
1

SAS514-2017

Automated Hyperparameter Tuning for Effective Machine Learning

Patrick Koch, Brett Wujek, Oleg Golovidov, and Steven Gardner

SAS Institute Inc.

ABSTRACT

Machine learning predictive modeling algorithms are governed by “hyperparameters” that have no clear
defaults agreeable to a wide range of applications. The depth of a decision tree, number of trees in a
forest, number of hidden layers and neurons in each layer in a neural network, and degree of
regularization to prevent overfitting are a few examples of quantities that must be prescribed for these
algorithms. Not only do ideal settings for the hyperparameters dictate the performance of the training
process, but more importantly they govern the quality of the resulting predictive models. Recent efforts to
move from a manual or random adjustment of these parameters include rough grid search and intelligent
numerical optimization strategies.

This paper presents an automatic tuning implementation that uses local search optimization for tuning
hyperparameters of modeling algorithms in SAS® Visual Data Mining and Machine Learning. The
AUTOTUNE statement in the TREESPLIT, FOREST, GRADBOOST, NNET, SVMACHINE, and
FACTMAC procedures defines tunable parameters, default ranges, user overrides, and validation
schemes to avoid overfitting. Given the inherent expense of training numerous candidate models, the
paper addresses efficient distributed and parallel paradigms for training and tuning models on the SAS®
Viya™ platform. It also presents sample tuning results that demonstrate improved model accuracy and
offers recommendations for efficient and effective model tuning.

INTRODUCTION

Machine learning is a form of self-calibration of predictive models that are built from training
data. Machine learning predictive modeling algorithms are commonly used to find hidden value in big
data. Facilitating effective decision making requires the transformation of relevant data to high-quality
descriptive and predictive models. The transformation presents several challenges however. For
example, consider a neural network, as shown in Figure 1. Outputs are predicted by transforming a set of
inputs through a series of hidden layers that are defined by activation functions linked with
weights. Determining the activation functions and the weights to determine the best model configuration is
a complex optimization problem.

Figure 1. Neural Network

…
.

…
.

…
.

Input layer Hidden Output layer

x1

x2

x3

x4

xn

wij
wjk

f1(x)

f2(x)

fm(x)

2

The goal in this model-training optimization problem is to find the weights that will minimize the error in
model predictions based on the training data, validation data, specified model configuration (number of
hidden layers and number of neurons in each hidden layer), and the level of regularization that is added
to reduce overfitting to training data. One recently popular approach to solving for the weights in this
optimization problem is through use of a stochastic gradient descent (SGD) algorithm (Bottou, Curtis, and
Nocedal 2016). This algorithm is a variation of gradient descent in which instead of calculating the
gradient of the loss over all observations to update the weights at each step, a “mini-batch” random
sample of the observations is used to estimate loss, sampling without replacement until all observations
have been used. The performance of this algorithm, as with all optimization algorithms, depends on a
number of control parameters for which no default values are best for all problems. SGD parameters
include the following control parameters (among others):

 a learning rate that controls the step size for selecting new weights

 a momentum parameter to avoid slow oscillations

 an adaptive decay rate and an annealing rate to adjust the learning rate for each weight and time

 a mini-batch size for sampling a subset of observations

The best values of the control parameters must be chosen very carefully. For example, the learning rate
can be adjusted to reach a solution more quickly; however, if the value is too high, the solution diverges,
and if it is too low, the performance is very slow, as shown in Figure 2(a). The momentum parameter
dictates whether the algorithm tends to oscillate slowly in ravines where solutions lie (jumping back and
forth across the ravine) or dives in quickly, as shown in Figure 2(b). But if momentum is too high, it could
jump past the solution (Sutskever et al. 2013). Similar accuracy-versus-performance trade-offs are
encountered with the other control parameters. The adaptive decay can be adjusted to improve accuracy,
and the annealing rate is often necessary to avoid jumping past a solution. Ideally, the size of the mini-
batch for distributed training is small enough to improve performance and large enough to produce
accurate models. A communication frequency parameter can be used to adjust how often training
information (such as average weights, velocity vectors, and annealing rates) is synced when training is
distributed across a compute grid; higher frequency might increase accuracy, but it also reduces
performance.

(a) Learning Rate (b) Momentum

Figure 2. Effect of Hyperparameters on Neural Network Training Convergence

The best values of these parameters vary for different data sets, and they must be chosen before model
training begins. These options dictate not only the performance of the training process, but more
importantly, the quality of the resulting model. Because these parameters are external to the training

3

process—that is, they are not the model parameters (weights in the neural network) being optimized
during training—they are often called hyperparameters. Figure 3 depicts the distinction between training a
model (solving for model parameters) and tuning a model (finding the best algorithm hyperparameter
values). Settings for these hyperparameters can significantly influence the resulting accuracy of the
predictive models, and there are no clear defaults that work well for different data sets. In addition to the
optimization options already discussed for the SGD algorithm, the machine learning algorithms
themselves have many hyperparameters. As in the neural network example, the number of hidden layers,
the number of neurons in each hidden layer, the distribution used for the initial weights, and so on are all
hyperparameters that are specified up front for model training, that govern the quality of the resulting
model, and whose ideal values also vary widely with different data sets.

Figure 3. Model Training in Relation to Model Tuning

Tuning hyperparameter values is a critical aspect of the model training process and is considered a best
practice for a successful machine learning application (Wujek, Hall, and Güneş 2016). The remainder of
this paper describes some of the common traditional approaches to hyperparameter tuning and
introduces a new hybrid approach in SAS Visual Data Mining and Machine Learning that takes advantage
of the combination of the powerful machine learning algorithms, optimization routines, and distributed and
parallel computing that running on the SAS Viya platform offers.

HYPERPARAMETER TUNING

The approach to finding the ideal values for hyperparameters (tuning a model to a particular data set) has
traditionally been a manual effort. For guidance in setting these values, researchers often rely on their
past experience using these machine learning algorithms to train models. However, even with expertise in
machine learning algorithms and their hyperparameters, the best settings of these hyperparameters will
change with different data; it is difficult to prescribe the hyperparameter values based on previous
experience. The ability to explore alternative configurations in a more guided and automated manner is
needed.

COMMON APPROACHES

Grid Search

A typical approach to exploring alternative model configurations is by using what is commonly known as a
grid search. Each hyperparameter of interest is discretized into a desired set of values to be studied, and

4

models are trained and assessed for all combinations of the values across all hyperparameters (that is, a
“grid”). Although fairly simple and straightforward to carry out, a grid search is quite costly because
expense grows exponentially with the number of hyperparameters and the number of discrete levels of
each. Even with the inherent ability of a grid search to train and assess all candidate models in parallel
(assuming an appropriate environment in which to do so), it must be quite coarse in order to be feasible,
and thus it will often fail to identify an improved model configuration. Figure 4(a) illustrates hypothetical
distributions of two hyperparameters (X1 and X2) with respect to a training objective and depicts the
difficulty of finding a good combination with a coarse standard grid search.

Figure 4. Common Approaches to Hyperparameter Tuning

Random Search

A simple yet surprisingly effective alternative to performing a grid search is to train and assess candidate
models by using random combinations of hyperparameter values. As demonstrated in Bergstra and
Bengio (2012), given the disparity in the sensitivity of model accuracy to different hyperparameters, a set
of candidates that incorporates a larger number of trial values for each hyperparameter will have a much
greater chance of finding effective values for each hyperparameter. Because some of the
hyperparameters might actually have little to no effect on the model for certain data sets, it is prudent to
avoid wasting the effort to evaluate all combinations, especially for higher-dimensional hyperparameter
spaces. Rather than focusing on studying a full-factorial combination of all hyperparameter values,
studying random combinations enables you to explore more values of each hyperparameter at the same
cost (the number of candidate models that are trained and assessed). Figure 4(b) depicts a potential
random distribution with the same budget of evaluations (nine points in this example) as shown for the
grid search in Figure 4(a), highlighting the potential to find better hyperparameter values. Still, the
effectiveness of evaluating purely random combinations of hyperparameter values is subject to the size
and uniformity of the sample; candidate combinations can be concentrated in regions that completely omit
the most effective values of one or more of the hyperparameters.

Latin Hypercube Sampling

A similar but more structured approach is to use a random Latin hypercube sample (LHS) (McKay 1992),
an experimental design in which samples are exactly uniform across each hyperparameter but random in
combinations. These so-called low-discrepancy point sets attempt to ensure that points are approximately
equidistant from one another in order to fill the space efficiently. This sampling allows for coverage across
the entire range of each hyperparameter and is more likely to find good values of each hyperparameter—
as shown in Figure 4(c)—which can then be used to identify good combinations. Other experimental
design procedures can also be quite effective at ensuring equal density sampling throughout the entire
hyperparameter space, including optimal Latin hypercube sampling as proposed by Sacks et al. (1989).

5

Optimization

Exploring alternative model configurations by evaluating a discrete sample of hyperparameter
combinations, whether randomly chosen or through a more structured experimental design approach, is
certainly a fairly straightforward approach. However, true hyperparameter optimization should allow the
use of logic and information from previously evaluated configurations to determine how to effectively
search through the space. Discrete samples are unlikely to identify even a local accuracy peak or error
valley in the hyperparameter space; searching between these discrete samples can uncover
good combinations of hyperparameter values. The search is based on an objective of minimizing the
model validation error, so each “evaluation” from the optimization algorithm’s perspective is a full cycle of
model training and validation. These methods are designed to make intelligent use of fewer evaluations
and thus save on the overall computation time. Optimization algorithms that have been used for
hyperparameter tuning include Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Konen et al. 2011),
covariance matrix adaptation evolution strategy (CMA-ES) (Konen et al. 2011), particle swarm (PS)
(Renukadevi and Thangaraj 2014; Gomes et al. 2012), tabu search (TS) (Gomes et al. 2012), genetic
algorithms (GA) (Lorena and de Carvalho 2008), and more recently surrogate-based Bayesian
optimization (Denwancker et al. 2016).

However, because machine learning training and scoring algorithms are a complex black box to the
tuning algorithm, they create a challenging class of optimization problems. Figure 5 illustrates several of
these challenges:

 Machine learning algorithms typically include not only continuous variables but also categorical
and integer variables. These variables can lead to very discrete changes in the objective.

 In some cases, the hyperparameter space is discontinuous and the objective evaluation fails.

 The space can also be very noisy and nondeterministic (for example, when distributed data are
moved around because of unexpected rebalancing).

 Objective evaluations can fail because a compute node fails, which can derail a search strategy.

 Often the space contains many flat regions where many configurations produce very similar
models.

Figure 5. Challenges in Applying Optimization to Hyperparameter Tuning

An additional challenge is the unpredictable computation expense of training and validating predictive
models using different hyperparameter values. For example, adding hidden layers and neurons to a
neural network can significantly increase the training and validation time, resulting in widely ranging
potential objective expense. Given the great promise of using intelligent optimization techniques coupled
with the aforementioned challenges of applying these techniques for tuning machine learning
hyperparameters, a very flexible and efficient search strategy is needed.

6

AUTOTUNING ON THE SAS VIYA PLATFORM

SAS Viya is a new platform that enables parallel/distributed computing of the powerful analytics that SAS
provides. The new SAS Visual Data Mining and Machine Learning offering (Wexler, Haller, and Myneni
2017) provides a hyperparameter autotuning capability that is built on local search optimization in SAS®
software. Optimization for hyperparameter tuning typically can very quickly reduce, by several percentage
points, the model error that is produced by default settings of these hyperparameters. More advanced
and extensive optimization, facilitated through parallel tuning to explore more configurations and refine
hyperparameter values, can lead to further improvement. With increased dimensionality of the
hyperparameter space (that is, as more hyperparameters require tuning), a manual tuning process
becomes much more difficult and a much coarser grid search is required. An automated, parallelized
search strategy can also benefit novice machine learning algorithm users.

LOCAL SEARCH OPTIMIZATION

SAS local search optimization (LSO) is a hybrid derivative-free optimization framework that operates in
the SAS Viya parallel/distributed environment to overcome the challenges and expense of
hyperparameter optimization. As shown in Figure 6, it consists of an extendable suite of search methods
that are driven by a hybrid solver manager that controls concurrent execution of search
methods. Objective evaluations (different model configurations in this case) are distributed across
multiple evaluation worker nodes in a compute grid and coordinated in a feedback loop that supplies data
from all concurrent running search methods. The strengths of this approach include handling of
continuous, integer, and categorical variables; handling nonsmooth, discontinuous spaces; and ease of
parallelizing the search strategy.

Figure 6. Local Search Optimization: Parallel Hybrid Derivative-Free Optimization Strategy

The autotuning capability in SAS Visual Data Mining and Machine Learning takes advantage of the LSO
framework to provide a flexible and effective hybrid search strategy. It uses a default hybrid search
strategy that begins with a Latin hypercube sample (LHS), which provides a more uniform sample of the
hyperparameter space than a grid or random search provides. The best samples from the LHS are then
used to seed a genetic algorithm (GA), which crosses and mutates the best samples in an iterative
process to generate a new population of model configurations for each iteration. An important note here is
that the LHS samples can be evaluated in parallel and the GA population at each iteration can be
evaluated in parallel. Alternate search methods include a single Latin hypercube sample, a purely random
sample, and an experimental Bayesian search method.

http://support.sas.com/documentation/cdl/en/orlsoug/68155/HTML/default/viewer.htm#titlepage.htm

7

AUTOTUNING IN SAS MODELING PROCEDURES

The hybrid strategy for automatically tuning hyperparameters is used by a number of modeling
procedures in SAS Visual Data Mining and Machine Learning. Any modeling procedure that supports
autotuning provides an AUTOTUNE statement, which includes a number of options for specifically
configuring what to tune and how to perform the tuning process. The following example shows how the

simple addition of a single line (autotune;) to an existing GRADBOOST procedure script triggers the

process of autotuning a gradient boosting model. The best found configuration of hyperparameters is
reported as an ODS table, and the corresponding best model is saved in the specified data table

(mycaslib.mymodel).

 cas mysess;

 libname mycaslib sasioca casref=mysess;

 data mycaslib.dmagecr;

 set sampsio.dmagecr;

 run;

 proc gradboost data=mycaslib.dmagecr outmodel=mycaslib.mymodel;

 target good_bad / level=nominal;

 input checking duration history amount savings employed installp

 marital coapp resident property age other housing existcr job

 depends telephon foreign / level=interval;

 input purpose / level=nominal;

 autotune;

 run;

Note: If your installation does not include the Sampsio library of examples, you will need to define it
explicitly by running the following command:

 libname sampsio '!sasroot/samples/samplesml';

After you run a modeling procedure that includes the AUTOTUNE statement, you will see (in addition to
the standard ODS output that the procedure produces) the following additional ODS tables, which are
produced by the autotuning algorithm:

 Tuner Information displays the tuner configuration.

 Tuner Summary summarizes tuner results, which include initial, best, and worst configuration;
number of configurations; and tuning clock time and observed parallel speed up. (For more
information, see the section “Autotuning Results and Recommendations.”)

 Tuner Task Timing displays the time that was used for training, scoring, tuner overhead, and the
overall CPU time that was required.

 Best Configuration provides the best configuration evaluation number, final hyperparameter
values, and best configuration objective value.

 Tuner Results displays the initial configuration as Evaluation 0 on the first row of the table,
followed by up to 10 best found configurations, sorted by their objective function value. This table
enables you to compare the initial and best found configurations and potentially choose a simpler
model that has nearly equivalent accuracy.

 Tuner History displays hyperparameter and objective values for all evaluated configurations.

Figure 7 shows some of the tables that result from running the preceding SAS script. Note that random
seed generation and data distribution in SAS Viya will cause results to vary.

8

Figure 7. SAS ODS Output Tables Produced by Autotuning

For each modeling procedure that supports autotuning, the autotuning process automatically tunes a
specific subset of hyperparameters. For any hyperparameter being tuned, the procedure ignores any
value that is explicitly specified in a statement other than the AUTOTUNE statement; instead the

9

autotuning process dictates both an initial value and subsequent values for candidate model
configurations, either using values or ranges that are specified in the AUTOTUNE statement or using
internally prescribed defaults. Table 1 lists the hyperparameters that are tuned and their corresponding
defaults for the various modeling procedures.

Hyperparameter Initial Value Lower Bound Upper Bound

Decision Tree (PROC TREESPLIT)

MAXDEPTH 10 1 19

NUMBIN 20 20 200

GROW

GAIN
(nominal target)

GAIN, IGR, GINI, CHISQUARE, CHAID
(nominal target)

VARIANCE
(interval target)

VARIANCE, FTEST, CHAID
(interval target)

Forest (PROC FOREST)

NTREES 100 20 150

VARS_TO_TRY sqrt(# inputs) 1 # inputs

INBAGFRACTION 0.6 0.1 0.9

MAXDEPTH 20 1 29

Gradient Boosting Tree (PROC GRADBOOST)

NTREES 100 20 150

VARS_TO_TRY # inputs 1 # inputs

LEARNINGRATE 0.1 0.01 1.0

SAMPLINGRATE 0.5 0.1 1.0

LASSO 0.0 0.0 10.0

RIDGE 0.0 0.0 10.0

Neural Network (PROC NNET)

NHIDDEN 0 0 5

NUNITS1,…,5 1 1 100

REGL1 0 0 10.0

REGL2 0 0 10.0

LEARNINGRATE* 1 E–3 1E–6 1 E–1

ANNEALINGRATE* 1 E–6 1E–13 1 E–2

*These hyperparameters apply only when the neural net training optimization algorithm is SGD.

Support Vector Machine (PROC SVMACHINE)

C 1.0 1E–10 100.0

DEGREE 1 1 3

Factorization Machine (PROC FACTMAC)

NFACTORS 5 5, 10, 15, 20, 25, 30

MAXITER 30 10, 20, 30, …, 200

LEARNSTEP 1 E–3 1 E–6, 1 E–5, 1 E–4, 1 E–3, 1 E–2, 1 E–1, 1.0

Table 1. Hyperparameters Driven by Autotuning in SAS Procedures

10

In addition to defining what to tune, you can set various options for how the tuning process should be
carried out and when it should be terminated. The following example demonstrates how a few of these
options can be added to the AUTOTUNE statement in the script shown earlier:

 proc gradboost data=mycaslib.dmagecr outmodel=mycaslib.mymodel;

 target good_bad / level=nominal;

 input checking duration history amount savings employed installp

 marital coapp resident property age other housing existcr job

 depends telephon foreign / level=interval;

 input purpose / level=nominal;

 autotune popsize=5 maxiter=3 objective=ASE;

 run;

Table 2 lists all the available AUTOTUNE options with their default values and allowed ranges.
Descriptions of these options can be found in Appendix A.

Option Default Value Allowed Values

Optimization Algorithm Options

MAXEVALS 50 [3–∞]

MAXITER 5 [1–∞]

MAXTIME 36,000 [1–∞]

POPSIZE 10 [2–∞]

SAMPLESIZE 50 [2–∞]

SEARCHMETHOD GA GA, LHS ,RANDOM, BAYESIAN

Validation Type Options

FRACTION 0.3 [0.01–0.99]

KFOLD 5 [2–∞]

Objective Type Options

OBJECTIVE

MSE (interval target)

MISC (nominal target)

MSE, ASE, RASE, MAE, RMAE, MSLE,
RMSLE (interval target)

MISC, ASE, RASE, MCE, MCLL, AUC,
F1, F05, GINI, GAMMA, TAU (nominal
target)

TARGETEVENT First event found

Tuning Parameters Options

USEPARAMETERS COMBINED COMBINED, STANDARD, CUSTOM

TUNINGPARAMETERS N/A

Other Options

EVALHISTORY TABLE TABLE, LOG, NONE, ALL

NPARALLEL 0 [0–∞]

Table 2. Autotuning Options

11

The following example shows how you can use the AUTOTUNE statement to specify several custom
definitions of hyperparameters to be tuned. You can change the initial value and the range of any tuning
parameter, or you can prescribe a list of specific values to be used by the autotuning process.

 proc gradboost data=mycaslib.dmagecr outmodel=mycaslib.mymodel;

 target good_bad / level=nominal;

 input checking duration history amount savings employed installp

 marital coapp resident property age other housing existcr job

 depends telephon foreign / level=interval;

 input purpose / level=nominal;

 autotune popsize=5 maxiter=3 objective=ASE

 tuningparameters=(

 ntrees(lb=10 ub=50 init=10)

 vars_to_try(values=4 8 12 16 20 init=4)

);

 run;

In general, the syntax for specifying custom definitions of hyperparameters to tune is

TUNINGPARAMETERS=(<suboption> <suboption> …)

where each <suboption> is specified as:

<hyperparameter name> (LB=number UB=number VALUES=value-list INIT=number EXCLUDE)

Descriptions of these options can be found in Appendix A.

PARALLEL EXECUTION ON THE SAS VIYA PLATFORM

Hyperparameter tuning is ideally suited for the SAS Viya distributed analytics platform. The training of a
model by a machine learning algorithm can be computationally expensive. As the size of a training data
set grows, not only does the expense increase, but the data (and thus the training process) must often be
distributed among compute nodes because they exceed the capacity of a single computer. Also, the
configurations to be considered during tuning are independent, making a sequential tuning process not
only expensive but unnecessary, assuming you have an available grid of compute resources. If a cross-
validation process is chosen for model validation during tuning (which is typically necessary for small data
sets), the tuning process cost is multiplied by a factor of k (the number of approximately equal-sized
subsets, called folds), making a sequential tuning process even more intractable and reducing the
number of configurations that can be considered.

Not only are the algorithms in SAS Visual Data Mining and Machine Learning designed for distributed
analysis, but the local search optimization framework is also designed to take advantage of the distributed
analytics platform, allowing distributed and concurrent training and scoring of candidate model
configurations. When it comes to distributed/parallel processing for hyperparameter tuning, the literature
typically presents two separate modes: “data parallel” (distributed/parallel training) and “model parallel”
(parallel tuning). Truly big data requires distribution of the data and the training process. The diagram in
Figure 8(a) illustrates this process: multiple worker nodes are used for training and scoring each
alternative model configuration, but the tuning process is a sequential loop, which might also include
another inner sequential loop for the cross-validation case. Because larger data sets are more expensive
to train and score, even with a distributed data and training/scoring process, this sequential tuning
process can be very expensive and restrictive in the number of alternatives that can feasibly be
considered in a particular period of time. The “model parallel” case is shown in Figure 8(b): multiple
alternative configurations are generated and evaluated in parallel, each on a single worker node,
significantly reducing the tuning time. However, the data must fit on a single worker node.

12

(a) “Data Parallel” (Sequential Tuning) (b) “Model Parallel”

Figure 8. Different Uses of Distributed Computing Resources

The challenge is to determine the best usage of available worker nodes. Ideally the best usage is a
combination of the “data parallel” and “model parallel” modes, finding a balance of benefit from each.
Example usage of a cluster of worker nodes for model tuning presents behaviors that can guide
determination of the right balance. With small problems, using multiple worker nodes for training and
scoring can actually reduce performance, as shown in Figure 9(a), where a forest model is tuned for the
popular iris data set (150 observations) for a series of different configurations. The communication cost
required to coordinate distributed data and training results continually increases the tuning time—from 15
seconds on a single machine to nearly four minutes on 128 nodes. Obviously this tuning process would
benefit more from parallel tuning than from distributed/parallel training.

For large data sets, benefit is observed from distributing the training process. However, the benefit of
distribution and parallel processing does not continue to increase with an increasing number of worker
nodes. At some point the cost of communication again outweighs the benefit of parallel processing for
model training. Figure 9(b) shows that for a credit data set of 70,000 observations, the time for training
and tuning increases beyond 16 nodes, to a point where 64 nodes is more costly than 1 worker node.

(a) Iris data set (105 / 45) (b) Credit data set (49,000 / 21,000)

Figure 9. Distributed Training with Sequential Tuning for Different Size Data Sets (Training/Validation)

15
36 34 40

65

112

140

226

0

50

100

150

200

250

1 2 4 8 16 32 64 128

Ti
m

e
(s

ec
o

n
d

s)

Number of Nodes for Training

0

100

200

300

400

500

600

1 2 4 8 16 32 64

Ti
m

e
(s

ec
o

n
d

s)

Number of Nodes for Training

13

When it comes to model tuning, the “model parallel” mode (training different model configurations in
parallel) typically leads to larger gains in performance, especially with small- to medium-sized data sets.
The performance gain is nearly linear as the number of nodes increases because each trained model is
independent during tuning—no communication is required between the different configurations being
trained. The number of nodes that are used is limited based on the size of the compute grid and the
search strategy (for example, the population size at each iteration of a genetic algorithm). However, it is
also possible to use both “data parallel” and “model parallel” modes through careful management of the
data, the training process, and the tuning process. Because managing all aspects of this process in a
distributed/parallel environment is very complex, using both modes is typically not discussed in the
literature or implemented in practice. However, it is implemented in the SAS Visual Data Mining and
Machine Learning autotune process.

As illustrated in Figure 10(a), multiple alternate model configurations are submitted concurrently by the
local search optimization framework running on the SAS Viya platform, and the individual model
configurations are trained and scored on a subset of available worker nodes so that multiple nodes can
be used to manage large training data and speed up the training process. Figure 10(b) shows the time
reduction for tuning when this process is implemented and the number of parallel configurations is
increased, with each configuration being trained on four worker nodes. The tuning time for a neural
network model that is tuned to handwritten data is reduced from 11 hours to just over 1 hour when the
number of parallel configurations being tuned is increased from 2 (which uses 8 worker nodes) to 32
(which uses 128 worker nodes).

(a) Conceptual Framework (b) Timing Results (70k observations)

Figure 10. Distributed/Parallel Training and Parallel Tuning Combined

AUTOTUNING RESULTS AND RECOMMENDATIONS

This section presents tuning results for a set of benchmark problems, showing that the tuner is behaving
as expected—model error is reduced when compared to using default hyperparameter values. This
section also shows tuning time results for the benchmark problems and compares validation by single
partition of the data to cross-validation. Finally, a common use case is presented—the tuning of a model
to recognize handwritten digits. Code samples that demonstrate the application of autotuning to these
and other problems can be found at https://github.com/sassoftware/sas-viya-machine-learning/autotuning.

0

2

4

6

8

10

12

2 4 8 16 32

Ti
m

e
(h

o
u

rs
)

Maximum Models Trained in Parallel

https://github.com/sassoftware/sas-viya-machine-learning/autotuning

14

BENCHMARK RESULTS

Figure 11 shows model improvement (error reduction or accuracy increase—higher is better) for a suite of
10 common machine learning test problems.1 For this benchmark study, all problems are tuned with a
30% single partition for error validation during tuning, and the conservative default autotuning process is
used: five iterations with only 10 configurations per iteration in LHS and GA. All problems are run 10
times, and the results that are obtained with different validation partitions are averaged in order to better
assess behavior.

Here all problems are binary classification, allowing tuning of decision trees (DT), forests (FOR), gradient
boosting trees (GB), neural networks (NN), and support vector machines (SVM). Figure 11 indicates that
the tuner is working—with an average reduction in model error of 2% to more than 8% across all data
sets, depending on model type, when compared to a baseline model that is trained with default settings of
each machine learning algorithm. You can also see a hint of the “no free lunch” theorem (Wolpert 1996)
with respect to different machine learning models for different data sets; no one modeling algorithm
produces the largest improvement for all problems. Some modeling algorithms show 15–20% benefit
through tuning. However, note that the baseline is not shown here, only the improvement. The starting
point (the initial model error) is different in each case. The largest improvement might not lead to the
lowest final model error. The first problem, the Banana data set, suggests that NN and SVM produce the
largest improvement. The Thyroid problem shows a very wide range of improvement for different
modeling algorithms.

Figure 11. Benchmark Results: Average Improvement (Error Reduction) after Tuning

Figure 12 shows the final tuned model error—as averaged across the 10 tuning runs that use different
validation partitions—for each problem and each modeling algorithm. The effect of the “no free lunch”
theorem is quite evident here—different modeling algorithms are best for different problems. Consider the
two data sets that were selected previously. For the Banana data set, you can see that although the
improvement was best for NN and SVM, the final errors are highest for these two algorithms, indicating
that the default models were worse for these modeling algorithms for this particular data set. All other
modeling algorithms produce very similar error of around 10%—less than half the error from NN and SVM
in this case. For the Thyroid data (which showed an even larger range of improvement for all modeling
algorithms), the resulting model error is actually similar for different algorithms; again the default starting
point is different, confirming the challenge of setting good defaults.

Overall, the benchmark results, when averaged across all data sets, are as expected. Decision trees are
the simplest models and result in the highest overall average model error. If you build a forest of trees (a

1 Data sets from http://mldata.org/repository/tags/data/IDA_Benchmark_Repository/, made available under the Public
Domain Dedication and License v1.0, whose full text can be found at http://www.opendatacommons.org/licenses/pddl/1.0/ .

Model
Type

Average
Improvement

(%)

NN 8.53

SVM 8.45

DT 6.25

FOR 2.09

GB 1.91

http://mldata.org/repository/tags/data/IDA_Benchmark_Repository/
http://www.opendatacommons.org/licenses/pddl/1.0/

15

form of an ensemble model), you can reduce the error further, and for these data sets, the more complex
gradient boosting training process leads to the lowest model error. The average errors for NN and SVM
fall between the simple single decision tree and tree ensembles. Kernels other than linear or polynomial
might be needed with SVM for these data sets, and neural networks might require more internal iterations
or evaluation of more configurations, given the discrete combinations of hidden layers and units. So why
not always use gradient boosting? Aside from fact that it might not be best for all data sets and the desire
to use the simplest model that yields good predictions, there is a trade-off between resulting model
accuracy and tuning time.

Model
Type

Average Error
After Tuning

(%)

GB 9.9

FOR 10.7

SVM 13.1

NN 13.5

DT 13.9

Figure 12. Benchmark Results: Average Error after Tuning

TUNING TIME

For the tree-based algorithms, the trade-off is exactly the inverse ranking of machine learning algorithms
with time compared to accuracy on average, as shown in Figure 13. Decision trees are the simplest and
most efficient—only 14.4 seconds here for full tuning with this conservative tuning process. Building a
forest of trees increases the time to over 23 seconds, and the complex gradient boosting process is more
expensive at 30 seconds average tuning time. NN and SVM tuning times are similar for several problems,
but higher for some, leading to a higher overall average tuning time; both use iterative optimization
schemes internally to train models, and convergence might take longer for some data sets.

Model
Type

Average
Tuning
Time

(Seconds)

Average
Parallel
Speed-

Up

DT 14.4 3.6

FOR 23.7 5.1

GB 30.0 4.7

NN 42.7 4.1

SVM 45.6 4.6

Figure 13. Benchmark Results: Average Total Tuning Time in Seconds

16

For these benchmark data sets, the tuning time is manageable—less than 30 seconds for fully tuning
most models. Even the worst case, a neural network tuned to the wide Splice data set (which has 60
attributes) is tuned in just over two minutes. Note here again that all configurations are trained in parallel
during each iteration of tuning. The total CPU time for this worst-case tuning is closer to eight minutes.
With the default tuning process of 10 configurations during each of five iterations, one configuration is
carried forward each iteration; so up to nine new configurations are evaluated in parallel at each iteration
(by default). Figure 13 also shows parallel speed-up time (which is the total CPU time divided by the tuner
clock time) of 3X–5X speed-up with parallel tuning. Why is the speed-up not 9X with nine parallel
evaluations? Putting aside some overhead of managing parallel model training, the longest running
configuration of the nine models that are trained in parallel determines the iteration time. For example, if
eight configurations take 1 second each for training, and the ninth takes 2 seconds, a sequential training
time of 10 seconds is reduced to 2 seconds, the longest-running model training. A 5X speed-up is
observed rather than the average of the nine training times (1.1 seconds), which would be a 9X speed-up.

For larger data sets, longer-running training times, and an increased number of configurations at each
iteration, the parallel speed-up will increase. For these benchmark problems, running in parallel on a
compute grid might not be necessary; for a 30-second tuning time, 5X longer sequentially might not be a
concern. Eight minutes for tuning the longer-running data sets might not even be a concern. Before you
consider parallel/distributed training and tuning for larger data sets, however, you need to consider
another tuning cost with respect to the validation process: cross-validation.

CROSS-VALIDATION

For small data sets, a single validation partition might leave insufficient data for validation in addition to
training. Keeping the training and validation data representative can be a challenge. For this reason,
cross-validation is typically recommended for model validation. With cross-validation, the data are
partitioned into k approximately equal subsets called folds; training/scoring happens k times—training on
all except the current holdout fold, and scoring on the holdout fold. The cross-validation error is then an
average of the errors obtained from each validation fold.

This process can produce a better representation of error across the entire data set, because all
observations are used for training and scoring. Figure 14 shows a comparison of cross-validation errors
and the errors from a single partition, where both are compared to errors from a separate test set. The
three smallest data sets are chosen, and the value in parentheses indicates the size of the holdout test
set. Gradient boosting tree models are tuned in this case. The plot shows the absolute value of the error
difference, where lower is better (validation error closer to test error). For the Breast Cancer data set, the
single partition results and the cross-validation results are nearly equal. However, for the other two data
sets, the cross-validation process that uses five folds produces a better representation of test error than
the single validation partition does—in both cases, the cross-validation error is more than 5% closer to the
test error.

Figure 14. Benchmark Results: Single Partition versus Cross-Validation

17

With this cross-validation process, the trade-off is again increased time. The model training time, and
therefore the overall tuning time, is increased by a factor of k. Thus, a 5X increase in time with sequential
tuning for a small data set and a 5X increase with five-fold cross-validation becomes a 25X increase in
tuning time. So tuning a model to even a small data set can benefit from parallel tuning.

TUNING MODELS FOR THE MNIST DIGITS DATA

In this section, the power of combined distributed modeling training and parallel tuning enabled by the
SAS Viya distributed analytics platform is demonstrated by using the popular MNIST (Mixed National
Institute of Standards and Technologies) database of handwritten digits (Lecun, Cortes, and Burges
2016). This database contains digitized representations of handwritten digits 0–9, in the form of a 28 × 28
image for a total of 784 pixels. Each digit image is an observation (row) in the data set, with a column for
each pixel containing a grayscale value for that pixel. The database includes 60,000 observations for
training, and a test set of 10,000 observations. Like many studies that use this data set, this example
uses the test set for model validation during tuning.

The GRADBOOST procedure is applied to the digits database with autotuning according to the
configuration that is specified in the following statements:

 proc gradboost data=mycaslib.digits;

 partition rolevar=validvar(train=’0’ valid=’1’);

 input &inputnames;

 target label / level=nominal;

 autotune popsize=129 maxiter=20 maxevals=2560

 nparallel=32 maxtime=172800

 tuningparameters=(ntrees(ub=200));

 run;

In this example, the training and test data sets have been combined, with the ROLEVAR= option
specifying the variable that indicates which observations to use during training and which to use during
scoring for validation. The PARTITION statement is used in conjunction with the AUTOTUNE statement
to specify the validation approach—a single partition in this case, but using the ROLEVAR= option
instead of a randomly selected percentage validation fraction. Because there are 784 potential inputs
(pixels) and some of the pixels are blank for all observations, the list of input pixels that are not blank is
preprocessed into the macro variable &inputnames, resulting in 719 inputs (see the code in Appendix B).
For tuning, the number of configurations to try has been significantly increased from the default settings.
Up to 20 iterations are requested, with a population size (number of configurations per iteration) of 129.
Recall that one configuration is carried forward each iteration, so this specification results in up to 128
new configurations evaluated in each iteration.

A grid with 142 nodes is employed and configured to use four worker nodes per model training. Why four
instead of eight or 16 worker nodes per training as suggested in Figure 9? There is a trade-off here for
node assignment: training time versus tuning time. Using four worker nodes per training and tuning 32
models in parallel uses 128 worker nodes in total. If the number of worker nodes for training is doubled,
the number of parallel models might need to be reduced in order to balance the load. Here it is decided
that the gain from doubling the parallel tuning is larger than the reduced training time from doubling the
number of worker nodes for each model training. Using four worker nodes, the training time for a default
gradient boosting model is approximately 21.5 minutes. With eight worker nodes, the training time is
approximately 13 minutes.

With up to 20 iterations and 128 configurations per iteration, the MAXEVALS= option is increased to
2,560 to accommodate these settings (the default for this option is 50, which would lead to termination
before the first iteration finishes). The MAXTIME= option is also increased to support up to 48 hours of
tuning time; many of the configurations train in less than the time required for the default model training.

18

Finally, the upper bound on the tuning range for the NTREES hyperparameter is increased to 200 from
the default value of 150. The syntax enables you to override either or both of the hyperparameter bounds;
in this example, the default lower bound for NTREES is unchanged and PROC GRADBOOST uses
default settings for the other five tuning parameters. Increasing the upper bound for the number of trees
hyperparameter will increase the training time for some models (and thus increase the tuning time) but
might allow better models to be identified.

Some of the challenges of hyperparameter tuning discussed earlier can be seen in Figure 15, which
shows the error for the configurations that are evaluated in the first iteration of tuning. Recall that the first
iteration uses a Latin hypercube sample (which is more uniform than a pure random sample) to obtain an
initial sample of the space. Two key points can be seen very clearly in this plot:

 The majority of the evaluated configurations produce a validation error larger than that of the
default configuration, which is 2.57%.

 As you look across the plot, you can clearly see that many different configurations produce very
similar error rates. These similar error rates indicate flat regions in the space, which are difficult
for an optimizer to traverse and make it difficult for random configurations to identify an improved
model.

Figure 15. The GRADBOOST Procedure Tuning to MNIST Digits Data—Iteration 1

An improved model is found in the first iteration, with an error of 2.21%. Figure 16 shows the results of
applying the genetic algorithm in subsequent iterations. The error is reduced again in 11 of the remaining
19 iterations. The tuning process is terminated when the maximum requested number of iterations is
reached, after evaluating 2,555 unique model configurations. Here the final error is 1.74%. Details of the
final model configuration are shown in Figure 17. The number of trees hyperparameter (which starts with
a default of 100 trees) is driven up to 142 trees, still below the default upper bound of 150. Only 317
variables are used, well below the default of all (719) variables. Learning rate is increased from a default
of 0.1 to 0.19, and sampling rate is increased from 0.5 to 1.0, its upper bound. Both lasso and ridge
regularization begin at 0; lasso is increased to 0.14 and ridge is increased to 0.23.

Also shown in Figure 17 are tuning timing information and a tuning process summary. You can see that
the tuning time of just over 28 hours (101,823 seconds) actually uses more than 760 hours of CPU time
(the sum of all parallel training/scoring time for each objective evaluation), which results in a parallel
speed-up of nearly 27X—much more than the 5X best case speed-up that is seen with the benchmark
problems, and a much better ratio of 0.84 (with 32 parallel evaluations) compared to 0.56 (5X speed-up
with 9 parallel evaluations).

19

Figure 16. The GRADBOOST Procedure Tuning Iteration History, MNIST Digits Data

Figure 17. The GRADBOOST Procedure Tuning Results, MNIST Digits Data

CONCLUSION

The explosion of digital data is generating many opportunities for big data analytics, which in turn
provides many opportunities for tuning predictive models to capitalize on the information contained in the
data—to make better predictions that lead to better decisions. The tuning process often leads to
hyperparameter settings that are better than the default values. But even when the default settings do
work well, the hyperparameter tuning process provides a heuristic validation of these settings, giving you
greater assurance that you have not overlooked a model configuration that has higher accuracy. This
validation is of significant value itself.

The SAS Viya distributed analytics platform is ideally suited for tuning predictive models because many
configurations often need to be evaluated. The TREESPLIT, FOREST, GRADBOOST, NNET,
SVMACHINE, and FACTMAC procedures implement a fully automated tuning process that requires only
the AUTOTUNE keyword to perform a conservative tuning process. This implementation includes the
most commonly tuned parameters for each machine learning algorithm. You can adjust the ranges or list
of values to try for these hyperparameters, exclude hyperparameters from the tuning process, and
configure the tuning process itself. The local search optimization framework that is used for tuning is also
ideally suited for use on the SAS Viya platform; alternate search methods can be applied and combined,
with the framework managing concurrent execution and information sharing. With the complexity of the

20

model-fitting space, many search strategies are under investigation for both effective and efficient
identification of good hyperparameter values. Bayesian optimization is currently popular for
hyperparameter optimization, and an experimental algorithm is available in the local search optimization
framework. However, the key feature of local search optimization is its ability to build hybrid strategies
that combine the strengths of multiple methods; no one search method will be best for tuning for all data
sets and all machine learning algorithms—there is “no free lunch.”

The distributed execution capability provided by the SAS Viya platform is fully exploited in this autotuning
implementation. With small data sets that might not require distributed training, the need for and added
expense of cross-validation support the use of parallel tuning to balance the added expense. For large
data sets, distributed/parallel training and parallel model tuning can be applied concurrently within the
platform for maximum benefit. One challenge is selecting the right combination of the number of worker
nodes per model training and the number of parallel model configurations. With small data sets, the
number of workers per training should be set as low as possible and the number of parallel configurations
as high as possible, allowing the compute grid nodes to be used for parallel tuning. With larger data sets,
such as the MNIST digits data set, a balance must be struck. Usually hundreds of worker nodes are not
needed for a single model training (even with truly big data) and there is always a communication cost
that can be detrimental if too many nodes are used for training. With the number of configurations
evaluated in parallel, there are never “too many”—the more configurations that are evaluated in parallel,
the closer to 100% efficiency the tuning process becomes, given that many parallel configurations are not
all evaluated on the same worker nodes (evaluating hundreds of configurations on four worker nodes
simultaneously will slow the process down). Approximately 84% efficiency was achieved when the PROC
GRADBOOST tuning process was used to model the MNIST digits data set.

What is not discussed and demonstrated in this paper is a comparison of the implemented hybrid strategy
with a random search approach for hyperparameter tuning. Random search is popular for two main
reasons: a) the hyperparameter space is often discrete, which does not affect random search, and b)
random search is simple and all configurations could potentially be evaluated concurrently because they
are all independent. The latter reason is a strong argument when a limited number of configurations is
considered or a very large grid is available. In the case of the GRADBOOST procedure tuning a model to
the MNIST digits data, four nodes per training and 32 parallel configurations uses 128 nodes. The best
solution was identified at evaluation 2,551. These evaluations could not have all been performed in
parallel. With a combination of discrete and continuous hyperparameters, the hybrid strategy that uses a
combination of Latin hypercube sampling (LHS) and a genetic algorithm (GA) is powerful; this strategy
exploits the benefits of a uniform search of the space and evolves the search using knowledge gained
from previous configurations. The local search optimization framework also supports random, LHS, and
Bayesian search methods.

With an ever-growing collection of powerful machine learning algorithms, all governed by
hyperparameters that drive their fitness quality, the “no free lunch” theorem presents yet another
challenge: deciding which machine learning algorithm to tune to a particular data set. This choice is an
added layer of tuning and model selection that could be managed in a model tuning framework, with
parallel tuning across multiple modeling algorithms in addition to multiple configurations. Combining
models of different types adds a dimension of complexity to explore with tuning. With so many variations
to consider in this process, careful management of the computation process is required.

21

APPENDIX A: DESCRIPTION OF AUTOTUNE STATEMENT OPTIONS

You can specify the following options in the AUTOTUNE statement:

MAXEVALS=number specifies the maximum number of configuration evaluations allowed for the
tuner.

MAXITER=number specifies the maximum number of iterations of the optimization tuner.

MAXTIME=number specifies the maximum time (in seconds) allowed for the tuner.

POPSIZE=number specifies the maximum number of configurations to evaluate in one iteration
(population).

SAMPLESIZE=number specifies the total number of configurations to evaluate when
SEARCHMETHOD=RANDOM or SEARCHMETHOD=LHS.

SEARCHMETHOD=search-method-name specifies the search method to be used by the tuner.

FRACTION=number specifies the fraction of all data to be used for validation.

KFOLD=number specifies the number of partition folds in the cross-validation process.

EVALHISTORY=eval-history-option specifies the location in which to report the complete evaluation
(the ODS table only, the log only, both places, or not at all).

NPARALLEL=number specifies the number of configurations to be evaluated by the tuner
simultaneously.

OBJECTIVE=objective-option-name specifies the measure of model error to be used by the tuner
when it searches for the best configuration.

TARGETEVENT=target-event-name specifies the target event to be used by the ASSESS algorithm
when it calculates the error metric (used only for nominal target parameters).

USEPARAMETERS=use-parameter-option specifies the set of parameters to tune, with use-
parameter-option specified as:

STANDARD tunes using the default bounds and initial values for all parameters.

CUSTOM tunes only the parameters that are specified in the TUNINGPARAMETERS= option.

COMBINED tunes the parameters that are specified in the TUNINGPARAMETERS= option and
uses default bounds and initial values to tune all other parameters.

TUNINGPARAMETERS=(suboption . . . <suboption>) specifies the hyperparameters to tune and
which ranges to tune over, with suboption specified as:

NAME (LB=number UB=number VALUES=value-list INIT=number EXCLUDE), where

 LB specifies a custom lower bound to override the default lower bound.

 UB specifies a custom upper bound to override the default upper bound.

 VALUES specifies a list of values to try for this hyperparameter

INIT specifies the value to use for training a baseline model.

EXCLUDE specifies that this hyperparameter should not be tuned; it will remain fixed at
the value specified for the procedure (or default if none is specified).

22

APPENDIX B: CODE TO CREATE A LIST OF NONEMPTY PIXELS FOR MNIST DIGITS

proc cardinality data=mycas.digits outcard=mycas.digitscard;

run;

proc sql;

 select _varname_ into :inputnames separated by ' '

 from mycas.digitscard

 where _mean_ > 0

 and _varname_ contains "pixel"

 ;

quit;

REFERENCES

Bergstra, J., and Bengio, Y. (2012). “Random Search for Hyper-parameter Optimization.” Journal of
Machine Learning Research 13:281–305.

Bottou, L., Curtis, F. E., and Nocedal, J. (2016). “Optimization Methods for Large-Scale Machine
Learning.” arXiv:1606.04838 [stat.ML].

Dewancker, I., McCourt, M., Clark, S., Hayes, P., Johnson, A., and Ke, G. (2016). “A Stratified Analysis of
Bayesian Optimization Methods.” arXiv:1603.09441v1 [cs.LG].

Gomes, T. A. F., Prudêncio, R. B. C., Soares, C., Rossi, A. L. D., and Carvalho, A. (2012) “Combining
Meta-learning and Search Techniques to Select Parameters for Support Vector Machines.”
Neurocomputing 75:3–13.

Konen, W., Koch, P., Flasch, O., Bartz-Beielstein, T., Friese, M., and Naujoks, B. (2011). “Tuned Data
Mining: A Benchmark Study on Different Tuners.” In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation (GECCO-2011). New York: SIGEVO/ACM.

LeCun, Y., Cortes, C., and Burges, C. J. C. (2016). “The MNIST Database of Handwritten Digits.”

Accessed April 8, 2016. http://yann.lecun.com/exdb/mnist/.

Lorena, A. C., and de Carvalho, A. C. P. L. F. (2008). “Evolutionary Tuning of SVM Parameter Values in
Multiclass Problems.” Neurocomputing 71:3326–3334.

McKay, M. D. (1992). “Latin Hypercube Sampling as a Tool in Uncertainty Analysis of Computer Models.”
In Proceedings of the 24th Conference on Winter Simulation (WSC 1992), edited by J. J. Swain, D.
Goldsman, R. C. Crain, and J. R. Wilson, 557–564. New York: ACM.

Renukadevi, N. T., and Thangaraj, P. (2014). “Performance Analysis of Optimization Techniques for
Medical Image Retrieval.” Journal of Theoretical and Applied Information Technology 59:390–399.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). “Design and Analysis of Computer
Experiments.” Statistical Science 4:409–423.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. E. (2013). “On the Importance of Initialization and
Momentum in Deep Learning.” In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), edited by S. Dasgupta and D. McAllester, 1139–1147. International Machine Learning Society.

http://yann.lecun.com/exdb/mnist/

23

Wexler, J., Haller, S., and Myneni, R. 2017. “An Overview of SAS Visual Data Mining and Machine
Learning on SAS Viya.” In Proceedings of the SAS Global Forum 2017 Conference. Cary, NC: SAS
Institute Inc. Available at http://support.sas.com/resources/papers/ proceedings17/SAS1492-2017.pdf.

Wolpert, D. H. (1996). “The Lack of A Priori Distinctions between Learning Algorithms.” Neural
Computation 8:1341–1390.

Wujek, B., Hall, P., and Güneş, F. (2016). “Best Practices in Machine Learning Applications.” In
Proceedings of the SAS Global Forum 2016 Conference. Cary, NC: SAS Institute Inc.
https://support.sas.com/resources/papers/proceedings16/SAS2360-2016.pdf.

ACKNOWLEDGMENTS

The authors would like to thank Joshua Griffin, Scott Pope, and Anne Baxter for their contributions to this
paper.

RECOMMENDED READING

 Getting Started with SAS Visual Data Mining and Machine Learning 8.1

 SAS Visual Data Mining and Machine Learning 8.1: Data Mining and Machine Learning Procedures

 SAS Visual Data Mining and Machine Learning 8.1: Statistical Procedures

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Patrick Koch
SAS Institute Inc.
patrick.koch@sas.com

Brett Wujek
SAS Institute Inc.
brett.wujek@sas.com

Oleg Golovidov
SAS Institute Inc.
oleg.golovidov@sas.com

Steven Gardner
SAS Institute Inc.
steven.gardner@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://support.sas.com/resources/papers/proceedings16/SAS2360-2016.pdf

