UNIX and Linux SAS® administrators, have you ever been greeted by one of these statements as you walk into the office before you have gotten your first cup of coffee? Power outage! SAS servers are down. I cannot access my reports. Have you frantically tried to restart the SAS servers to avoid loss of productivity and missed one of the steps in the process, causing further delays while other work continues to pile up? If you have had this experience, you understand the benefit to be gained from a utility that automates the management of these multi-tiered deployments. Until recently, there was no method for automatically starting and stopping multi-tiered services in an orchestrated fashion. Instead, you had to use time-consuming manual procedures to manage SAS services. These procedures were also prone to human error, which could result in corrupted services and additional time lost, debugging and resolving issues injected by this process. To address this challenge, SAS Technical Support created the SAS Local Services Management (SAS_lsm) utility, which provides automated, orderly management of your SAS® multi-tiered deployments. The intent of this paper is to demonstrate the deployment and usage of the SAS_lsm utility. Now, go grab a coffee, and let's see how SAS_lsm can make life less chaotic.
Clifford Meyers, SAS
The use of telematics data within the insurance industry is becoming prevalent as insurers use this data to give discounts, categorize drivers, and provide feedback to improve customers' driving. The data captured through in-vehicle or mobile devices includes acceleration, braking, speed, mileage, and many other events. Data elements are analyzed to determine high-risk events such as rapid acceleration, hard braking, quick turning, and so on. The time between these successive high-risk events is a function of the mileage driven and time in the telematics program. Our discussion highlights how we treated these high-risk events as recurrent events and analyzed them using the RELIABILITY procedure within SAS/QC® software. The RELIABILITY procedure is used to determine a nonparametric mean cumulative function (MCF) of high-risk events. We illustrate the use of the MCF for identifying and categorizing average driver behavior versus individual driver behavior. We also discuss the use of the MCF to evaluate how a loss event or driver feedback can affect future driving behavior.
Kelsey Osterloo, State Farm Insurance Company
Deovrat Kakde, SAS
Data is your friend. This presentation discusses the use of data for quality improvement (QI). Measurement over time is integral to quality improvement, and statistical process control charts (also known as Shewhart or SPC charts) are a good way to learn from the way measures change over time, in response to our improvement efforts. The presentation explains what an SPC chart is, how to chose the correct type of chart, how to create and update a chart using SAS®, and how to learn from the chart. The examples come from QI projects in health care, and the material is based on the Institute for Healthcare Improvement's Model for Improvement. However, the material is applicable to other fields, including manufacturing and business. The presentation is intended for people newly considering a QI project, people who want to graph their data and need help with getting started, and anyone interested in interpreting SPC charts created by someone else.
Ruth Croxford, Institute for Clinical Evaluative Sciences
Have you ever used a control chart to assess the variation in a process? Did you wonder how you could modify the chart to tell a more complete story about the process? This paper explains how you can use the SHEWHART procedure in SAS/QC® software to make the following enhancements: display multiple sets of control limits that visualize the evolution of the process, visualize stratified variation, explore within-subgroup variation with box-and-whisker plots, and add information that improves the interpretability of the chart. The paper begins by reviewing the basics of control charts and then illustrates the enhancements with examples drawn from real-world quality improvement efforts.
Bucky Ransdell, SAS