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ABSTRACT

A Bavesian network is a directed acyclic araphical model that represents probability relationships and
conditional independence structure between random variables. SAS® Enterprise Miner™ implements a
Bayesian network primarily as a classification tool; it supports naive Bayes, tree-auamented naive Bayes,
Bavesian-network-auamented naive Baves, parent-child Bayesian network, and Markov blanket Bayesian
network classifiers. The HPBNET procedure uses a score-based approach and a constraint-based
approach to model network structures. This paper compares the performance of Bavesian network
classifiers to other popular classification methods such as classification tree, neural network, loagistic
rearession, and support vector machines. The paper also shows some real-world applications of the
implemented Bayesian network classifiers and a useful visualization of the res ults.

INTRODUCTION

Bayesian network (BN) classifiers are one of the newest supenised learning algorithms available in SAS
Enterprise Miner. The HP BN Classifier node is a high-performance data mining node that you can select
from the HPDM toolbar; it uses the HPBNET procedure in SAS® High-Performance Data Mining to leam a
BN structure from a training data set. This paper show how the various BN structures that are available in
PROC HPBNET can be used as a predictive model for classifying a binary or nominal target.

Because of the practical importance of classification, many other classifiers besides BN classifiers are
commonly applied. These classifiers include loqistic rearession, decision tree, support vector machines,
and neural network classifiers. Recent research in supenised learnina has shown that the prediction
performance of the BN classifiers is competitive when compared to these other classifiers. However, BN
classifiers can surpass these competitors in terms of interpretability. A BN can explicitly represent
distributional dependency relationships among all available random variables; thus it enables you to
discover and interpret the dependency and causality relationships amona variables in addition to the
target’s conditional distribution. In contrast, support vector machines and neural network classifiers are
black boxes and logistic regression and decision tree classifiers only estimate the conditional distribution
of the taraet. Therefore. BN classifiers have areat notential in real-world classification applications,
especially in fields where interpretahility is a concern.

SAS Enterprise Miner implements PROC HPBNET to build BN classifiers that can take advantage of
modern multithreaded distributed-computing platforms. The HPBNET procedure can build five types of
BN classifiers: naive BN, tree-auamented naive BN, BN-auamented naive BN, parent-child BN, and
Markov blanket BN. This paper introduces the basic structure of these five types of BN classifiers,
explains the key programming techniques and outputs of the HPBNET procedure, and demonstrates
useful visualization methods for displayina the structures of the output BN classifiers. This paper also
compares the prediction performance of BN classifiers to that of the previously mentioned competitor
classifiers by using 25 data sets in the UCI Machine Learning Repository (Lichman 2013).



BAYESIAN NETWORKS
A Bayesian network is a graphical model that consists of two parts, <G, P>:

e Gis adirected acyclic graph (DAG) in which nodes represent random variables and arcs between
nodes represent conditional dependency of the random variables.

o P s aset of conditional probability distributions, one for each node conditional on its parents.
The following example explains these terms in greater detail.

EXAMPLE OF A SIMPLE BAYESIAN NETWORK

Figure 1 shows a Bayesian network for a house alarm from Russell and Nonvig (2010). It describes the
following scenario: Your house has an alarm system against burglary. You live in a seismically active

area, and the alarm system can be set off occasionally by an earthquake. You have two neighbors, Mary
and John, who do not know each other. If they hear the alarm, they might or might not call you.

Earthquake Mary calls

Pr(M=T|4) | A
0.70

0.01

Pr(E=T) = 0.02

John calls

Pr(J=T4) | 4

Pr(4=T|EB) | E | B
0.90 T

0.95 |T|T

Pr(B=T) = 0.01

0.29 | T|F 0.05 | F
0.94 |F|T
0.0001 | F|F

Figure 1. House Alarm Bayesian Network

In the house alarm Bayesian network, E, B, A, M, and J are called nodes, and the links between those
five nodes are called edges or arcs. Node A is the parent of nodes J and M because the links point from
Ato Jand M; nodes Jand M are called the children of node A. Similarly, nodes E and B are the parents
of node A; node A is the child of nodes E and B. Those nodes and edges constitute the graph (G) part of
the Bayesian network model. The conditional probability tables (CPTs) that are associated with the nodes
are the probability distribution (P) part of the Bayesian network model.

PROPERTIES OF BAYESIAN NETWORK
Two important properties of a Bayesian network are the following:

e Edges (arcs between nodes) represent “causation,” so no directed cycles are allowed.

e Eachnode is conditionally independent of its ancestors given its parents. This is called Markov
property.



According to the Markov property, the joint probability distribution of all nodes in the network can be
factored to the product of the conditional probability distributions of each node given its parents. That is,
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Pr(G) = Pr(X;,X,,..., X)) = l_[Pr(Xilﬂ(Xi))

where 1 (X;) are the parents of node X;.

In the simplest case, where all the X; are discrete variables as in the following example, conditional
distribution is represented as CPTs, each of which lists the probability that the child node takes on each
of its different values for each combination of values of its parents.

In the house alarm example, observe that whether Mary or John calls is conditionally dependent only on
the state of the alarm (that is, their parent node). Based on the graph, the joint probability distribution of

the events (E,B,A,M, and J) is
Pr(E, B,A,M,]) = Pr(J|A) - Pr(M|A) - Pr(A|E, B) - Pr(B) - Pr(E)

The network structure together with the conditional probability distributions completely determine the
Bayesian network model.

SUPERVISED LEARNING USING A BAYESIAN NETWORK MODEL
Now consider this question:

Suppose you are at work, the house is burglarized (B = True), there is no earthquake (E = False),
your neighbor Mary calls to say your alarm is ringing (M = True), but neighbor John doesn't call
(] = False). What is the probability that the alarm went off (A = True)?

In other words, what is the value of
Pr(A=TIB=T,E=F,M=T,] =F)
To simplify the appearance of these equations, T and F are used to represent True and False,
respectively.
From the definition of conditional probability,
PrA=T,B=T,E=FM=T,] =F)
Pr(B=T,E=F,M=T,] =F)

According to the equation for Pr(E, B,A,M,]) from the preceding section and using the values from the
conditional probability tables that are shown in Figure 1,

PrA=TB=T,E=FM=T,J=F)

=PrJ =F[A=T)Pr(M =T|A=T)Pr(A=T|E =F,B = T)Pr(B = T)Pr(E = F)

= 0.1%0.01%0.7+0.94 % (1 —0.02) = 0.00064484
PB=T,E=FM=T]J=F)=PrfA=T,B=T,E=FM=T,J=F)+Pr(A=F,B=T,E=F,M=T,] =F)

=0.00064484+ Pr(A=F,B=T,E=FM=T,]=F)

= 0.00064484

+PrJ=FIA=F)PrB=T)Pr(M=T|A=F)Pr(A=F|E=F,B =T)Pr(E = F)

= 0.00064484 + (1 — 0.05) * 0.01 % 0.01 % (1 — 0.94) = (1 — 0.02) = 0.000650426

0.00064484
— =~ (0.99
0.000650426

Pr(A=TIB=T,E=F,M=T,] =F) =

Pr(A=TIB=T,E=F,M=T,] =F) =



Thus, the conditional probability of the alarm having gone off in this situation is about 0.99. This value can
be used to classify (predict) whether the alarm went off.

In general, based on a Bayesian network model, a new observation X = (x;,x,, ..., X,,) is classified by
determining the classification of the target Y that has the largest conditional probability,

arg maxPr(Y = k|x;,x,,..., x,)
k
where

Pr(Y = k|x1,x2, ,xp) [ Pr(Y =k,x{,%X5, ., xp) = l_[Pr(xl-hr(Xi))Pr(Y = k|n(Y))
i

Because the target is binary (True or False) in this example, when the value of the preceding equation is
greater than 0.5, the prediction is that the alarm went off (A = True).

HPBNET PROCEDURE

The HPBNET procedure is a high-performance procedure that can learn different types of Bayesian
networks—nalive, tree-augmented naive (TAN), Bayesian network-augmented naive (BAN), parent-child
Bayesian network (PC), or Markov blanket (MB)—from an input data set. PROC HPBNET runs in either
single-machine mode or distributed-computing mode. In this era of big data, where computation
performance is crucial for many real-world applications, the HPBNET procedure’s distributed-computing
mode is very efficient in processing large data sets.

The HPBNET procedure supports two types of variable selection: one by independence tests between
each input variable and the target (when PRESCREENING=1), and the other by conditional
independence tests between each input variable and the target given any subset of other input variables
(when VARSELECT=1, 2, or 3). PROC HPBNET uses specialized data structures to efficiently compute
the contingency tables for any variable combination, and it uses dynamic candidate generation to reduce
the number of false candidates for variable combinations. If you have many input variables, structure
learning can be time-consuming because the number of variable combinations is exponential. Therefore,
variable selection is strongly recommended.

To learn a TAN structure, the HPBNET procedure constructs a maximum spanning tree in which the
weight for an edge is the mutual information between the two nodes. A maximum spanning tree is a
spanning tree of a weighted graph that has maximum weight. If there are K variables in a system, then
the corresponding tree structure will have K nodes, and K—1 edges should be added to create a tree
structure that connects all the nodes in the graph. Also, the sum of the weights of all the edges needs to
be the maximum weight among all such tree structures.

To learn the other BN types, PROC HPBNET uses both of the following approaches:

e The score-based approach uses the BIC (Bayesian information criterion) score to measure how well
a structure fits the training data and then tries to find the structure that has the best score. The BIC is
defined as

n 4 Ti

M
BIC(G,D) =N ZZZ p(m)p(X; = vy |m;) Inp (X; = vy |m;;) — ElnN
i=1j=1k=1
where G is a network, D is the training data set, N is the number of obsenvations in D, n is the number
of variables, X; is a random variable, r; is the number of levels for X;, v;, is the kth value of X;, q; is
the number of value combinations of X;’'s parents, ;;is the jth value combination of X;'s parents, and
M =Y (r, — 1) X q; is the number of parameters for the probability distributions.



e The constraint-based approach uses independence tests (such as a chi-square test or mutual
information test) to determine the edges and directions among the nodes as follows: Assume that you
have three variables, X, Y and Z, and that it has been determined (using independence tests) that
there are edges between X and Z and Y and Z, but no edge between X and Y. If X is conditionally
independent of Y given any subset of variables S = {Z}uU S', S’ € {X, Y, Z}, then the directions
between X and Z and betweenY and Z are X - ZandY — Z, respectively. Notice that using only
independence tests might not be able to orient all edges because some structures are equivalent with
respect to conditional independence tests. Forexample, X « Y « Z, X >Y->Z, andX <Y > Z
belong to the same equivalence class. In these cases, PROC HPBNET uses the BIC score to
determine the directions of the edges.

For the PC and MB structures, PROC HPBNET learns the parents of the target first. Then it learns the
parents of the input variable that has the highest BIC score with the target. It continues learning the
parents of the input variable that has the next highest BIC score, and so on. When learning the parents of
a node, it first determines the edges by using independence tests. Then it orients the edges by using both
independence tests and the BIC score. PROC HPBNET uses the BIC score not only for orienting the
edges but also for controlling the network complexity, because a complex network that has more parents
is penalized in the BIC score. Both the BESTONE and BESTSET values of the PARENTING= option try
to find the local optimum structure for each node. BESTONE adds the best candidate variable to the
parents at each iteration, whereas BESTSET tries to choose the best set of variables among the
candidate sets.

TYPES OF BAYESIAN NETWORK CLASSIFIERS SUPPORTED BY THE HPBNET PROCEDURE
The HPBNET procedure supports the following types of Bayesian network classifiers:

¢ Naive Bayesian network classifier: As shown in Figure 2, the target node (Y) has a direct edge to
each input variable, the target node is the only parent for all other nodes, and there are no other
edges. This structure assumes that all input variables are conditionally independent of each other
given the target.

Figure 2. Naive Bayesian Network Classifier



e Tree-augmented naive Bayesian network classifier: As shown in Figure 3, in addition to the edges
from the target node Y to each input node, the edges among the input nodes form a tree. This
structure is less restrictive than the naive Bayes structure.

Figure 3. Tree-Augmented Naive Bayesian Network Classifier

e Bayesian network-augmented naive Bayesian network classifier: As shown in Figure 4, the
target node Y has a direct edge to each input node, and the edges among the input nodes form a
Bayesian network.

Figure 4. Bayesian Network-Augmented Naive Bayesian Network Classifier

e Parent-child Bayesian network classifier: As shown in Figure 5, input variables can be the parents
of the target variable Y. In addition, edges from the parents of the target to the children of the target



and among the children of the target are also possible.

()
5O

Figure 5. Parent-Child Bayesian Network Classifier



e Markov blanket Bayesian network classifier: As shown in Figure 6, the Markov blanket includes
the target’s parents, children, and spouses (the other parents of the target’s children).

Figure 6. Markov Blanket Bayesian Network Classifier

One advantage of PROC HPBNET is that you can specify all the structures that you want to consider for

training and request (by specifying the BESTMODEL option) that the procedure automatically choose the
best structure based on each model’s performance on validation data.

EXAMPLE OF USING PROC HPBNET TO ANALYZE DATA

This example uses PROC HPBNET to diagnose whether a patient has breast cancer, based on the
Breast Cancer Wisconsin data set from the UCI Machine Learning Repository (Lichman 2013).

Table 1 lists the details of the attributes found in this data set.

Variables | Attribute Domain Description of Description of
Benign Cells Cancerous Cells

1 Sample code number ID number N/A N/A

2 Clump thickness 1-10 Tend to be grouped | Often grouped in
in monolayers multiple layers

3 Uniformity of cell size 1-10 Evenly distributed Unewenly distributed

4 Uniformity of cell shape 1-10 Evenly distributed Unewenly distributed

5 Marginal adhesion 1-10 Tend to stick Tend not to stick
together together

6 Single epithelial cell size | 1-10 Tend to be normal- | Tend to be significantly
sized enlarged

7 Bare nuclei 1-10 Typically nuclei are | Nuclei might be
not surrounded by | surrounded by
cytoplasm of cytoplasm
benign cells

8 Bland chromatin 1-10 Uniform “texture” of | Coarser “texture” of
nucleus nucleus

9 Normal nucleoli 1-10 Very small, if visible | More prominent, and

greater in number

10 Mitoses 1-10 Grade of cancer determined by counting the
number of mitoses (nuclear division, the
process by which the cell divides and
replicates)

11 Class 2o0r4 2 | 4

Table 1. Attributes of Breast Cancer Wisconsin Data Set




The RENAME statement in the following DATA step enables you to assign a name to each variable so
that you can understand it more easily:

data BreastCancer;

set BreastCancer;

rename varl=ID
var2=Clump Thickness
var3=Unifo§mity_of_Cell_Size
var4=Uniformity of Cell Shape
var5=Marginal Adhesion
var6=Single Epithelial Cell Size
var/=Bare Nuclei
var8=Bland Chromatin
var9=Normal Nucleoli
varlO=Mitoses
varll=Class;

run;

The following SAS program shows how you can use PROC HPBNET to analyze the BreastCancer
data set:

proc hpbnet data=BreastCancer nbin=5 structure=Naive TAN PC MB bestmodel;
target Class;
id ID;
input Clump Thickness Uniformity of Cell Size Uniformity of Cell Shape
Marginal Adhesion Single Epithelial Cell Size Bare Nuclei Bland Chromatin
Normal Nucleoli Mitoses/level=INT;
output network=net validinfo=vi varselect=vs

varlevel=varl parameter=parm fit=fitstats pred=prediction;
partition fraction (validate=0.3 seed=12345);
code file="c:\hpbnetscorecode.sas"
run;

The TARGET statement specifies Class as the target variable. The ID statement specifies ID as the ID
variable. The INPUT statement specifies that all the other variables are to be used as interval inputs. The
NBIN= option in the PROC HPBNET statement specifies 5 for the number of equal-width bins for interval
inputs. Four different structures are specified in the STRUCTURE= option (so each structure is trained),
and the BESTMODEL option requests that PROC HPBNET automatically choose the best model to
minimize the validation misclassification rate. The FRACTION option in the PARTITION statement
requests that 30% of the data be used for validation (leaving 70% to be used for training). The OUTPUT
statement specifies multiple output tables to be saved in the Work directory. The CODE statement
specifies a filename (hpbnetscorecode.sas) where the generated score code is to be stored.

After you run PROC HPBNET, you can visualize the final model by using the %createBNCdiagram
macro in the Appendix to view the selected Bayesian network structure. This macro takes the target
variable and the output network data as arguments.

Figure 7 shows the generated diagram, which indicates that the naive Bayes network is selected as the
best structure for this data set, because the input variables are all conditionally independent of each other
given the target.
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Figure 7. Bayesian Network Diagram
Table 2 through Table 7 show all the other output tables, which are stored in the Work directory.
The Best Model column in Table 2 shows that a naive Bayesian network model with a maximum of one

parent is selected, and the Misclassification Errors column shows that five validation observations are
misclassified.

Input Input Input
Best Model Misclassification| Significance Pallgrl:l,'llje:tter: Pam?neter: Pahlajrngter: Palaﬁw_ter: Phﬁ:ummeﬁlfnr:
Eam == Prescreening Vanable Structure Bty MNumber of
Selection Method

Parents
1 5 0.05 1 1 PC BESTSET 1
2 5 0.05 1 1 PC BESTSET 2
& 5 0.05 1 1 PC BESTSET 3
4 5 0.05 1 1 PC BESTSET 4
5 5 0.05 1 1 PC BESTSET 5
] 5 0.05 1 1 TAN BESTSET 2
7 YES 5 0.05 1 1 NAIVE BESTSET 1
8 5 0.05 1 1 NAIVE BESTSET 2
g) 5 0.05 1 1 NAIVE BESTSET 3
10 5 0.05 1 1 NAIVE BESTSET 4
1 5 0.05 1 1 NAIVE BESTSET 5
12 44 0.05 1 3 ME BESTSET 1
13 44 0.05 1 3 ME BESTSET 2
14 44 0.05 1 3 ME BESTSET 3
15 44 0.05 1 3 ME BESTSET 4
16 44 0.05 1 3 ME BESTSET 5

Table 2. Validation Information Table
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Table 3 shows that the number of obsenvations for validation is 178. Together with the misclassification
errors shown in Table 2, you can calculate the validation accuracy as 1 —5/178 = 97.19%. In PROC
HPBNET, continuous variables are binned to equal-width discrete levels in order to simplify the model. If
you want to improve this accuracy, you can discretize the interval inputs differently. For example, you
could use entropy binning instead of equal-width binning.

Maxdmum
Number of Number of Number of Sum of Sum of Sum of
Observations | Observations | Observations | Freguencies Frequencies Frequencies NLrlqu;er of NLIEIb;I’ of ;Bvemge r';lumI::r D{ Fr:lumb:{ of Score
for Training | for Validation lgnored for Training | for Validation lgnored odes s =aree ﬁ;wosﬂ::n aramelers
1 506 178 15 506 178 15 10 5 18 1 73 -4101.345933

Table 3. Fit Statistics Table

Table 4 shows the variable selection results. In the preceding PROC HPBNET call, the VARSELECT=
option is not specified in the PROC statement, so its default value is applied. By default, each input
variable is tested for conditional independence of the target variable given any other input variable, and
only the variables that are conditionally dependent on the target given any other input variable are
selected. Table 4 shows that all the nine input variables are selected into the model.

Table 4. Selected Variables Table

11

) P-Walue of P-Value of -
Vatable Name Seected | GUIET | Gamee | CiSame | GSwee | onf ) GEERN | GO
Statistics Statistics
1 Bare_Muclei YES 35336783823 40347623668 32B698E-75 4.933826E-86 0.7412786201 4
2 Bland_Chromatin YES 30012175361 35416534484 1.019862E-63 2211028E-75 0.70943325%1 4
3 Clump_Thickness YES 28829453088 33588442772 3.626159E61 1.95B96VE-71  0.696490837 4
4 Marginal_Adhesion YES 25538424306 288346821535 6.189801E-R5 3533217E61 06550847963 4
5 Mitoses YES 110.78977073  115.6084875  4.93795E-23 4 G274BE-24 04519447152 4
& Nomal_Nucleali YES 31599038507 34545850642 3.045419E67 2.250386E-74 0.7062430014 4
7 Single_Epithelial_Cell_Size YES 324 76623088 36206155283 4.910373E65  4.35991E-77 0.7148918452 4
8 Uniformity_of_Cell_Shape YES 381.82995416 45883620861 2.343084E-31 533%451ES58 0772128205 4
2] Unifarmity_of_Cell_Size YES 37818381534 44508950513 1.436784E-80 6.8M1VESE 0.7670255046 4



Table 5 shows the details for each level of the target and input variables. The values of 0—4 in the Lewel
Index column indicate that PROC HPBNET bins each interval input variable into five equal-width levels
The number of bins can be specified in the NBIN= option; by default, NBIN=5.

Variable Name | Level Index | Level Value | Frequency |
1 Class 04 178
2 Class 12 328
3 Bare_Muclei 028 323
4 Bare_MNuclei 1 <46 32
& Bare_Muclei 2 <64 21
[ Bare_MNuclei 3 <82 23
7 Bare_Muclei 4 >=82 107
2 Bland_Chromatin 028 230
5 Bland_Chromatin 1 <46 151
10 Bland_Chromatin 2 <64 35
11 Bland_Chromatin 3 <82 7
12 Bland_Chromatin 4 =82 20
13 Clump_Thickness 028 140
14 Clump_Thickness 1 <46 138
15 Clump_Thickness 2 <64 7
16 Clump_Thickness 3 <82 50
17 Clump_Thickness 4 =82 61
18 Marginal_Adhesion 0 <28 RE|
19 Marginal_Adhesion 1 <46 52
20 Marginal _Adhesion 2 <64 34
21 Marginal_Adhesion 3 <82 28
22 Marginal_Adhesion 4 =82 41
23 Mitoses 0 <28 442
24 Mitoses 1486 36
25 Mitoses 2 <64 5
26 Mitoses 3 <82 15
27 Mitoses 4 »=32
28 Mormal_Nucleoli 0 <28 7
29 Mormal_Muclecli 1 <48 46
30 Momal_Mucleali 2 <64 3
31 Mormal_Nucleoli 3 <82 28
32 Mormal_Muclecli 4 >=82 b
33 Single_Epithelial_Cell_Size 028 33
k) Single_Epithelial_Cell_Size 1 <46 36
35 Single_Epithelial_Cell_Size 2 <64 &1
36 Single_Epithelial_Cell_Size 3 <82 24
37 Single_Epithelial_Cell_Size 4 >=82 2
Uniformity_of_Cell_Shape 028 301
39 Uniformity_of_Cell_Shape 1 <46 7
Uniformity_of_Cell_Shape 2 <64 46
41 Uniformity_of_Cell_Shape 3 <82 43
42 Uniformity_of_Cell_Shape 4 =82 44
Uniformity_of _Cell_Size 028 310
Uniformity_of_Cell_Size 1 <46 7
45 Uniformity_of_Cell_Size 2 <64 42
Uniformity_of _Cell_Size 3 <82 3
47 Uniformity_of_Cell_Size 4 =82 50

Table 5. Variable Levels Table
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Table 6 shows the parameter values for the resulting model.

Parameter Name | Parameter Value |
1 ALPHA 0.05
2 FRESCREENING 1
3 WVARSELECT 1
4 STRUCTURE MAIVE
5 PAREMTING BESTSET
(3 MAXPARENTS 1
i MISSINGINT IGMORE
g MISSINGNOM IGNORE
9 MNEIN 5
10 |INDEPTEST CHIGSQUARE

Table 6. Parameter Table

Table 7 shows the prediction results for the first 20 observations of the training data. The Predicted:
Class= columns contain the conditional probabilities for the Class variable, where Class=2 indicates a
benign cell and Class=4 indicates a malignant cell. The conditional probabilities are then used to predict
the target class. Here the target is known because these are the training data, but you can use this
information to see how well the model is performing. The model is considered to perform well when the
actual target class matches the target class thatis predicted based on the conditional probabilities.

D | Class |

1000025
1002345
1015425
101722
1018561
1033078
1033078

Predicted: Predicted:
Clags=4 Clags=2

2 00664101946 0.9335393054
2 09064857996 0.0935142004
2 00594603145 0.9405396851
4 09661046875 0.0338953125
2 0.05589358 0.94410642
2 0.053014663 0.946985337
2 00507343509 0.9452656091
1035283 2 0.05589358 0.94410642
9 1043599 2 00662214198 09337785802
10 1044572 4 05660008284 00335591716

4

2

4

2

2

4

2

b

4

b

0 | =] [ |6 | L | P [ —

11 1047630 09196758391 0.0803201603
12 1048672 0.050734350% 0.5452656091
13 1054593 09643091634 0.0356308366
14 1056784 0.050734350% 0.5452656091
15 1059552 0.05589358  0.94410642
16 1065726 07499635226 0.250036077.

17 1067444 0.048114632 0.951885368
18 1070935 0.050734350% 0.5452656091
13 1072173 09622871871 0.0377128123
20 1074610 0.05589358  0.54410642

Table 7. Prediction Results Table
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PREDICTION ACCURACY COMPARISON

This section compares the prediction accuracy of Bayesian classifiers to that of their four popular
competitor classifiers (decision tree, neural network, logistic regression, and support vector machines) for
25 data sets that were downloaded from the UCI Machine Learning Repository (Lichman 2013). Table 8
summarizes these data sets.

_ Target Num ber_ of
Data Set Attributes Levels Observations

Total Validation
Adult 13 2 48,842 16,116
Statlog (Australian Credit Approval) 14 2 690 CV-5
Breast Cancer Wisconsin (Original) (Mangasarian 9 2 699 CV-5
and Wolberg 1990)
Car Evaluation 6 4 1,728 CV-5
Chess (King-Rook vs.King-Paw n) 36 2 3,196 1,066
Diabetes 8 2 768 CV-5
Solar Flare 10 2 1,066 CV-5
Statlog (German Credit Data) 24 2 1,000 CV-5
Glass Identification 9 6 214 CV-5
Heart Disease 13 2 270 CV-5
Hepatitis 19 2 155 CV-5
Iris 4 3 150 CV-5
LED Display Domain + 17 Irrelevant Attributes 24 10 3,190 1,057
Letter Recognition 16 26 20,000 4,937
Lymphography 18 4 148 CV-5
Nursery 8 5 12,960 4,319
Statlog (Landsat Satellite) 36 6 6,435 1,930
Statlog (Image Segmentation) 19 7 2,310 770
Soybean (Large) 35 19 683 CV-5
SPECT Heart 22 2 267 CV-5
Molecular Biology (Splice-Junction Gene 60 3 3,190 1,053
Sequences)
Tic-Tac-Toe Endgame 9 2 958 CV-5
Statlog (Vehicle Silhouettes) 18 4 846 CV-5
Congressional Voting Records 16 2 435 CV-5
Waveform Database Generator 21 3 5,000 4,700

(Version 1)

Table 8 Summary of 25 UCI Data Sets

For the larger data sets, the prediction accuracy was measured by the holdout method (that is, the
learning process randomly selected two-thirds of the observations in the data set for building the
classifiers, and then evaluated their prediction accuracy on the remaining observations in the data set).
For smaller data sets, the prediction accuracy was measured by five-fold cross validation (CV-5). Each
process was repeated five times. Observations that have missing values were remowved from the data
sets. All continuous variables in the data set were discretized with a tree-based binning method. The final
average prediction accuracy values and their standard deviations are summarized in Table 9. The best
accuracy values for each data set are marked in bold in each row of the table. You can see that PC and
TAN in the five BN structures claim most of the wins and are competitive to the other classifiers.
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BN Classifiers Competitor Classifiers
Data Set Na'l've
BAN TAN PC MB Logistic NN Tree SVM*
Bayes
1 Adult 78.06+- 024 80.93+ 0.34 79.81+-042 8500+-0.25 49.61+-0.37 [ 8L17+ 624 8584+ 027 8528+ 0.13 85.73+-0.29
2 Statlog (Australian 86.43+- 033  86.29+- 0.30 85.88+- 0.33 86.20+- 0.54 8551+-000| 8238+ 471  8550+-0.78 84.96+- 042 8565+ 0.27
Credit Approval)
3 BreastCancer 97.42+-0.00 97.42+-0.00 96.65+-039 97.17+- 012 96.88+-040 [ 9582+ 057  96.54+- 045 94.11+ 040 96.42+- 0.20
Wisconsin (Original)
(Mangasarian and
Wolberg 1990)
Car Ev aluation 80.01+- 021 86.56+- 1.03 87.52+- 0.10 88.24+-0.90 86.52+- 127 | 77.26+-026  93.07+- 0.49 96.89+- 0.36
Chess (King-Rook vs. | 9041+-072 9531+-038 9512+-038 9501+ 056 9225+ 091| 5225+-000  96.92+-056 99.04+-039 97.17+- 054
King-Pawn)
6 Diabetes 76.07+-0.67 76.02+- 0.69 74.97+-117 7810+- 070 7271+-122 | 7586+-298  77.29+- 103 75.94+-0.95 77.63+- 0.89
Solar Flare 7358+-0.79 73.94+-0.92 73.60+- 078 80.02+-108 77.60+- 181 [ 8154+ 022  8L69+- 056 8LO7+-0.45 82.18+- 0.42
8 Statlog (German Credit| 7160+-055 7128+ 102 7194+-129 7618+ 037 6640+-147| 7524+-050  7504+-034 7218+ 059 7586+-0.76
Data)
9 Glass Identification 65.61+- 228  65.61+-2.28 71.68+- 1.02 69.53+- 142 69.53+- 142 [ 62.80+-3.70  70.37+- 354 69.81+- 1.43
10 HeartDisease 82.89+- 121 8356+ 135 82.74+- 107 83.33+-069 80.52+- 119 | 8326+-205  84.67+- 130 8L41+- 132 84.15+ 166
11 Hepatitis 86.60+- 1.86 86.61+- 120 88.73+-2.60 90.56+-1.34 9211+ 194 | 88.60+-325  9L50+- 185 9212+ 135 9L06+- 1.22
12 lIris 95.86+- 0.30 95.86+-0.30 95.19+-0.74 9586+-0.30 95.86+- 030 [ 80.37+-0.72  94.92+- 140 94.53+- 0.86
13 LED Display Domain + | 7396+-122 7396+-122 7425+ 088 7427+117 7470+-121| 1979+-073 7325+ 039 7408+ 092
17 Irrelev ant Attributes
14 Letter Recognition 68.33+- 058 73.19+- 0.77 78.75+-0.63 7207+-0.63 70.80+-537 | 1098+ 027  78.69+-0.46 77.66+- 0.43
15 Lymphography 80.81+- 156 81.49+- 1.83 79.32+- 0.77 83.78+- 151 74.19+-371| 61.62+-389  81.35+ 156 74.86+- 0.88
16 Nursery 82.92+- 065 86.46+- 0.69 89.25+- 0.39 91.45+-0.63 91.02+-0.25| 90.86+-0.34  92.27+- 0.47 97.41+-0.16
17 Statlog (Landsat 81.39+-0.73 86.36+- 0.51 86.31+-0.79 86.58+-0.49 84.56+-0.65| 72.78+-029  87.84+-0.60 85.55+- 0.38
Satellite)
18 Statlog (Image 80.45+- 071 91.09+- 1.71 93.04+- 0.81 91.09+- 171 67.01+-2.34 | 5883+-324  92.78+-0.90 93.56+- 0.74
Segmentation)
19 Soybean (Large) 80.78+- 035 80.78+- 0.35 92.97+- 0.99 89.43+- 044 60.97+-2.80 | 44.22+-367  91.80+- 0.51 91.65+- 1.01
20 SPECT Heart 72.06+- 165 7536+ 1.04 73.41+-138 80.60+- 125 69.96+- 274 [ 7835+ 166  8225+-120 79.33+ 151 81.95+- 1.97
21 Molecular Biology 95.31+- 0.51 95.38+- 047 9571+-071 96.05+-0.16 92.61+-7.13 [ 80.46+- 161  9548+-0.70 94.17+- 0.62
(Splice-Junction Gene
Sequences)
22 Tic-Tac-Toe Endgame | 6608+ 149 79.04+-158 7203+ 070 77.4+-082 7503+-302( 77.10+-080 9810+ 009 9328+ 0.67 98.33+ 0.00
23 Statlog (Vehicle 62.01+- 0.84 70.26+-129 7125+-0.80 70.26+-1.39 5896+ 560 6355+ 177  70.09+-0.91 69.36+- 0.48
Silhouettes)
24 Congressional Voting | 9480+ 053 9517+-016 9513+-072 94.90+-010 94.99+-033| 9379+-211  9582+-099 9508+ 042 9540+ 043
Records
25 Wav eform Database 78.31+- 148 7831+- 148 73.68+- 177 7835+-133 7862+ 150 | 6243+ 343  8178+- 085 70.27+- 3.06
Generator(Version 1)
*SVM for binary target only

Table 9. Classification Accuracy on 25 UCI Machine Learning Data Sets
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CONCLUSION

This paper describes Bayesian network (BN) classifiers, introduces the HPBNET procedure, and shows
how you can use the procedure to build BN classifiers. It also compares the competitive prediction power
of BN classifiers with other state-of-the-art classifiers, and shows how you can use a SAS macro to
visualize the network structures.
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APPENDIX

%macro createBNCdiagram(target=Class, outnetwork=net);

data outstruct;
set &outnetwork;
if strip (upcase( TYPE )) eq 'STRUCTURE' then output;
keep nodeid = childnode = parentnode ;

run;

data networklink;
set outstruct;
linkid = N ;
label linkid ="Link ID";
run;

proc sql;
create table work. nodel as
select distinct CHILDNODE as node
from networklink;
create table work. nodeZ2 as
select distinct PARENTNODE as node
from networklink7 N
quit;

proc sqgl;
create table work. node as
select node
from work. nodel
UNION
select node
from work. nodez;
quit;

data bnc networknode;
length NodeType $32.;
set work. node;
if strip(upcase (node)) eq strip (upcase("&target")) then do;
NodeType = "TARGET";
NodeColor=2;

end;

else do;
NodeType = "INPUT";
NodeColor = 1;

end;

label NodeType ="Node Type"
label NodeColor ="Node Color" ;

run;
data parents(rename=( parentnode = node )) children (rename=( childnode
= node )) links;

length parentnode childnode $ 32;
set networklink;
keep parentnode  childnode ;

run;
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/*get list of all unique nodes*/
data nodes;

set parents children;
run;

proc sort data=nodes;
by node ;
run;

data nodes;
set nodes;
by node ;
if first. node ;
Parentnode = node ;
_childnode = "";
run;

/*merge node color and type */
data nodes;
merge nodes bnc
networknode (rename=(node= node nodeColor= nodeColor
nodeType= nodeType ));
by node ;
run;

/*sort color values to ensure consistent color mapping across networks */
/*note that the color mapping is HTML style dependent though */
proc sort data=nodes;
by nodeType ;
run;

/*combine nodes and links*/
/* need outsummaryall for model report*/
data bnc networksummary (drop= shape  nodecolor nodepriority  shape
~nodeID nodetype linkdirection ) bnc networksummaryall;
length parentnode  childnode $ 32;
set nodes links;
drop node ;
if childnode EQ "" thendo;
~nodeID = parentnode ;
_nodepriority = 1;
__shape = "OVAL";
end;
else do;
_linkdirection = "TO";
output bnc networksummary;
end;
output bnc networksummaryall;
label linkdirection ="Link Direction";
run;

proc datasets lib=work nolist nowarn;
delete node nodel node2 nodes links parents children;

run;

quit;
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proc template;
define statgraph bpath;
begingraph / DesignHeight=720 DesignWidth=720;

entrytitle "Bayesian Network Diagram";

layout region;
pathdiagram fromid= parentnode toid= childnode /
arrangement=GRIP
nodeid= nodeid
nodelabel= nodelID
nodeshape= shape
nodepriority= nodepriority
linkdirection=_ linkdirection
nodeColorGroup= NodeColor

textSizeMin = 10

endlayout;
endgraph;
end;
run;
ods graphics;
proc sgrender data=bnc networksummaryall template=bpath;
run;

$mend;

$createBNCdiagram;
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