
1 

Paper 701-2017 

The Future of Transpose: How SAS® Is Rebuilding Its Foundation by 
Making What Is Old New Again 

Scott Mebust, SAS Institute Inc., Cary, NC 

ABSTRACT  
As computer technology advances, SAS® continually pursues opportunities to implement state-of-the-art 
systems that solve problems in data preparation and analysis faster and more efficiently. In this pursuit, 
we have extended the TRANSPOSE procedure to operate in a distributed fashion within both Teradata 
and Hadoop, using dynamically generated DS2 executed by the SAS® Embedded Process and within 
SAS® Viya™, using its native transpose action. With its new ability to work within these environments, 
PROC TRANSPOSE provides you with access to its parallel processing power and produces results that 
are compatible with your existing SAS programs. 

INTRODUCTION 

In a continuation of efforts to improve performance, process larger amounts of data, and take advantage 
of existing customer hardware and third-party software, SAS has enhanced the TRANSPOSE procedure 
to run in a distributed fashion within massively parallel processing (MPP) environments. These 
environments include the Teradata relational MPP database management system (DBMS), commodity 
computer clusters running Apache Hadoop, and SAS Cloud Analytic Services (CAS). CAS is a part of 
SAS Viya — the new and modern platform on which we are building the next generation of SAS analytics. 

Operation within the Teradata DBMS and Hadoop, both known as in-database operation, is accomplished 
through the generation of DS2 program code submitted to the SAS Embedded Process (EP) for 
execution. Operation inside SAS Cloud Analytic Services, referred to here as in-CAS operation, is 
accomplished through a simple client request by PROC TRANSPOSE to invoke the new CAS transpose 
action on the CAS server. An understanding of the details of in-database transposition can provide you 
with an introduction to coding custom DS2 for in-database execution with the SAS® In-Database Code 
Accelerator. Understanding in-CAS operation can provide exposure to coding actions for execution by 
CAS. The DS2 generated for in-database operation can be examined in the SAS log and used to produce 
a stand-alone accelerated DS2 program that you can modify and extend. Likewise, the transpose action 
code generated for in-CAS operation can be examined and submitted to a CAS server, independently of 
PROC TRANSPOSE, using various clients and languages. 

Even though the DBMS and CAS systems are very different from the traditional MultiVendor Architecture 
(MVA) system in which PROC TRANSPOSE usually runs, we have made great effort to ensure that in-
database and in-CAS operation produce results that are compatible with the traditional system. If you’ve 
used PROC TRANSPOSE, then use of these new operational capabilities and their results should be 
familiar to you. 

We encourage you to provide feedback on these new capabilities of PROC TRANSPOSE and on the new 
CAS transpose action. Your suggestions can help guide code development and make these tools more 
useful to you. One change that we are making in an upcoming release of SAS is the ability for the 
TRANSPOSE procedure to directly produce a stand-alone DS2 program that you can readily study and 
change. We hope that you find this change useful for exploration of DS2 and the In-Database Code 
Accelerator. 

REQUIREMENTS 

To take advantage of the new capabilities of PROC TRANSPOSE to run in-database with Teradata, when 
using Base SAS®, you need licenses for the SAS/ACCESS® Interface to Teradata, as well as SAS® In-
Database Code Accelerator for Teradata. Similarly, for in-database operation on Hadoop, you need 
licenses for the SAS/ACCESS® Interface to Hadoop, as well as SAS® In-Database Code Accelerator for 
Hadoop. For operation in SAS Cloud Analytic Services, you need a license for SAS Viya 3.1 or a later 
release.  
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For the TRANSPOSE procedure to operate in-database, its input data set must be read from the DBMS 
and the results must be written to the DBMS. Likewise, for the TRANSPOSE procedure to operate in-
CAS, it is necessary that the input resides in the server and the output data set is directed to the server. 
Other conditions, stated in sections below detailing the in-database and in-CAS examples, are also 
necessary for such operation. For SAS Viya, the transpose action operates only on input tables that are 
available in the CAS server and writes results to output tables in the same server. 

GENERAL INTERNAL OPERATION 

Transposition, as performed by SAS, is a dynamic transformation of an input data set, producing an 
output data set that is dependent not only on the transposition specification (the statements, variable lists, 
options, parameters, etc., that are coded by the user), but also on the characteristics of the variables to 
be transposed and the values of those variables within the input data. In particular, the types of variables 
to be transposed determine the types of the output variables. This determination is made with a type 
promotion scheme in which mixed input variable types result in an output variable type that is capable of 
representing the full range and precision of input values. The simplest example of this is that the 
transposition of both a numeric variable and a character variable results in character output variables. It is 
the transposition’s dependence on the values of the input data, though, that makes it dynamic, not just 
statically defined by the transposition specification, and relieves the user from having to thoroughly know 
the input data prior to the transposition. A user does not have to specify an explicit list of variables to be 
created in the output data set or stipulate how values from input rows are assigned to those variables. 

In the traditional MVA implementation of PROC TRANSPOSE, the in-database implementation, and the 
CAS transpose action implementation, the general process of transposition works similarly. All three 
implementations perform two read passes over the input data. The shape and characteristics of the 
output data set (the number of variables and their names) are determined during the first pass, while the 
actual transposition occurs during the second pass. 

A SIMPLE TEST CASE 

To demonstrate and focus on the details of in-database execution, in-CAS execution, and direct 
execution of the CAS transpose action, we transpose a very simple data set. The data set is a theoretical 
register or log of manufactured item measurements taken for quality control purposes, with three 
recorded values for each of two measurements within each batch: 

data register; 

  length property $ 20; 

  input batch property value1 value2 value3; 

  cards; 

  1000 length    86.1 86.0 86.1 

  1000 width     55.2 55.1 55.0 

  1001 length    84.3 84.5 84.4 

  1001 width     57.3 57.4 57.4 

  ; 

run; 

 

Table 1 Shows the data to be transposed 

Obs batch property value1 value2 value3 

1 1000 length 86.1 86.0 86.1 

2 1000 width 55.2 55.1 55.0 

3 1001 length 84.3 84.5 84.4 

4 1001 width 57.3 57.4 57.4 

Table 1: Register data set 
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For the sake of preparation or analysis, we transpose this data so that the two measurements (length and 
width) are each represented by one variable in the transposed data set: 

proc transpose data=register out=measurements; 

 by batch; 

 id property; 

 var value1-value3; 

run; 

 

Table 2 Shows the data after transposition 

Obs batch _NAME_ length width 

1 1000 value1 86.1 55.2 

2 1000 value2 86.0 55.1 

3 1000 value3 86.1 55.0 

4 1001 value1 84.3 57.3 

5 1001 value2 84.5 57.4 

6 1001 value3 84.4 57.4 

Table 2: Measurements data set 

IN-DATABASE EXAMPLE 

To operate within a DBMS or Hadoop, we must start with the data set residing in the remote system, so 
we first place it there using a DATA step. For this example, the GRIDLIB library has been established 
using a SAS/ACCESS engine (either to Teradata or to Hadoop). To run in-database, even though in-
database transposition is largely performed by running DS2 code, it is also necessary that the system 
SQLGENERATION option is properly set. The SQLGENERATION option remains relevant because in-
database operation is traditionally controlled with this option and the same underlying infrastructure, as 
well as some generated SQL, is used to run the DS2. Use of the MSGLEVEL and SQL_IP_TRACE 
options provide more feedback in the SAS log regarding the process and internal operations. Note that 
both the DATA= and OUT= options reference data sets in the GRIDLIB library. Furthermore, note the use 
of the BY statement, the ID statement, the INDB=YES option setting, and the LET option. These are all 
required for in-database operation: 

data gridlib.register; 

 set register; 

run; 

 

options sqlgeneration=dbms; 

options msglevel=i; 

options sql_ip_trace=source; 

 

proc transpose  

    data=gridlib.register  

    out=gridlib.measurements  

    INDB=YES  

    LET; 

  by batch; 

  id property; 

  var value1-value3; 

run; 
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The specification of at least one BY variable in a BY statement is required to define groups of 
observations that are transposed in parallel. One or more ID variables are required to define assignment 
of input rows to output columns and the names of those output columns. This assignment is made by 
associating a particular output column with the column name that was formed from the formatted values 
of the ID variables of an input observation. Without an ID variable, the assignment of values from input 
observations to output variables would be nondeterministic, with such assignments likely varying among 
BY groups, because of the nondeterminism inherent in MPP DBMSs and similar parallel processing 
systems. Such nondeterministic assignments would produce output that is difficult to validate and 
replicate. Because of this, we limit transpositions to ones requiring a mapping between input rows and 
output columns defined by one or more ID variables.  

Finally, the LET option is required because PROC TRANSPOSE does not detect data loss, caused by 
more than one input observation within a BY group being transposed to a single output variable, during 
in-database operation. The TRANSPOSE procedure, when running in its traditional manner, stops with an 
error message during its first pass if the ID variables from two or more input observations within a BY 
group produce the same output variable name. The error means that two or more input observations 
within the group are assigned to the same output variable and only the values from the last transposed 
observation are output if execution continues. However, for efficiency of processing in the first pass, 
PROC TRANSPOSE does not attempt to detect this situation when running in-database. To protect you 
from data loss, PROC TRANSPOSE will not run in-database unless the LET option is specified. The LET 
option allows (or lets) this data loss to occur. Furthermore, because data loss is not detected, PROC 
TRANSPOSE does not issue any warning messages if data loss does occur when running in-database. 
Use the LET option to allow in-database operation if you understand your data and are certain that the 
specified ID variables ensure only one input observation is assigned to any one output variable or if you 
accept the possibility of data loss due to many-to-one assignments. 

IN-DATABASE INTERNAL OPERATION 

Two separate DS2 programs are generated and executed within the EP, one for each pass over the input 
data. The first program determines the shape of the output transposition by discovering the set of unique 
output column names generated from the ID variable values for each observation of the input data set. 
This DS2 program, indicated in the SAS log as the SHAPE QUERY, achieves a high degree of 
parallelism by performing the determination and discovery within its thread program using a sequential 
scan, with each thread reading a portion of data. The sets of column names generated by each thread 
are aggregated by a second stage data program that performs the same task. The DS2 code for this 
program is revealed by setting the SQL_IP_TRACE system option to SOURCE or ALL. The code for the 
above test case, when formatted, looks like this: 

data sasep.out; 

 

  retain "property" "_NAME_" ; 

  declare double TPS_RC; 

  declare package hash TPS_HASH(); 

  declare package hiter TPS_HITER('TPS_HASH'); 

  declare package tpsn TPS_TPSN('','','','V7'); 

  declare nchar(32) "_NAME_"; 

  keep "property" ; 

 

  method init(); 

    TPS_HASH.defineKey('"_NAME_"'); 

    TPS_HASH.defineData('"_NAME_"'); 

    TPS_HASH.defineData('"property"'); 

    TPS_HASH.defineDone(); 

  end; 

 

  method run(); 

    declare char(20) TPS_RAWVAL1; 
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    set sasep.in; 

    if not ( missing( "property" )  ); 

 

    TPS_TPSN.reset(); 

    TPS_TPSN.build(["property"],'$',20,0); 

    TPS_TPSN.finalize(); 

 

    "_NAME_" = TPS_TPSN.copyname(); 

 

    TPS_RAWVAL1 = "property"; 

    TPS_RC = TPS_HASH.find(); 

    if ( TPS_RC = 0 ) 

    then 

      do; 

        if ( TPS_RAWVAL1 < "property" ) 

        then "property" = TPS_RAWVAL1; 

        TPS_RC = TPS_HASH.replace(); 

      end; 

    else 

      do; 

        TPS_RC = TPS_HASH.add(); 

      end; 

  end; 

 

  method term(); 

    TPS_RC = TPS_HITER.first(); 

    do while ( TPS_RC = 0 ); 

      output; 

      TPS_RC = TPS_HITER.next(); 

    end; 

  end; 

 

enddata; 

 

This first program creates variable names using a DS2 package called TPSN, the sole purpose of which 
is to form output variable names from the formatted values of one or more ID variables that conform to 
SAS variable naming conventions, as determined by the VALIDVARNAME system option. The TPSN 
package is not documented and is for internal use by PROC TRANSPOSE and related code only; 
however, you can write your own DS2 package that performs a similar function, if you want to implement 
a similar transformation or use a different method for associating input observations to output variables. 
For every input observation, an output variable name is created and inserted into a Hash object, which 
maintains the list of unique names, along with representative raw values of the ID variables.  

Note that, because this program is in a format that is suitable for execution by the EP, it is not directly 
executable as a stand-alone DS2. However, it can be transformed into a stand-alone program. Although 
the listed code appears to be a data program, it serves as both the DS2 thread program and second-
stage aggregation data program. To transform this code into a stand-alone DS2 program, use the 
program structure below and follow the instructions within the comments: 

proc ds2 indb=yes; 

  thread th_pgm / overwrite=yes; 

 

    /***************************************************  

      1. Insert code between DATA and ENDDATA here. 

      2. Replace SASEP.IN with input data set name. 

     ***************************************************/ 
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  endthread; 

  run; 

 

  /***************************************************** 

    1. Insert code, from DATA to ENDDATA inclusive, here. 

    2. Replace SASEP.OUT with temporary data set name 

    3. Declare a thread th_pgm M at top of data program 

    4. Replace SET SASEP.IN with SET FROM M 

   *****************************************************/ 

 run; 

quit; 

 

The resulting stand-alone program is: 

proc ds2 indb=yes; 

 

  thread th_pgm / overwrite=yes; 

 

    retain "property" "_NAME_" ; 

    declare double TPS_RC; 

    declare package hash TPS_HASH(); 

    declare package hiter TPS_HITER('TPS_HASH'); 

    declare package tpsn TPS_TPSN('','','','V7'); 

    declare nchar(32) "_NAME_"; 

    keep "property" ; 

 

    method init(); 

      TPS_HASH.defineKey('"_NAME_"'); 

      TPS_HASH.defineData('"_NAME_"'); 

      TPS_HASH.defineData('"property"'); 

      TPS_HASH.defineDone(); 

    end; 

 

    method run(); 

      declare char(20) TPS_RAWVAL1; 

 

      set gridlib.register; 

      if not ( missing( "property" )  ); 

 

      TPS_TPSN.reset(); 

      TPS_TPSN.build(["property"],'$',20,0); 

      TPS_TPSN.finalize(); 

 

      "_NAME_" = TPS_TPSN.copyname(); 

 

      TPS_RAWVAL1 = "property"; 

      TPS_RC = TPS_HASH.find(); 

      if ( TPS_RC = 0 ) 

      then 

        do; 

          if ( TPS_RAWVAL1 < "property" ) 

          then "property" = TPS_RAWVAL1; 

          TPS_RC = TPS_HASH.replace(); 

        end; 

      else 

        do; 
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          TPS_RC = TPS_HASH.add(); 

        end; 

    end; 

 

    method term(); 

      TPS_RC = TPS_HITER.first(); 

      do while ( TPS_RC = 0 ); 

        output; 

        TPS_RC = TPS_HITER.next(); 

      end; 

    end; 

 

  endthread; 

  run; 

 

  data gridlib.metadata; 

 

    declare thread th_pgm m; 

 

    retain "property" "_NAME_" ; 

    declare double TPS_RC; 

    declare package hash TPS_HASH(); 

    declare package hiter TPS_HITER('TPS_HASH'); 

    declare package tpsn TPS_TPSN('','','','V7'); 

    declare nchar(32) "_NAME_"; 

    keep "property" ; 

 

    method init(); 

      TPS_HASH.defineKey('"_NAME_"'); 

      TPS_HASH.defineData('"_NAME_"'); 

      TPS_HASH.defineData('"property"'); 

      TPS_HASH.defineDone(); 

    end; 

 

    method run(); 

      declare char(20) TPS_RAWVAL1; 

 

      set from m; 

      if not ( missing( "property" )  ); 

 

      TPS_TPSN.reset(); 

      TPS_TPSN.build(["property"],'$',20,0); 

      TPS_TPSN.finalize(); 

 

      "_NAME_" = TPS_TPSN.copyname(); 

 

      TPS_RAWVAL1 = "property"; 

      TPS_RC = TPS_HASH.find(); 

      if ( TPS_RC = 0 ) 

      then 

        do; 

          if ( TPS_RAWVAL1 < "property" ) 

          then "property" = TPS_RAWVAL1; 

          TPS_RC = TPS_HASH.replace(); 

        end; 

      else 

        do; 
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          TPS_RC = TPS_HASH.add(); 

        end; 

    end; 

 

    method term(); 

      TPS_RC = TPS_HITER.first(); 

      do while ( TPS_RC = 0 ); 

        output; 

        TPS_RC = TPS_HITER.next(); 

      end; 

    end; 

 

  enddata; 

  run; 

quit; 

 

You can run this first program within the local SAS session if you change INDB=NO. As is, with 
INDB=YES, the code runs within the EP using DS2 code acceleration. In this case, you should see the 
following notes in the SAS log: 

NOTE: Running THREAD program in-database 

NOTE: Running DATA program in-database 

 

The second program, generated with the aid of the output variable metadata that was returned from the 
execution of the first program, actually performs the transposition. This DS2 program, indicated in the 
SAS log as the TRANSPOSE QUERY, achieves parallelism through the transposition of independent BY 
groups. BY-group processing, triggered by the presence of the BY statement within a thread program, 
causes the underlying system (Teradata or Hadoop) to shuffle and order the observations so that they are 
grouped before processing. For Teradata, this involves the use of the BY variables in HASH BY and 
ORDER BY clauses on the SELECT statement of the SQL query that provides data to the EP. For 
Hadoop, the BY variables are used as the Map/Reduce keys, which results in a shuffle and sort.  

Partitioning of the data can be costly, in terms of computational resources. Pre-partitioning of the input 
tables within those systems, in preparation for such group processing, can eliminate the need to shuffle 
the data when running the transposition. You might choose to pre-partition the input if partitioned access 
is required for more than one purpose. For a more detailed description of how DS2 code can be 
accelerated within the EP, see the recommended reading material listed at the end of this paper. Again, 
the DS2 code for this program can be revealed by setting the SQL_IP_TRACE system option to 
SOURCE or ALL. The formatted code for the above test case is: 

data sasep.out; 

  retain "batch" "_NAME_" "_LABEL_" ; 

  retain "width" "length" ; 

  declare package hash TPS_HASH(); 

  declare package tpsn TPS_TPSN('','','','V7'); 

  declare integer TPS_COL; 

  declare nchar(32) "_NAME_" having label 'NAME OF FORMER VARIABLE'; 

  declare nchar(32) TPS_INVNAM[ 3 ]; 

  declare nchar(40) "_LABEL_"; 

  declare nchar(40) TPS_INVLAB[ 3 ]; 

  vararray double TPS_INVARS[ 3 ] "value1" "value2" "value3" ; 

  vararray double TPS_OUTVARS[ 2 ] "width" "length" ; 

  declare double TPS_TPOSETMP[ 3, 2 ]; 

  keep "batch" "_NAME_" "_LABEL_" "width" "length" ; 

 

  method init(); 

    TPS_HASH.defineKey('"_NAME_"'); 
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    TPS_HASH.defineData('"_NAME_"'); 

    TPS_HASH.defineData('"TPS_COL"'); 

    TPS_HASH.defineDone(); 

 

    "_NAME_" = 'width'; 

    TPS_COL = 1; 

    TPS_HASH.add(); 

 

    "_NAME_" = 'length'; 

    TPS_COL = 2; 

    TPS_HASH.add(); 

 

    TPS_INVNAM := ( 'value1' 'value2' 'value3'  ); 

    TPS_INVLAB := ( 'value1' 'value2' 'value3'  ); 

  end; 

 

  method run(); 

    declare integer TPS_ROW; 

    declare double TPS_RC; 

    set sasep.in ; 

    by "batch" ; 

    if not ( missing( "property" )  ) 

    then 

      do; 

        TPS_TPSN.reset(); 

        TPS_TPSN.build(["property"],'$',20,0); 

        TPS_TPSN.finalize(); 

        "_NAME_" = TPS_TPSN.copyname(); 

 

        TPS_RC = TPS_HASH.find(); 

        if ( TPS_RC ) 

        then 

          do; 

            put 'ERROR: Unexpected error, _NAME_ not found.'; 

            stop; 

          end; 

 

        do TPS_ROW = 1 to 3; 

          TPS_TPOSETMP[ TPS_ROW, TPS_COL ] = TPS_INVARS[ TPS_ROW ]; 

        end; 

      end; 

 

    if last."batch" 

    then 

      do; 

        do TPS_ROW = 1 to 3; 

          "_NAME_" = TPS_INVNAM[ TPS_ROW ]; 

          "_LABEL_" = TPS_INVLAB[ TPS_ROW ]; 

          do TPS_COL = 1 to 2 ; 

            TPS_OUTVARS[ TPS_COL ] = TPS_TPOSETMP[ TPS_ROW, TPS_COL ]; 

          end; 

          output; 

        end; 

        TPS_TPOSETMP := ( 3 * ( 2 * NULL ) ); 

      end; 

  end; 
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  method term(); 

  end; 

enddata; 

 

Although the generated code is enclosed in a DATA … ENDDATA block, this code is really the DS2 
thread program, which executes independently, but in parallel, with each thread processing one or more 
BY groups. The DS2 code begins with declarations of variables, both those used to accomplish the 
transposition, but not included in the output, and those results of the transposition kept for the output. The 
type of variable elements in the transposition matrix, TPS_TPOSETMP, as well as the types of the output 
variables WIDTH and LENGTH, are determined by the type of those input variables listed on the VAR 
statement. In this case, the variables VALUE1, VALUE2, and VALUE3 are all of type double, thus the 
transposition matrix and output variables are doubles as well. The output type is simple to determine for 
this example, but the type of promotion scheme used to determine the output variable type supports the 
full complement of DS2 variable types. These declarations are followed by the initialization of a Hash 
Object with key/value pairs that map names produced by the formatted values of ID variables, for each 
observation to a corresponding column in the transposition matrix. The keys of the key/value pairs used 
to initialize the Hash Object are the output variable names determined during the first pass from the 
execution of the first DS2 program.  

The code then processes a group of observations by reading each observation of the group, transposing 
the values for the variables of interest of that observation into a column of the transposition matrix. The 
ordinal of the column into which the observation is transposed is identified by searching the Hash Object 
for the name produced from the ID variable values of that observation. After all observations of a group 
are processed in this way, the transposition is completed by outputting each row of the transposition 
matrix. After output is complete, the transposition matrix is cleared so that another observation group can 
be processed. 

This code will not execute as a stand-alone DS2 program, because it is generated to be executed by the 
EP. For the purposes of learning, modifying, or extending the code, you can easily transform the code 
into a stand-alone DS2 program by using the program structure below and following the instructions 
within the comments: 

proc ds2 indb=yes; 

 

  thread th_pgm / overwrite=yes; 

 

    /***************************************************  

      1. Insert code between DATA and ENDDATA here. 

      2. Replace SASEP.IN with input data set name. 

     ***************************************************/ 

 

  endthread; 

  run; 

 

 

  /***************************************************** 

    1. Create a new data program here that does nothing 

       but declares and sets from a thread. 

    2. Direct output of the data program to a data set 

       on the grid. 

 

    For example: 

   *****************************************************/ 

 

  data LIBNAME.DATASETNAME(overwrite=yes); 

 

    declare thread th_pgm m; 
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    method run(); 

     set from m; 

    end; 

 

  enddata; 

  run; 

 

quit; 

 

Arranged this way, with the data program doing nothing but invoking the thread program, the threads 
perform parallel output of the transposed data. 

The resulting stand-alone program for the above test case is: 

proc ds2 indb=yes; 

 

  thread th_pgm / overwrite=yes; 

 

    retain "batch" "_NAME_" "_LABEL_" ; 

    retain "width" "length" ; 

    declare package hash TPS_HASH(); 

    declare package tpsn TPS_TPSN('','','','V7'); 

    declare integer TPS_COL; 

    declare nchar(32) "_NAME_" having label 'NAME OF FORMER VARIABLE'; 

    declare nchar(32) TPS_INVNAM[ 3 ]; 

    declare nchar(40) "_LABEL_"; 

    declare nchar(40) TPS_INVLAB[ 3 ]; 

    vararray double TPS_INVARS[ 3 ] "value1" "value2" "value3" ; 

    vararray double TPS_OUTVARS[ 2 ] "width" "length" ; 

    declare double TPS_TPOSETMP[ 3, 2 ]; 

    keep "batch" "_NAME_" "_LABEL_" "width" "length" ; 

 

    method init(); 

      TPS_HASH.defineKey('"_NAME_"'); 

      TPS_HASH.defineData('"_NAME_"'); 

      TPS_HASH.defineData('"TPS_COL"'); 

      TPS_HASH.defineDone(); 

 

      "_NAME_" = 'width'; 

      TPS_COL = 1; 

      TPS_HASH.add(); 

 

      "_NAME_" = 'length'; 

      TPS_COL = 2; 

      TPS_HASH.add(); 

 

      TPS_INVNAM := ( 'value1' 'value2' 'value3'  ); 

      TPS_INVLAB := ( 'value1' 'value2' 'value3'  ); 

    end; 

 

    method run(); 

      declare integer TPS_ROW; 

      declare double TPS_RC; 

      set gridlib.register; 

      by "batch" ; 

      if not ( missing( "property" )  )  

      then   
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        do; 

          TPS_TPSN.reset(); 

          TPS_TPSN.build(["property"],'$',20,0); 

          TPS_TPSN.finalize(); 

          "_NAME_" = TPS_TPSN.copyname(); 

 

          TPS_RC = TPS_HASH.find(); 

          if ( TPS_RC )  

          then  

            do; 

              put 'ERROR: Unexpected error, _NAME_ not found.'; 

              stop; 

            end; 

 

          do TPS_ROW = 1 to 3; 

            TPS_TPOSETMP[ TPS_ROW, TPS_COL ] =  

              TPS_INVARS[ TPS_ROW ]; 

          end; 

        end; 

 

      if last."batch"  

      then  

        do; 

          do TPS_ROW = 1 to 3; 

            "_NAME_" = TPS_INVNAM[ TPS_ROW ]; 

            "_LABEL_" = TPS_INVLAB[ TPS_ROW ]; 

            do TPS_COL = 1 to 2 ; 

              TPS_OUTVARS[ TPS_COL ] =  

                TPS_TPOSETMP[ TPS_ROW, TPS_COL ]; 

            end; 

            output; 

          end; 

          TPS_TPOSETMP := ( 3 * ( 2 * NULL ) ); 

        end; 

    end; 

 

    method term(); 

    end; 

 

  endthread; 

 

  run; 

 

  data gridlib.measurements(overwrite=yes); 

 

    declare thread th_pgm m; 

    method run(); 

     set from m; 

    end; 

 

  enddata; 

 

  run; 

 

quit; 

 



 

13 

Like the stand-alone DS2 program for the first-pass, you can run this program within the local SAS 
session if you change INDB=NO. With INDB=YES, the code runs within the EP, using DS2 code 
acceleration. When run within the EP, you should see the following notes in the SAS log: 

NOTE: Running THREAD program in-database 

NOTE: Running DATA program in-database 

IN-CAS EXAMPLE 

To operate within the CAS server, we must also start with the data set residing in the server. For this 
example, having established a SASCAS1 libref using the SAS/ACCESS engine to CAS, we copy the data 
from the WORK library to the server using a DATA step. Unlike in-database operation, no DS2 code is 
generated and no EP is involved. Instead, PROC TRANSPOSE on the SAS client simply requests that 
the CAS transpose action is invoked on its behalf within the CAS server. Other than both the DATA= and 
OUT= options referencing data sets in the SASCAS1 library, the only requirement here for in-CAS 
operation is the use of an ID statement and the specification of one or more ID variables to determine the 
transposition: 

data sascas1.register; 

  set register; 

run; 

 

proc print data=sascas1.register; 

  var batch property value1-value3; 

run; 

 

options msglevel=i; 

 

proc transpose  

    data=sascas1.register  

    out=sascas1.measurements; 

  by batch; 

  id property; 

  var value1-value3; 

run; 

 

While not strictly required, using a BY statement with the specification of one or more BY variables is 
suggested because, like in-database operation, parallelism in the transposition is achieved through the 
distribution of different BY groups across the computing nodes in the system and the simultaneous 
processing of BY groups on those nodes. A transposition with no BY statement implies a single BY group 
and the processing of all data on a single node.  

The LET option is not required for in-CAS operation, because the underlying CAS transpose action 
detects during the first pass when the values of two or more observations within an input group are 
assigned to a single output variable. If the LET option has not been specified, like traditional PROC 
TRANSPOSE, the action stops with an error when data loss is detected. If you encounter such an error, 
you can use the LET option to ignore the data loss and allow the transposition to complete. 

IN-CAS INTERNAL OPERATION 

For execution within the CAS server, the TRANSPOSE procedure on the SAS client issues a request to 
the server to run the CAS transpose action. That request can be revealed by recalling the history of client 
and server interactions, using the HISTORY statement with the CAS procedure: 

proc cas; 

  session sascas1; 

  run; 
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  history verbose first=-4 last=-4; 

  run; 

quit; 

 

The FIRST and LAST options are used to extract the specific interaction containing the transpose action 
request. After requesting the history, the output of the action code can be extracted from the SAS log. For 
this test case, that action code is: 

action transpose.transpose /  

    table={name='REGISTER', groupBy={{name='batch'}}},  

    id={'property'},  

    casOut={name='MEASUREMENTS', replace=true},  

    validVarName='v7',  

    transpose={'value1', 'value2', 'value3'}; 

 

While the syntax of the transpose action is obviously different from that of the TRANSPOSE procedure, 
the meaning of the action parameters is likely reasonably clear, because most parameters can be directly 
related to procedure statements and options. The action’s TABLE parameter corresponds to the DATA 
option of the TRANSPOSE procedure statement. Likewise, the CASOUT parameter corresponds to the 
OUT option of the procedure statement. The ID parameter is the equivalent of the procedure’s ID 
statement. The GROUPBY parameter, a sub-parameter of the action’s TABLE parameter, contains the 
list of variables that appear on the BY statement. The VALIDVARNAME parameter is set for compatibility 
with the client, based on the SAS client setting of the VALIDVARNAME system option. Finally, the 
action’s transpose parameter takes the list of variables to be transposed that appear on the VAR 
statement. Operation of the transpose action within CAS is described below. 

INVOKING TRANSPOSE ACTION DIRECTLY 

This action code, revealed in the SAS log by the CAS procedure’s HISTORY statement and presented in 
the CAS language, can be used directly within PROC CAS. Running PROC TRANSPOSE is familiar to 
SAS programmers and integrates neatly into standard SAS code. Running the action code directly from 
PROC CAS allows expression of a work and data flow, using the power of the new CAS language: 

proc cas; 

  session sascas1; 

  run; 

 

  loadactionset "transpose"; 

  run; 

 

  action transpose.transpose /  

    table={name='REGISTER', groupBy={{name='batch'}}},  

    id={'property'},  

    casOut={name='MEASUREMENTS', replace=true},  

    validVarName='v7',  

    transpose={'value1', 'value2', 'value3'}; 

  run; 

quit; 

 

In addition to the CAS language, all CAS actions can be invoked using other CAS client languages, such 
as Lua and Python, as well as through a web service using HTTP with a REST API*. 

*Using the Hypertext Transfer Protocol (HTTP) with a Representational State Transfer (REST) application 
programming Interface (API). 
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TRANSPOSE ACTION INTERNAL OPERATION 

An action in CAS is roughly the equivalent of a procedure in the traditional SAS system. The transpose 
action is a native part of CAS and does not generate any intermediate code for execution. Because it is 
coded at a lower level and can open its input table in two-pass mode, it first requests that the input table 
be partitioned according to the GROUPBY variables and then performs two passes: the first to determine 
the shape of the output table and the second to perform the transposition. Making two passes over the 
grouped data allows the action to check for potential data loss, like traditional PROC TRANSPOSE does. 
If data loss is detected and the LET option is not specified, the action issues one or more error messages 
and stops execution. If the LET option is specified and data loss is detected, the action issues one or 
more warning messages, but continues execution. 

Similar to traditional and in-database operation, the action determines the shape and characteristics of 
the output table during its first pass over the input. It ascertains the type of output variables based on the 
input variables specified for transposition and supports the new CAS variable types. Like the 
TRANSPOSE procedure, if no variables are specified for transposition, then all double-precision, floating-
point variables that are not used for other purposes (as ID or GROUPBY variable, for instance) are 
transposed. 

COMPATIBILITY 

With any changes that SAS makes in new releases of software in use by customers, whether adding new 
features to existing procedures or adding whole new methods of operation, we take great care to maintain 
compatibility with the behavior and results to which customers are accustomed. While it is not always 
possible to build upon the existing system and maintain 100% compatibility with prior releases, it is 
certainly the goal for which we strive. The creation of the TRANSPOSE procedure’s new in-database and 
in-CAS modes of operation are no exception. We have tried to ensure that the results you obtain from 
PROC TRANSPOSE and the new CAS transpose action are consistent with traditional results that are 
produced by the SAS system. For these new capabilities, we have paid particular attention to the 
treatment of missing values, characteristics of output data sets, formatting of variables in output, and use 
of formats in the formation of variables names. In doing so, we hope to provide new power and 
performance, while preserving your investment in our software. 

FUTURE DIRECTIONS 

We encourage you to try the new capabilities of PROC TRANSPOSE to perform its work in remote 
systems, such as Teradata and Hadoop, using in-database operation and SAS Viya using in-CAS 
operation. We hope that you find the DS2 code generated for in-database operation useful for building 
upon or simply learning about DS2 and the SAS In-Database Code Accelerator. We also encourage you 
to investigate the new SAS Viya platform as we introduce it. We welcome feedback regarding the 
changes in PROC TRANSPOSE, as well as the introduction of the CAS transpose action. In addition to 
continued focus on efficiency, quality, and compatibility of this new software, we intend to make it easier 
to run PROC TRANSPOSE jobs in-database and to produce stand-alone DS2 programs from the 
generated code used for in-database operation. To produce a stand-alone program, we envision a new 
procedure option that writes the DS2 code to a text file. 
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