2 3
1 1 1 1 2 2 3( ) ( ) ( ) ( ) ...t t t t t t t t te Y Y Y Y Y Y Y Yθ θ θ+ + − − − − −= − + − + − + − + where the lagged e on the right has 

disappeared because 0<θ <1 and so θ k converges to 0 as k increases. One last algebraic rearrangement 
yields 2 3

1 1 1 2 3(1 )( ...)t t t t t tY e Y Y Y Yθ θ θ θ+ + − − −= + − + + + +  and thus the forecast is the same as that of 

the exponential smoothing method, namely  2 3
1 1 2 3

ˆ (1 )( ...)t t t t tY Y Y Y Yθ θ θ θ+ − − −= − + + + +   .  

Comparing this expression to 1
0

ˆ (1 ) j
t t j
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= −∑ we see that they are the same if θ =1−ω.  

 



Having seen that an ARIMA(0,1,1) model gives an exponential smoothing model, we have conditional 
least squares and maximum likelihood available to estimate θ=1−ω. The likelihood function for the 
vector D of differenced data with mean 0  is  

1/2/2 ' 1(2 ) exp( 0.5 )n D Dπ −− −Σ − Σ  

where Σ is the MA(1) covariance matrix, a matrix with 1+θ2 in the diagonal, −θ immediately above and 
below, and 0 elsewhere.  
 
The left panel of Figure 8 shows data generated as an ARIMA(0,1,1) series with θ = 0.80. The right panel 
shows the resulting likelihood function for various θ. The maximum likelihood estimate of θ is 0.83.  
Recall that ω=1−θ.  Note too how much the series on the left changes level, even without a drift term. 
The maximum likelihood estimate (MLE) of ω, because it is a function of θ, is 1 minus the MLE of θ. The 
maximum likelihood estimate of ω is thus 1-0.83=0.17.  
 

      
 
Figure 8. A perfect candidate for exponential smoothing and its likelihood function.  

5. EXAMPLE: ATLANTIC TIDES. 

The National Oceanic and Atmospheric Administration (NOAA) provides tidal measurements on their 
web page. Below, in Figure 9, are hourly tides at Wilmington NC from January 21, 2018 through January 
26, 2018 with reference lines at each midnight. The typical 2 high tides per day are observed. Predictions 
are represented with a dashed curve and observations with a solid curve. The NOAA predictions capture 
the overall seasonality well.  Locally there seem to be long stretches of hours in which the forecasts stay 
over (or under) the actual tides. Can the NOAA predictions be improved locally using exponential 
smoothing?  Given data up to now and the NOAA forecasts of the future, can exponential smoothing 
improve the forecasts for the next 24 hours or so? Such an improvement is sought in the next analysis.  
 



 
 
Figure  9.  Hourly Atlantic tides January 21-26, 2018. 
 
The differences, actual-predicted, are shown in Figure 10 to the left of the vertical line.  It seems there is 
some seasonality in the prediction errors at least over this period of time.  
 

 
 
Figure 10. Historical deviations of actual tides from predictions, Wilmington NC (with ESM forecasts).  
                       
To the right of the vertical line are the forecasts from a modification known as seasonal exponential 
smoothing. The data are hourly with period 24 hours. Time is stored as a SAS datetime variable so that 
PROC ESM “knows” the associated periodicity. The smoothing operation treats all the midnight 
observations as forming a series to be smoothed, all the 1 a.m. observations as another series etc. up 
through the 11 p.m. series. Using the same weight for all, the procedure produces 24 smoothed values, 
one for each hour of the day, used for one day ahead, two days ahead, etc. producing a level forecast 
with seasonality added. Note that there are two high tides each day. Because these 48 forecasts are all 
negative, the anticipation is that the NOAA predictions will be too high. In the analysis, the last 24 hours 
of data were withheld so that an honest assessment of performance will be available.   



 
If there is a trend and seasonality, two methods, Winters’ additive and multiplicative methods, are 
available. The additive method adds seasonal terms to a linear trend forecast where the terms add to 0. 
The multiplicative method multiplies the trend by seasonal factors that average to 1. Trends with 
seasonality are often encountered. If the seasonality seems to increase in amplitude as the level 
increases, the multiplicative method is indicated. If not, use the additive version.  
 
Returning to the tides data, the forecasts of actual – predicted can be added to the future predictions in 
an attempt to improve the predictions. Figure 11 shows the actual values (red with markers) and two 
predictions. To the left of the vertical line the predictions are identical to each other and above the 
actual values. To the right, the blue top curve represents the unadjusted NOAA predictions which are 
above the actual tides everywhere. The remaining green curve, below the actuals at high tide and above 
at low tide, are the adjusted predictions which seem closer to the actual tides.   
 

 
 
Figure 11. Last day of training data and first day of forecast (validation) data.  

 
To check that the adjustment is really an improvement, the sum of squared prediction errors is 
computed for the year of withheld data. These are 10.67 and 3.67 for the unadjusted and adjusted 
predictions.  The seasonal exponential smoothing of forecast errors has reduced the prediction error 
sum of squares to 1/3 of its previous value, a substantial improvement in the short term.  
 
Note also, looking ahead to unobserved components models, that the ARIMA version of the seasonal 
exponential smoothing model is Yt = Yt−24 + et − θet−24 and without the error terms, letting Yt = Yt−24 will 
simply repeat an initial set of 24 numbers periodically into the future. This will be a basic unobserved 
component as will be a trend produced by a recursion similar to Yt = Yt−1+β.  

6. SMOOTHING FOR TRENDING DATA. 

To finish the discussion of PROC ESM, smoothing of nonseasonal trending data should be discussed. 
Three methods are available.  The first is double exponential smoothing.  Single exponential smoothing 
gives a column of smoothed values, each of which is a forecast of the next observation. We have seen 



that the recursion St+1 = ωYt + (1−ω)St−1 where S is the smoothed series and Y is the observation, gives 
this column of smoothed values.  We can also smooth the smoothed values as Lt+1 = ωSt + (1−ω)Lt−1 
where L is the double smoothed value.  L is used here because the forecast is a linear trend.  The 
equivalent ARIMA model, using the backshift notation B common in ARIMA discussions, is (1-B)2Yt =  
(1−θB)2et. Notice that there is no intercept.   
 
Why should the moving average roots be the same?  Why should we use the same weights in the first 
and second smoothing stage? If we allow 2 different weights we have what is known as Holt’s method of 
linear smoothing with the equivalent ARIMA(0,2,2) model being (1-B)2Yt = (1−θB) (1−γB)et.  Suppose the 
last 2 Y values in a series are 100 and 120 and the first two forecasts are 125 and 129. The Y value 2 
periods ahead involves e values that have not yet occurred so the forecast for period 3 is just 2(129)-125 
= 133, an increase of 4 from 129 and 8 from 125. This is because (1-B)2Yn+3 = en+3 – (θ+γ)en+2+γθen+1. 
Setting the unknown future e values to 0 this becomes Yn+3-2Yn+2+Yn+1 = 0 or Yn+3=2Yn+2+Yn+1 where these 
Y values are now replaced by forecasts. Similarly 2(133)-129 is  137, another increase of 4. Continuing in 
this fashion we get forecasts increasing linearly at rate 4 regardless of whether double smoothing or 
Holt’s method was used to get 125 and 129.  
 
Would a forecast that increases or decreases linearly for all time be appropriate?  It might be safer to let 
the forecast taper off.  In terms of ARIMA models, an ARIMA(1,1,2) will show this behavior in the 
forecasts. In other words, one of the differences (1-B) in Holt’s method is replaced with an 
autoregressive factor (1−αB) with 0<α<1. As before, the use of a first difference gives a forecast that 
asymptotes to something that is often not too far from the last observation and certainly removes any 
tendency to return to the historic mean. The exponential approach to the limit value is at rate α.   
 
The use of exponential smoothing should always involve a “sanity check” obtained by graphing the data 
and forecasts.  To illustrate the dangers of blindly applying exponential smoothing, the three trend 
models are (clearly inappropriately) applied to the tides data. The code for double exponential 
smoothing is shown below with obvious changes (method=linear or damptrend) for Holt’s method and 
damped trend smoothing; 
 
  proc esm data=tides  
     lead=&lead out=outD outest = betasD plots=all;  
   forecast actual / method=double;  
   id hour interval=hour; 
  run;  
  proc print data=betasD;  
  run; 
 
Results for these models are below. The common weight for double smoothing, _EST_,  has hit the 
software imposed boundary ω=0.999 as have the two separate weights for Holt’s method, rendering the 
two exponentially smoothed forecasts identical. Forecasts will be like those of an ARIMA (0,2,0) model. 
The damped trend model appears to have a theoretically equivalent ARIMA(1,1,1) model as one of the 
implied moving average roots would be 1-0.999 (almost 0).  
 
 



                                       Forecasting tides                      
                                  Using double smoothing,lead=24 
 
 Obs    _NAME_    _TRANSFORM_    _MODEL_    _PARM_    _EST_    _STDERR_    _TVALUE_     _PVALUE_ 
  1     actual       NONE        DOUBLE     WEIGHT    0.999    0.027653     36.1257    9.0334E-74 

 
                                      Forecasting tides   
                             Using Holt's linear smoothing,lead=24 
 
 Obs    _NAME_    _TRANSFORM_    _MODEL_    _PARM_    _EST_    _STDERR_    _TVALUE_     _PVALUE_ 
  1     actual       NONE        LINEAR     LEVEL     0.999     0.08002     12.4843    1.3209E-24 
  2     actual       NONE        LINEAR     TREND     0.999     0.12182      8.2005    1.2907E-13 
 
                                     Forecasting tides    
                                    Using damped trend,lead=24 
 
  Obs   _NAME_   _TRANSFORM_    _MODEL_    _PARM_     _EST_    _STDERR_   _TVALUE_     _PVALUE_ 
   1    actual      NONE       DAMPTREND   LEVEL     0.99900    0.14047     7.1121   5.2678E-11 
   2    actual      NONE       DAMPTREND   TREND     0.99900    0.26862     3.7190   .000287886 
   3    actual      NONE       DAMPTREND   DAMPING   0.84617    0.05264    16.0761   1.0889E-33 
 
Plots of the double smoothed (Figure 12 left panel) and damped trend forecasts (right panel) follow. 
Holt’s method (not shown) gives exactly the same plot as that of double smoothing for the reasons just 
explained. If, after seeing all of the active boundary constraints and convergence failure messages, any 
doubt about the inappropriateness of these methods remains, the graphs should remove it. Vertical 
lines delimit the last full day of data. The damped trend model is seen from the above table to behave 
like (1-B)(1-0.84617B)Yt=et.  
 

     
 
Figure 12. Inappropriate applications of exponential smoothing.  
 
Even a seasonal smoothing model like that used for the prediction errors gives boundary values of the 
smoothing parameters.  Using method=seasonal produces a level parameter estimate 0.999 indicating a 
level like that of a random walk and thus suggesting a forecast level near the last observation’s tide. In 
contrast the almost 0 seasonal weight suggests seasonal factors that are very regular and thus near the 
average historical seasonal pattern. These are added to the local level forecast. Here are the results.  
  



                                       Forecasting tides            
                                 Using seasonal smoothing,lead=24 
 
 Obs    _NAME_    _TRANSFORM_    _MODEL_     _PARM_    _EST_    _STDERR_    _TVALUE_    _PVALUE_ 
 
  1     actual       NONE        SEASONAL    LEVEL     0.999      0.0582     17.1743     0.00000 
  2     actual       NONE        SEASONAL    SEASON    0.001     47.2954      0.0000     0.99998 
 

As before, the PLOTS=ALL option shows the forecasts which are plotted in Figure 13. Again, the viewer 
would likely abandon this forecast method based on the graph despite its excellent performance 
throughout the historical data.  
 

 
Figure 13. Seasonal exponential smoothing forecasts are unappealing.   
 
As seen before, the rapidly expanding error bands typical of ARIMA models with unit roots are seen. 
Once again the lesson that a good fit within the historical data does not necessarily imply a good 
forecast is illustrated.  More information, mathematical details, and graphics are available in the (new) 
third edition of SAS for Forecasting Time Series by Brocklebank, Dickey, and Choi (2018) for these 
methods, unobserved components, and statespace models.  

7. AN APPROPRIATE USE OF LINEAR TREND. 

An example that sheds a favorable light on the trending exponential smoothing methods is afforded by a 
series of yearly U.S. corn yields in bushels per acre (BPA).  Prior to the early 1940s, yields were fairly 
constant as shown in Figure 14. With the invention of effective herbicides and genetic improvement 
programs, yields increased in a surprisingly linear fashion.  For forecasting, the older constant yield data 
could be completely excluded or could be downweighted by exponential smoothing.  To capture the 
current linear trend one of the recently discussed trending forecast models might be appropriate.  
 



 
 
Figure 14. U.S. Corn yields in bushels per acre.  
 
Code for Holt’s method ;  
 
  PROC ESM out=outcorn outest=cornbetas lead=20 plot=all;  
   forecast BPA / method=linear;  
   id date interval=year;  
  run; 
 
Both parameters are nice - significantly different from 0 and not at all close to 1.  
 
                                        U.S. Corn Yields  
                           Using Holt's (linear) method, 20 years ahead 
 
Obs  _NAME_    _TRANSFORM_    _MODEL_    _PARM_     _EST_     _STDERR_    _TVALUE_      _PVALUE_ 
 
 1    BPA         NONE        LINEAR     LEVEL     0.16878    0.033389     5.05486    .000001262 
 2    BPA         NONE        LINEAR     TREND     0.14042    0.043678     3.21493    .001604255 
 

The ESM forecast plot in the left panel of Figure 15 shows a forecast that appears little affected by the 
early era data and in fact is most clearly aligned with data from about 2000 on.  
 
Changing to the damped trend approach (method=damptrend) produced a forecast almost 
indistinguishable from Holt’s linear method and an estimated damping parameter 0.99230 indicating 
very little change in the slope for several years of forecasts.  
 
                                        U.S. Corn Yields       
                           Using damped trend smoothing, 20 years ahead 
 
  Obs   _NAME_   _TRANSFORM_    _MODEL_    _PARM_     _EST_    _STDERR_   _TVALUE_     _PVALUE_ 
 
   1     BPA        NONE       DAMPTREND   LEVEL     0.16249   0.035483     4.5793   .000009913 
   2     BPA        NONE       DAMPTREND   TREND     0.15569   0.057960     2.6861   .008066752 
   3     BPA        NONE       DAMPTREND   DAMPING   0.99230   0.011570    85.7617   8.649E-127 



 
 

           
 
Figure 15. Predictions of U.S. corn yields (BPA) – Holt’s method, left, and damped trend, right.  
 
We did not hit the boundary but came very close, indicating that there is almost no curvature in the 
forecast for several years. It is consistent with the visual impression that corn yields have increased at a 
surprisingly linear rate in the US.  To assure the reader that damped trend was really used, a request for 
a ridiculous 80 year forecast was issued producing the right panel of Figure 15.  The plot is a custom 
SGPLOT because addition of forecast error bands, as ESM does, gives such a wide forecast error band 
that the data occupy only a tiny proportion of the vertical axis. A ridiculous yield asymptote is also 
observed, likely far beyond the amount of corn that can physically occupy an acre of land.  

8. INTRODUCING UNOBSERVED COMPONENTS MODELS (UCM). 

Exponential smoothing models involve recursive calculations and one or more unit roots in their ARIMA 
representations. Typically testing for unit roots is not done.  In practice getting more than one unit root, 
as Holt’s method and double smoothing imply, is rare.  Because the random walk with drift model is not 
uncommon in practice, it is likely that the inability of exponential smoothing models to include an 
intercept in their ARIMA equivalents, implies that the only way to account for (remove) the constant 
drift term is to difference the series a second time. Thinking of something like a random walk with drift 
as an alternative can sometimes be helpful when the parameter estimates hit the boundary. The 
recursive calculations already shown can be used to produce deterministic components in the UCM 
technology when they include no random innovation term et.  
 
The recursion Yt=Yt-1+et describes a random walk. The recursion Yt=Yt-1 with initial value 10 describes a 
horizontal line – a constant mean 10 for example.  Each term is the same as its predecessor. The 
recursion Yt=2Yt-1-Yt-2+et describes an ARIMA(0,2,0), a time series whose second difference is 0 rather 
than et. With starting values Y-1=8 and Y0=10, we find Y1=2(10)-8=12, Y2 = 2(12)-10=14, and in general Yt = 
10+2t, a deterministic straight line.  As previously mentioned, the seasonal random walk with period s 
and initial values Y-s+1 … Y0 becomes just that sequence of s numbers repeated over and over again – a 
deterministic periodic function.  This produces an exactly periodic sequence, the kind of thing handled 
by seasonal dummy variables in PROC REG or PROC ARIMA.  



 
From trigonometry, we find that sin(ω(t+1))= sin(ωt)cos(ω)+cos(ωt)sin(ω) while cos(ω(t+1))= 
cos(ωt)cos(ω)−sin(ωt)sin(ω).  A general sinusoidal wave with amplitude α and phase shift δ can be 
represented as αsin(ωt+δ)= α (sin(ωt)cos(δ) + cos(ωt)sin(δ), a linear combination Asin(ωt)+Bcos(ωt) of 
sin(ωt) and cos(ωt).  Using the trigonometric identities above, these can be moved forward one time 
unit in a vector recursion:  
  

sin( ( 1)) cos( ) sin( ) sin( )
cos( ( 1)) sin( ) cos( ) cos( )

t t
t t

ω ω ω ω
ω ω ω ω

+    
=    + −    

 

 
The components of the sinusoidal wave at time t+1 are related through this recursion to the 
components at time t. This gives a way to model seasonality using sinusoids, an alternative to using  
seasonal lags. With no innovation term et, the seasonal lag recursion becomes Yt=Yt-s where s is the 
seasonal period. It thus produces a repeating sequence as does the dummy variable approach in 
regression and is thus called the dummy variable approach.  
 
To summarize, seasonal unobserved components of a dummy variable nature or a sinusoidal nature can 
be expressed as recursions. As with the trend components a (vector of) normal error terms can be 
added to allow local perturbations.  Expressing the response as a linear combination of such unobserved 
components, with or without random normal innovations and/or a random normal error term, 
comprises the basic idea of the unobserved component methodology.  With the added random 
innovations the components correspond to models with one or more unit roots. Even though multiple 
nonseasonal unit roots are rare in practice, the argument for something like a trend component that 
involves two unit roots, is that it seems to provide reasonable looking forecasts in practice. Note that 
this is much like the arguments for the linear exponential smoothing methods such as that illustrated for 
the corn yield data.  
 
To illustrate these ideas, we start with some generated examples. The constant unobserved component, 
say Ct, satisfies the recursion Ct=Ct-1+et when innovation variation is present. Any previously shown 
random walk illustrates its behavior. Without the random innovation term et, C is just a constant for all 
time. Turning to a trend component, the goal is to express the usual linear trend α+βt as a recursion. 
Following the previously shown logic, the recursion Yt=2Yt-1-Yt with initial values Y−1=α−β and Y0=α will 
do the job.   
 
The STATESPACE and UCM procedures use a model representation known as the statespace 
representation. At a cursory and simplified level, the methodology involves a “state vector” Zt whose 
elements are combined linearly to relate the state vector to the (vector of) observations Yt. This is done 
using an observation equation involving AZt. There is also a “transition equation” that relates Zt+1 to Zt. 
This is where the recursions thus far studied enter the picture. For a linear trend model we have Yt=µt+et 
where the time t mean µt is α+βt and the parameters α and β are constant.    Because a linear trend 
increases by its slope β with each unit increase in time, we see that μt+1 = μt + βt where βt+1 = βt. Placing 
μt and  βt into the state vector with no innovation variance gives this vector transition equation: 
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Initial values β0 and µ0 set the slope and intercept.  The vector of zeros in the above expression could, 
alternatively, contain innovation errors. This will allow the slope and intercept to vary over time. It adds 
useful modelling features. We will refer to this as making the slope and intercept local in nature. The 
observation equation in this example is  
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Is there some reward for making what was initially a simple problem into something so complicated? 
The answer is yes – we can make the slope or intercept or both local in nature by adding innovation 
errors to the transition equation rather than setting them to 0. Here is some code that illustrates the 
situation; 
 
  %let sigmu=0; 
  %let sigbeta=0;   
  %let sigY=3;  
 
  Data linear; 
  *(1) Initialize;  
   mu=10; beta=2;  
 
  *(2) Transition and observation;  
   Title "Statepace data, linear"; 
   Title2 "Standard deviations: Y &sigY, mu &sigmu, and beta &sigbeta";  
  do t=1 to 50;  
    beta=beta+&sigbeta*normal(93875);  
    mu = mu + beta + &sigmu*normal(38715);  
    Y = mu + &sigy*normal(2837577);  
    output;  
  end;  
 
  *(3) Forecast;  
   do t=51 to 65;  
    beta=beta;  
    mu = mu + beta;  
    Y = .;  
    output;  
   end;  
 
  *(4) Graphs;  
   ods listing gpath = "%sysfunc(pathname(work))"; 
 
  proc sgplot;  
   scatter X=t Y=Y;  
   series X=t Y=mu;  
   refline 50 / axis=X; 
  run; 
  
The macro variables allow the incorporation of random normal innovations in the state vector and an 
error term.  In Figure 16, the error variance is 9. The upper left panel has both innovation variances 0. 



The upper right has a random intercept innovation (sigmu=2, level becomes local), the bottom left has a 
random slope innovation (sigbeta=1) and the bottom right has both.  
 

     
 

    
 
Figure 16: Effects of innovation terms in linear UCM models.  
 
In the bottom left panel, a right hand axis and added plot track the progress of βt which, from the 
previous discussion, is a random walk.  The final slope around -7.5 dominates the forecast but 
comparing Y axis labels in the bottom row panels, an innovation effect on µt can also be seen. A similar 
program shows the sinusoidal component with (right panel) and without (left panel) innovation 
variances in Figure 17. 
 



      
 
Figure 17. Cyclic component: effect of innovation variances.  
 
The effect of adding a bivariate standard normal innovation to the state vector is a dramatic increase in 
the amplitude as well as an irregular periodicity in the local level (µt).  

9. REAL DATA EXAMPLES. 

For a real data example, consider the Dow Jones Industrial Average in Figure 18.  
 

 
 
Figure 18. Dow Jones Industrial Average November 1, 2017 through March 6, 2018. 
 
An initial PROC UCM analysis is produced as follows. The 5 day weekday type of date is appropriate 
here. The seasonal dummy variable approach of period 5 is used; 
 
  proc ucm data=dow plot=all;  
    id date interval=weekday;  
    model close;  
    level;  
    slope;  
    season type=dummy length=5;   



    irregular; 
  run; 
 
                    Final Estimates of the Free Parameters 
 
                                                    Approx             Approx 
 Component         Parameter          Estimate   Std Error  t Value  Pr > |t| 
 
 Irregular         Error Variance      0.82940     3.05842     0.27    0.7862 
 Level             Error Variance        69907     11126.3     6.28    <.0001 
 Slope             Error Variance      0.01416           .      .       . 
 Season            Error Variance      0.02507           .      .       . 
 
The variances for the seasonal and slope components are so small that there are no test statistics 
available. Removing one variable at a time results in a model with 0 variance for slope, seasonal, and 
irregular as one might expect from the full model tests, ultimately leading to code without an irregular 
statement and innovation variances set to 0 except for the level component;  
 
  proc ucm data=dow plots=all;  
    id date interval=weekday;  
    model close;  
    level;  
    slope variance=0 noest;  
    season type=dummy length=5 variance=0 noest;   
  run; 
 
This means that the slope and seasonal are deterministic. They are constant over time, global not local. 
The output has two interesting parts.  There is a table indicating a significant innovation variance for the 
level component.  This, in fact, is the only random error term in the model as no irregular statement was 
included.   
 
                    Final Estimates of the Free Parameters 
 
                                                    Approx             Approx 
 Component         Parameter          Estimate   Std Error  t Value  Pr > |t| 
 Level             Error Variance        69909     11123.4     6.28    <.0001 
 
The seasonal and slope terms are global because they have no innovation terms. This just means that 
they are constant, not necessarily 0.  The second interesting table shows that they are not just constant, 
but in fact, there is no evidence that they are nonzero.   
 
                     Significance Analysis of Components 
                          (Based on the Final State) 
 
            Component               DF    Chi-Square    Pr > ChiSq 
            Level                    1        382800        <.0001 
            Slope                    1          0.33        0.5633 
            Season                   4          0.17        0.9966 
 
Setting the slope and intercept terms to 0 by leaving out the associated statements results in a new such 
table.  
 



                   Final Estimates of the Free Parameters 
 
                                                    Approx             Approx 
 Component         Parameter          Estimate   Std Error  t Value  Pr > |t| 
 Level             Error Variance        66171     10210.3     6.48    <.0001 
 
What does this say about the Dow Jones Average Yt?  The level µt is the only thing left in the state vector 
and satisfies  µt =µt-1+et with e having an estimated variance 66171. This is a random walk, ARIMA(0,1,0) 
and is the only component in Y which shows that the model for the Dow Jones Industrial Average is a 
simple random walk, a commonly held view. It is no problem that there is no irregular component. The 
innovation variance for level provides the error term in the model. If, in addition, the irregular 
component were needed, the ARIMA(0,1,0) model would become ARIMA( 0,1,1).  There is an automatic 
outlier detector in the procedure. It motivates the reference line in Figure 18.   
 
                                  Outlier Summary 
 
                                              Standard 
  Obs      date Break Type          Estimate     Error Chi-Square     DF Pr > ChiSq 
   69 05FEB2018 Additive Outlier  -871.11500 181.89361      22.94      1     <.0001 
 
As a second example, consider the monthly U.S. employment series from the Bureau of Labor Statistics 
(BLS series CEU0000000001) in Figure 18. The series is not seasonally adjusted. Markers denote changes 
in presidential administrations.  
 

 
 
Figure 18. Seasonally unadjusted employment in millions.  
 
Using PROC UCM, level, trend (slope), and seasonal components are requested as well as an irregular 
term, the term often referred to as an error term;   
 
  proc ucm data=employment plot=all;  
    id date interval=month;  
    model employed;  
    level;  
    slope;  



        /*; season length=12 type=trig keepharmonics= 1; 
       season length=12 type=trig keepharmonics= 2; 
       season length=12 type=trig keepharmonics= 3; 
       title3 "Trigonometric approach"; * */;  
   season type=dummy length=12;   
   title3 "Dummy approach"; 
   irregular; 
   forecast back=12 lead=48;  
 run; 
 
Notice here that there are several random innovations or error terms.  Recall the random level term µt 
from the previous example.  There was no need of an additional error term because Yt=µt seemed to 
suffice as a model.  It is possible even with real data to have 0 irregular variance.  In the code above, all 
components are allowed to have random innovations (the default).   
 
Two seasonal approaches have previously been described. The trigonometric approach is commented 
out here, but is listed to show the syntax.  It keeps 3 harmonics, each with a different innovation 
variance.  Had all 3 harmonics been listed in one statement, it would imply a common innovation 
variance.  
 
The active seasonal dummy variable approach is the one being used. The seasonal component, then,  is 
St = St-12+eSt. If there is no innovation variance the seasonal component is an exactly repeating sequence 
given by St = St-12. It is deterministic. The procedure thus gives a way to distinguish slowly varying 
seasonal random walk behavior from very regular, exactly periodic behavior. The first step is to see 
which components are local, that is, which of them have significant innovation variance. Our strategy, as 
before, will be to see which variances can be set to 0 and then which of the resulting deterministic 
components can be omitted.  
 
                       Final Estimates of the Free Parameters 
 
                                                        Approx               Approx 
  Component          Parameter           Estimate    Std Error   t Value   Pr > |t| 
  Irregular          Error Variance    0.00006670            .       .        . 
  Level              Error Variance       0.01044    0.0029837      3.50     0.0005 
  Slope              Error Variance       0.00594    0.0020874      2.84     0.0045 
  Season             Error Variance    0.00021424    0.0001851      1.16     0.2470 
 
One of the variance components is miniscule and has no standard error or test. Omitting this still leaves 
the seasonal innovation variance insignificant. This is not too surprising given the very regular seasonal 
pattern seen in Figure 18.  The level and slope are local, having significant innovation variance;  
 
  proc ucm data=employment plots=all;  
    id date interval=month;  
    model employed;  
    level;  
    slope;  
    season type=dummy length=12 variance=0 noest;   
    title3 "Dummy approach"; * */; 
    forecast lead=24 plot=decomp outfor=for;  
  run; 



                     Final Estimates of the Free Parameters 
 
                                                        Approx               Approx 
  Component          Parameter           Estimate    Std Error   t Value   Pr > |t| 
 
  Level              Error Variance       0.01409    0.0028114      5.01     <.0001 
  Slope              Error Variance       0.00544    0.0019879      2.73     0.0063 
 
Again, there is no surprise. The slope started negative and became positive.  The level is also obviously 
changing over time. The plots=all option produces many plots. In Figure 19, the left panel shows the 
local level as a solid blue line. The thick vertical red reference line is at the last observed data point, 
January 2018. 
 

      
 
Figure 19. Local level and slope with forecasts (left) and with data and forecast intervals (right).  
 
The blue line is a deseasonalized series. In the last few months the local slope, the red broken line, has 
dropped a bit, especially in the last month, January 2018 where the right axis shows the slope to be 
approximately 0.09. To the right of the thick vertical red line, the forecast of the slope is the final,  
January 2018, smoothed slope so the dashed red line becomes horizontal in the future. This constant 
slope results in a linear forecast of employment, in blue, for the next 2 years.  The right panel is a similar 
plot produced by the UCM procedure. The extremely fast widening of the error bands is typical of the 
double unit root nature of models with a slope and level component.  The similarity of the yearly 
deviations of the actual data around the local level shows the aforementioned regularity of the seasonal 
data component and lack of an irregular component. A table of final (January 2018) values adds some 
details.  
 
                     Trend Information (Based on the Final State) 
 
                                                        Standard 
                    Name                   Estimate        Error 
                    Level                147.633598    0.0546661 
                    Slope               0.088055639    0.1115646 
 
The deseasonalized forecast emanates from 147.63 (left axis of Figure 19) and increases at rate 0.088 
(right axis, less than 1 standard error above 0) per month for a rise of 24(0.088) = 2.11 over the 2 year 



forecast. The blue line forecast rises from 147.63 to 149.74.  A table of test statistics for these two 
January 2018 state vector components along with the seasonal components shows insignificance of the 
slope, as expected, and significance of the local level and the global (no innovation), regular seasonal 
components.  
 
                       Significance Analysis of Components 
                             (Based on the Final State) 
 
               Component               DF    Chi-Square    Pr > ChiSq 
 
               Level                    1       7293473        <.0001 
               Slope                    1          0.62        0.4299 
               Season                  11       7430.08        <.0001 
 
Note that (0.08805/0.11156)2 = 0.62 relates the two tables to each other.  Perhaps a level forecast with 
seasonality added, obtained by omitting the slope statement, would be acceptable.  Finally, a forecast 
plot that includes the seasonality and a panel with the smoothed seasonal are shown in Figure 20.  The 
rapidly expanding forecast intervals typical of these unit root models are evident. The excellent fit in the 
historical data belies the large uncertainty in the forecasts as often happens with these models.  
 

        
 
Figure 20. Employment forecast with error bands, left, and seasonal component, right.  
 
As a last example, we return to April snow in Denver.  Specifying level, slope, and irregular terms gives  
 
                   Final Estimates of the Free Parameters 
 
                                                    Approx             Approx 
 Component         Parameter          Estimate   Std Error  t Value  Pr > |t| 
 
 Irregular         Error Variance     56.74810     7.01443     8.09    <.0001 
 Level             Error Variance  5.798252E-7   0.0004164     0.00    0.9989 
 Slope             Error Variance   0.00002466   0.0001352     0.18    0.8552 
 
Imposing 0 variance on the slope and level terms sequentially in the way previously shown suggests 
treating both as deterministic. With that restriction, the next table suggests that the slope can be 



omitted. Based on the estimates from the final state vector, the level is not 0 (of course) but the slope is 
not significantly different from 0, consistent with the idea that the global trend line is just horizontal, no 
trend in April snowfall. The irregular term for the last observation is not  significantly different from 0, an 
uninteresting result.  
 
                     Significance Analysis of Components 
                          (Based on the Final State) 
 
            Component               DF    Chi-Square    Pr > ChiSq 
            Irregular                1          3.05        0.0810 
            Level                    1         34.04        <.0001 
            Slope                    1          1.46        0.2268 
 
Omitting the slope statement and restricting the level to be constant (0 variance) the model is just a 
mean plus irregular. The error variance around this line is about 57. The irregular term for the last 
observation is near 0 but clearly the error variance is greater than zero.  
 
                   Final Estimates of the Free Parameters 
 
                                                    Approx             Approx 
 Component         Parameter          Estimate   Std Error  t Value  Pr > |t| 
 Irregular         Error Variance     56.89656     7.00348     8.12    <.0001 
 
A possible follow up would be to run an ARMA(p,q) model with just a mean and check for 
autocorrelation. The UCM models assume none, but it would be prudent to check. While we have 
carefully checked for more complex UCM structure, we have arrived at a simple mean model with 
estimated mean being just the simple average 8.92 as would be given by PROC MEANS.  
 
                 Trend Information (Based on the Final State) 
 
                                                     Standard 
                 Name                   Estimate        Error 
                 Level               8.915671642    0.6527429 

10. UCM SUMMARY AND LESSONS LEARNED.  

In summary, the UCM procedure has some similarities with ARIMA modelling. Many of the underlying 
models have unit roots and thus forecast error bands can spread dramatically as forecasts move into the 
future, despite good historical performance. Forecasts often appear very reasonable and the procedure 
allows the user to distinguish deterministic from random, slowly changing effects. Nice decompositions 
of series, accompanied by informative graphs are produced as are output data sets for custom graphics 
and tables.  
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