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ABSTRACT 

A Bayesian network is a directed acyclic graphical model that represents probability relationships and 
conditional independence structure between random variables. SAS® Enterprise Miner™ implements a 
Bayesian network primarily as a classification tool; it supports naïve Bayes, tree-augmented naïve Bayes, 
Bayesian-network-augmented naïve Bayes, parent-child Bayesian network, and Markov blanket Bayesian 
network classifiers. The HPBNET procedure uses a score-based approach and a constraint-based 
approach to model network structures. This paper compares the performance of Bayesian network 
classifiers to other popular classification methods such as classification tree, neural network, logistic 
regression, and support vector machines. The paper also shows some real-world applications of the 
implemented Bayesian network classifiers and a useful visualization of the results. 

INTRODUCTION 

Bayesian network (BN) classifiers are one of the newest supervised learning algorithms available in SAS 
Enterprise Miner.  The HP BN Classifier node is a high-performance data mining node that you can select 
from the HPDM toolbar; it uses the HPBNET procedure in SAS® High-Performance Data Mining to learn a 
BN structure from a training data set. This paper show how the various BN structures that are available in 
PROC HPBNET can be used as a predictive model for classifying a binary or nominal target.   

Because of the practical importance of classification, many other classifiers besides BN classifiers are 
commonly applied. These classifiers include logistic regression, decision tree, support vector machines, 
and neural network classifiers. Recent research in supervised learning has shown that the prediction 
performance of the BN classifiers is competitive when compared to these other classifiers.  However, BN 
classifiers can surpass these competitors in terms of interpretability. A BN can explicitly represent 
distributional dependency relationships among all available random variables; thus it enables you to 
discover and interpret the dependency and causality relationships among variables in addition to the 
target’s conditional distribution. In contrast, support vector machines and neural network classifiers are 
black boxes and logistic regression and decision tree classifiers only estimate the conditional distribution 
of the target. Therefore, BN classifiers have great potential in real-world classification applications, 
especially in fields where interpretability is a concern. 

SAS Enterprise Miner implements PROC HPBNET to build BN classifiers that can take advantage of 
modern multithreaded distributed-computing platforms. The HPBNET procedure can build five types of 
BN classifiers: naïve BN, tree-augmented naïve BN, BN-augmented naïve BN, parent-child BN, and 
Markov blanket BN. This paper introduces the basic structure of these five types of BN classifiers, 
explains the key programming techniques and outputs of the HPBNET procedure, and demonstrates 
useful visualization methods for displaying the structures of the output BN classifiers. This paper also 
compares the prediction performance of BN classifiers to that of the previously mentioned competitor 
classifiers by using 25 data sets in the UCI Machine Learning Repository (Lichman 2013). 
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BAYESIAN NETWORKS 

A Bayesian network is a graphical model that consists of two parts, <G, P>: 

 G is a directed acyclic graph (DAG) in which nodes represent random variables and arcs between 
nodes represent conditional dependency of the random variables. 

 P is a set of conditional probability distributions, one for each node conditional on its parents. 

The following example explains these terms in greater detail. 

 

EXAMPLE OF A SIMPLE BAYESIAN NETWORK 

Figure 1 shows a Bayesian network for a house alarm from Russell and Norvig (2010). It describes the 
following scenario: Your house has an alarm system against burglary. You live in a seismically active 
area, and the alarm system can be set off occasionally by an earthquake. You have two neighbors, Mary 
and John, who do not know each other. If they hear the alarm, they might or might not call you.   

 

 
 

Figure 1. House Alarm Bayesian Network 

 

In the house alarm Bayesian network, E, B, A, M, and J are called nodes, and the links between those 
five nodes are called edges or arcs. Node A is the parent of nodes J and M because the links point from 
A to J and M; nodes J and M are called the children of node A. Similarly, nodes E and B are the parents 
of node A; node A is the child of nodes E and B. Those nodes and edges constitute the graph (G) part of 
the Bayesian network model. The conditional probability tables (CPTs) that are associated with the nodes 
are the probability distribution (P) part of the Bayesian network model. 

 

PROPERTIES OF BAYESIAN NETWORK 

Two important properties of a Bayesian network are the following: 

 Edges (arcs between nodes) represent “causation,” so no directed cycles are allowed.  

 Each node is conditionally independent of its ancestors given its parents. This is called Markov 
property. 
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According to the Markov property, the joint probability distribution of all nodes in the network can be 
factored to the product of the conditional probability distributions of each node given its parents. That is,  

Pr(G) = Pr(𝑋1,𝑋2,… , 𝑋𝑝) = ∏𝑃𝑟(𝑋𝑖|𝜋(𝑋𝑖))

𝑝

𝑖=1

 

where 𝜋(𝑋𝑖) are the parents of node 𝑋𝑖. 

In the simplest case, where all the 𝑋𝑖 are discrete variables as in the following example, conditional 
distribution is represented as CPTs, each of which lists the probability that the child node takes on each 
of its different values for each combination of values of its parents.  
 
 
In the house alarm example, observe that whether Mary or John calls is conditionally dependent only on 
the state of the alarm (that is, their parent node). Based on the graph, the joint probability distribution of 
the events (E,B,A,M, and J) is 

Pr(E, B,A, M,J) = Pr(J|A) ⋅ Pr(M|A) ⋅ Pr(𝐴|𝐸, 𝐵) ⋅ Pr(B) ⋅ Pr (E) 

The network structure together with the conditional probability distributions completely determine the 
Bayesian network model. 

 

SUPERVISED LEARNING USING A BAYESIAN NETWORK MODEL 

Now consider this question:  

Suppose you are at work, the house is burglarized (B = True), there is no earthquake (E = False), 
your neighbor Mary calls to say your alarm is ringing (M = True), but neighbor John doesn’t call 
(J = False). What is the probability that the alarm went off (A = True)? 

In other words, what is the value of 

Pr(A = T|B = T,E = F, M = T,J = F)  

To simplify the appearance of these equations, T and F are used to represent True and False, 
respectively. 

From the definition of conditional probability,  

Pr(A = T|B = T,E = F, M = T,J = F)  =
Pr(A = T,B = T,E = F, M = T,J = F)

Pr(B = T,E = F, M = T,J = F)
 

According to the equation for Pr(E, B,A,M,J) from the preceding section and using the values from the 
conditional probability tables that are shown in Figure 1, 

Pr(A = T,B = T,E = F,M = T,J = F)
= Pr(J = F|A = T) Pr (M = T|A = T)Pr (𝐴 = 𝑇|𝐸 = 𝐹,𝐵 = 𝑇)Pr (B = T)Pr (E = F)
= 0.1 ∗ 0.01 ∗ 0.7 ∗ 0.94 ∗ (1 − 0.02) = 0.00064484 

Pr(B = T,E = F,M = T,J = F) = Pr(A = T,B = T,E = F,M = T,J = F) + Pr(A = F, B = T,E = F, M = T,J = F)
= 0.00064484+ Pr(A = F,B = T,E = F,M = T,J = F)
= 0.00064484
+ Pr(J = F|A = F) Pr(B = T)Pr(M = T|A = F) Pr(𝐴 = 𝐹|𝐸 = 𝐹, 𝐵 = 𝑇) Pr(E = F)
= 0.00064484+ (1 − 0.05) ∗ 0.01 ∗ 0.01 ∗ (1 − 0.94) ∗ (1 − 0.02) = 0.000650426 

Pr(A = T|B = T,E = F, M = T,J = F)  =
0.00064484

0.000650426
≈ 0.99 
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Thus, the conditional probability of the alarm having gone off in this situation is about 0.99. This value can 
be used to classify (predict) whether the alarm went off. 

In general, based on a Bayesian network model, a new observation 𝑋 = (𝑥1,𝑥2,…, 𝑥𝑝 ) is classified by 
determining the classification of the target Y that has the largest conditional probability, 

arg max
𝑘

Pr (𝑌 = 𝑘|𝑥1 ,𝑥2 ,…, 𝑥𝑝 ) 

where 

Pr(𝑌 = 𝑘|𝑥1,𝑥2,… ,𝑥𝑝) ∝ Pr(𝑌 = 𝑘,𝑥1 ,𝑥2 ,…, 𝑥𝑝) = ∏Pr(𝑥𝑖|𝜋(𝑋𝑖))𝑃𝑟(𝑌 = 𝑘|𝜋(𝑌))

𝑖

 

 

Because the target is binary (True or False) in this example, when the value of the preceding equation is 
greater than 0.5, the prediction is that the alarm went off (A = True). 

HPBNET PROCEDURE 

The HPBNET procedure is a high-performance procedure that can learn different types of Bayesian 
networks—naïve, tree-augmented naïve (TAN), Bayesian network-augmented naïve (BAN), parent-child 
Bayesian network (PC), or Markov blanket (MB)—from an input data set. PROC HPBNET runs in either 
single-machine mode or distributed-computing mode. In this era of big data, where computation 
performance is crucial for many real-world applications, the HPBNET procedure’s distributed-computing 
mode is very efficient in processing large data sets. 

The HPBNET procedure supports two types of variable selection: one by independence tests between 
each input variable and the target (when PRESCREENING=1), and the other by conditional 
independence tests between each input variable and the target given any subset of other input variables 
(when VARSELECT=1, 2, or 3). PROC HPBNET uses specialized data structures to efficiently compute 
the contingency tables for any variable combination, and it uses dynamic candidate generation to reduce 
the number of false candidates for variable combinations. If you have many input variables, structure 
learning can be time-consuming because the number of variable combinations is exponential. Therefore, 
variable selection is strongly recommended. 
 
To learn a TAN structure, the HPBNET procedure constructs a maximum spanning tree in which the 
weight for an edge is the mutual information between the two nodes. A maximum spanning tree is a 
spanning tree of a weighted graph that has maximum weight. If there are K variables in a system, then 

the corresponding tree structure will have K nodes, and K–1 edges should be added to create a tree 
structure that connects all the nodes in the graph. Also, the sum of the weights of all the edges needs to 
be the maximum weight among all such tree structures. 
 

To learn the other BN types, PROC HPBNET uses both of the following approaches: 

 The score-based approach uses the BIC (Bayesian information criterion) score to measure how well 
a structure fits the training data and then tries to find the structure that has the best score. The BIC is 
defined as 

BIC(𝐺, 𝐷) = 𝑁 ∑∑ ∑ 𝑝(𝜋𝑖𝑗)𝑝(𝑋𝑖 = 𝑣𝑖𝑘|𝜋𝑖𝑗) ln𝑝(𝑋𝑖 = 𝑣𝑖𝑘|𝜋𝑖𝑗) −
𝑀

2
ln𝑁

𝑟𝑖

𝑘=1

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 

where 𝐺 is a network, 𝐷 is the training data set, 𝑁 is the number of observations in 𝐷, 𝑛 is the number 
of variables, 𝑋𝑖 is a random variable, 𝑟𝑖 is the number of levels for 𝑋𝑖, 𝑣𝑖𝑘 is the 𝑘th value of 𝑋𝑖, 𝑞𝑖 is 
the number of value combinations of 𝑋𝑖’s parents, 𝜋𝑖𝑗is the 𝑗th value combination of 𝑋𝑖’s parents, and 
𝑀 = ∑ (𝑟𝑖 − 1) × 𝑞𝑖

𝑛
𝑖=1  is the number of parameters for the probability distributions. 
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 The constraint-based approach uses independence tests (such as a chi-square test or mutual 
information test) to determine the edges and directions among the nodes as follows: Assume that you 
have three variables, 𝑋, 𝑌 and 𝑍, and that it has been determined (using independence tests) that 
there are edges between 𝑋 and 𝑍 and 𝑌 and 𝑍, but no edge between 𝑋 and 𝑌. If 𝑋 is conditionally 
independent of 𝑌 given any subset of variables 𝑆 = {𝑍} ∪ 𝑆′, 𝑆 ′ ⊆ {𝑋, 𝑌, 𝑍}, then the directions 
between 𝑋 and 𝑍 and between 𝑌 and 𝑍 are 𝑋 → 𝑍 and 𝑌 →  𝑍, respectively. Notice that using only 
independence tests might not be able to orient all edges because some structures are equivalent with 
respect to conditional independence tests. For example, 𝑋 ← 𝑌 ← 𝑍, 𝑋 → 𝑌 → 𝑍, and 𝑋 ← 𝑌 → 𝑍 
belong to the same equivalence class. In these cases, PROC HPBNET uses the BIC score to 
determine the directions of the edges.  

 
For the PC and MB structures, PROC HPBNET learns the parents of the target first. Then it learns the 
parents of the input variable that has the highest BIC score with the target. It continues learning the 
parents of the input variable that has the next highest BIC score, and so on. When learning the parents of 
a node, it first determines the edges by using independence tests. Then it orients the edges by using both 
independence tests and the BIC score. PROC HPBNET uses the BIC score not only for orienting the 
edges but also for controlling the network complexity, because a complex network that has more parents 
is penalized in the BIC score. Both the BESTONE and BESTSET values of the PARENTING= option try 
to find the local optimum structure for each node. BESTONE adds the best candidate variable to the 
parents at each iteration, whereas BESTSET tries to choose the best set of variables among the 
candidate sets. 
 

TYPES OF BAYESIAN NETWORK CLASSIFIERS SUPPORTED BY THE HPBNET PROCEDURE  

The HPBNET procedure supports the following types of Bayesian network classifiers: 

 Naïve Bayesian network classifier: As shown in Figure 2, the target node (Y) has a direct edge to 
each input variable, the target node is the only parent for all other nodes, and there are no other 
edges. This structure assumes that all input variables are conditionally independent of each other 
given the target.  
 

 

 

Figure 2. Naïve Bayesian Network Classifier 

 

  

X1 X2 Xp

Y
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 Tree-augmented naïve Bayesian network classifier: As shown in Figure 3, in addition to the edges 
from the target node Y to each input node, the edges among the input nodes form a tree. This 
structure is less restrictive than the naïve Bayes structure. 
 

 

 

Figure 3. Tree-Augmented Naïve Bayesian Network Classifier 

 

 Bayesian network-augmented naïve Bayesian network classifier: As shown in Figure 4, the 
target node Y has a direct edge to each input node, and the edges among the input nodes form a 
Bayesian network. 
 

 

 

Figure 4. Bayesian Network-Augmented Naïve Bayesian Network Classifier 

 

 Parent-child Bayesian network classifier: As shown in Figure 5, input variables can be the parents 
of the target variable Y. In addition, edges from the parents of the target to the children of the target 
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and among the children of the target are also possible. 

 

Figure 5. Parent-Child Bayesian Network Classifier  
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 Markov blanket Bayesian network classifier: As shown in Figure 6, the Markov blanket includes 
the target’s parents, children, and spouses (the other parents of the target’s children). 
 

 

 

Figure 6. Markov Blanket Bayesian Network Classifier 

 

One advantage of PROC HPBNET is that you can specify all the structures that you want to consider for 
training and request (by specifying the BESTMODEL option) that the procedure automatically choose the 
best structure based on each model’s performance on validation data.  

 

EXAMPLE OF USING PROC HPBNET TO ANALYZE DATA 

This example uses PROC HPBNET to diagnose whether a patient has breast cancer, based on the 
Breast Cancer Wisconsin data set from the UCI Machine Learning Repository (Lichman 2013). 

Table 1 lists the details of the attributes found in this data set. 

Variables  Attribute Domain Description of 
Benign Cells 

Description of 
Cancerous Cells 

1 Sample code number  ID number  N/A N/A 
2 Clump thickness 1–10  Tend to be grouped 

in monolayers 
Often grouped in 
multiple layers 

3 Uniformity of cell size 1–10  Evenly distributed  Unevenly distributed 
4 Uniformity of cell shape 1–10  Evenly distributed  Unevenly distributed 
5 Marginal adhesion 1–10  Tend to stick 

together 
Tend not to stick 
together 

6 Single epithelial cell size 1–10  Tend to be normal-
sized 

Tend to be significantly 
enlarged 

7 Bare nuclei 1–10  Typically nuclei are 
not surrounded by 
cytoplasm of 
benign cells 

Nuclei might be 
surrounded by 
cytoplasm  

8 Bland chromatin 1–10  Uniform “texture” of 
nucleus 

Coarser “texture” of 
nucleus 

9 Normal nucleoli 1–10  Very small, if visible More prominent, and 
greater in number 

10  Mitoses 1–10  Grade of cancer determined by counting the 
number of mitoses (nuclear division, the 
process by which the cell divides and 
replicates) 

11  Class 2 or 4 2 4 

Table 1.  Attributes of Breast Cancer Wisconsin Data Set   

X1

Y

X2

X3 X4

X5



9 

The RENAME statement in the following DATA step enables you to assign a name to each variable so 
that you can understand it more easily: 
 

data BreastCancer; 

set BreastCancer; 

rename var1=ID 

       var2=Clump_Thickness 

       var3=Uniformity_of_Cell_Size 

       var4=Uniformity_of_Cell_Shape 

       var5=Marginal_Adhesion 

       var6=Single_Epithelial_Cell_Size 

       var7=Bare_Nuclei 

       var8=Bland_Chromatin 

       var9=Normal_Nucleoli 

       var10=Mitoses 

       var11=Class; 

run; 

 

 
The following SAS program shows how you can use PROC HPBNET to analyze the BreastCancer 
data set: 
 
proc hpbnet data=BreastCancer nbin=5 structure=Naive TAN PC MB bestmodel; 

target Class; 

id ID; 

input Clump_Thickness Uniformity_of_Cell_Size  Uniformity_of_Cell_Shape 

Marginal_Adhesion Single_Epithelial_Cell_Size Bare_Nuclei Bland_Chromatin  

Normal_Nucleoli Mitoses/level=INT; 

output network=net validinfo=vi varselect=vs 

     varlevel=varl parameter=parm fit=fitstats pred=prediction; 

partition fraction(validate=0.3 seed=12345); 

code file="c:\hpbnetscorecode.sas" ; 

run; 

 
The TARGET statement specifies Class as the target variable. The ID statement specifies ID as the ID 

variable. The INPUT statement specifies that all the other variables are to be used as interval inputs. The 

NBIN= option in the PROC HPBNET statement specifies 5 for the number of equal-width bins for interval 

inputs. Four different structures are specified in the STRUCTURE= option (so each structure is trained), 

and the BESTMODEL option requests that PROC HPBNET automatically choose the best model to 

minimize the validation misclassification rate. The FRACTION option in the PARTITION statement 

requests that 30% of the data be used for validation (leaving 70% to be used for training). The OUTPUT 

statement specifies multiple output tables to be saved in the Work directory. The CODE statement 

specifies a filename (hpbnetscorecode.sas) where the generated score code is to be stored. 

 

After you run PROC HPBNET, you can visualize the final model by using the %createBNCdiagram 

macro in the Appendix to view the selected Bayesian network structure. This macro takes the target 

variable and the output network data as arguments. 

 

Figure 7 shows the generated diagram, which indicates that the naïve Bayes network is selected as the 
best structure for this data set, because the input variables are all conditionally independent of each other 
given the target. 
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Figure 7. Bayesian Network Diagram 
  
Table 2 through Table 7 show all the other output tables, which are stored in the Work directory. 
 
The Best Model column in Table 2 shows that a naïve Bayesian network model with a maximum of one 
parent is selected, and the Misclassification Errors column shows that five validation observations are 
misclassified. 
 

 
 

Table 2.  Validation Information Table 
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Table 3 shows that the number of observations for validation is 178. Together with the misclassification 
errors shown in Table 2, you can calculate the validation accuracy as 1 – 5/178 = 97.19%. In PROC 
HPBNET, continuous variables are binned to equal-width discrete levels in order to simplify the model. If 
you want to improve this accuracy, you can discretize the interval inputs differently. For example, you 
could use entropy binning instead of equal-width binning. 

 

 
 
Table 3. Fit Statistics Table 
 
Table 4 shows the variable selection results. In the preceding PROC HPBNET call, the VARSELECT= 
option is not specified in the PROC statement, so its default value is applied. By default, each input 
variable is tested for conditional independence of the target variable given any other input variable, and 
only the variables that are conditionally dependent on the target given any other input variable are 
selected. Table 4 shows that all the nine input variables are selected into the model. 
 

 
 
Table 4. Selected Variables Table 
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Table 5 shows the details for each level of the target and input variables. The values of 0–4 in the Level 
Index column indicate that PROC HPBNET bins each interval input variable into five equal-width levels 
The number of bins can be specified in the NBIN= option; by default, NBIN=5.  
 

 
 
Table 5. Variable Levels Table 
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Table 6 shows the parameter values for the resulting model. 
 

 
 
Table 6. Parameter Table 
 
Table 7 shows the prediction results for the first 20 observations of the training data. The Predicted: 

Class= columns contain the conditional probabilities for the Class variable, where Class=2 indicates a 

benign cell and Class=4 indicates a malignant cell. The conditional probabilities are then used to predict 

the target class.  Here the target is known because these are the training data, but you can use this 

information to see how well the model is performing. The model is considered to perform well when the 

actual target class matches the target class that is predicted based on the conditional probabilities. 

 

 
 
Table 7. Prediction Results Table 
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PREDICTION ACCURACY COMPARISON 

This section compares the prediction accuracy of Bayesian classifiers to that of their four popular 
competitor classifiers (decision tree, neural network, logistic regression, and support vector machines) for 
25 data sets that were downloaded from the UCI Machine Learning Repository (Lichman 2013). Table 8 
summarizes these data sets.  

 
Data Set Attributes 

Target 

Levels 

Number of 

Observations 

Total Validation 

1 Adult 13 2 48,842 16,116 
2 Statlog (Australian Credit Approval) 14 2 690 CV-5 
3 Breast Cancer Wisconsin (Original) (Mangasarian 

and Wolberg 1990) 
9 2 699 CV-5 

4 Car Evaluation 6 4 1,728 CV-5 
5 Chess (King-Rook vs. King-Pawn) 36 2 3,196 1,066 
6 Diabetes 8 2 768 CV-5 
7 Solar Flare 10 2 1,066 CV-5 
8 Statlog (German Credit Data) 24 2 1,000 CV-5 
9 Glass Identification 9 6 214 CV-5 

10 Heart Disease 13 2 270 CV-5 
11 Hepatitis 19 2 155 CV-5 
12 Iris 4 3 150 CV-5 
13 LED Display Domain + 17 Irrelevant Attributes 24 10 3,190 1,057 
14 Letter Recognition 16 26 20,000 4,937 
15 Lymphography 18 4 148 CV-5 
16 Nursery 8 5 12,960 4,319 
17 Statlog (Landsat Satellite) 36 6 6,435 1,930 
18 Statlog (Image Segmentation) 19 7 2,310 770 
19 Soybean (Large) 35 19 683 CV-5 
20 SPECT Heart 22 2 267 CV-5 
21 Molecular Biology (Splice-Junction Gene 

Sequences) 
60 3 3,190 1,053 

22 Tic-Tac-Toe Endgame 9 2 958 CV-5 
23 Statlog (Vehicle Silhouettes) 18 4 846 CV-5 
24 Congressional Voting Records 16 2 435 CV-5 
25 Waveform Database Generator  

(Version 1) 
21 3 5,000 4,700 

 

Table 8 Summary of 25 UCI Data Sets 

 

For the larger data sets, the prediction accuracy was measured by the holdout method (that is, the 

learning process randomly selected two-thirds of the observations in the data set for building the 

classifiers, and then evaluated their prediction accuracy on the remaining observations in the data set). 

For smaller data sets, the prediction accuracy was measured by five-fold cross validation (CV-5). Each 

process was repeated five times. Observations that have missing values were removed from the data 

sets. All continuous variables in the data set were discretized with a tree-based binning method. The final 

average prediction accuracy values and their standard deviations are summarized in Table 9. The best 

accuracy values for each data set are marked in bold in each row of the table. You can see that PC and 

TAN in the five BN structures claim most of the wins and are competitive to the other classifiers.   
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     Data Set 

BN Classifiers Competitor Classifiers 

 
Naïve 

Bayes  
BAN TAN PC MB Logistic NN Tree  SVM* 

1 Adult 78.06+- 0.24 80.93+- 0.34 79.81+- 0.42 85.00+- 0.25 49.61+- 0.37 81.17+- 6.24 85.84+- 0.27 85.28+- 0.13 85.73+- 0.29 

2 Statlog (Australian 

Credit Approv al) 

86.43+- 0.33 86.29+- 0.30 85.88+- 0.33 86.20+- 0.54 85.51+- 0.00 82.38+- 4.71 85.59+- 0.78 84.96+- 0.42 85.65+- 0.27 

3 Breast Cancer 
Wisconsin (Original) 
(Mangasarian and 
Wolberg 1990) 

97.42+- 0.00 97.42+- 0.00 96.65+- 0.39 97.17+- 0.12 96.88+- 0.40 95.82+- 0.57 96.54+- 0.45 94.11+- 0.40 96.42+- 0.20 

4 Car Ev aluation 80.01+- 0.21 86.56+- 1.03 87.52+- 0.10 88.24+- 0.90 86.52+- 1.27 77.26+- 0.26 93.07+- 0.49 96.89+- 0.36   

5 Chess (King-Rook v s. 
King-Pawn) 

90.41+- 0.72 95.31+- 0.38 95.12+- 0.38 95.01+- 0.56 92.25+- 0.91 52.25+- 0.00 96.92+- 0.56 99.04+- 0.39 97.17+- 0.54 

6 Diabetes 76.07+- 0.67 76.02+- 0.69 74.97+- 1.17 78.10+- 0.70 72.71+- 1.22 75.86+- 2.98 77.29+- 1.03 75.94+- 0.95 77.63+- 0.89 

7 Solar Flare 73.58+- 0.79 73.94+- 0.92 73.60+- 0.78 80.02+-1.08 77.60+- 1.81 81.54+- 0.22 81.69+- 0.56 81.07+- 0.45 82.18+- 0.42 

8 Statlog (German Credit 

Data) 

71.60+- 0.55 71.28+- 1.02 71.94+- 1.29 76.18+- 0.37 66.40+- 1.47 75.24+- 0.50 75.04+- 0.34 72.18+- 0.59 75.86+- 0.76 

9 Glass Identification 65.61+- 2.28 65.61+- 2.28 71.68+- 1.02 69.53+- 1.42 69.53+- 1.42 62.80+- 3.70 70.37+- 3.54 69.81+- 1.43   

10 Heart Disease 82.89+- 1.21 83.56+- 1.35 82.74+- 1.07 83.33+- 0.69 80.52+- 1.19 83.26+- 2.05 84.67+- 1.30 81.41+- 1.32 84.15+- 1.66 

11 Hepatitis 86.60+- 1.86 86.61+- 1.20 88.73+- 2.60 90.56+- 1.34 92.11+- 1.94 88.69+- 3.25 91.59+- 1.85 92.12+- 1.35 91.06+- 1.22 

12 Iris 95.86+- 0.30 95.86+- 0.30 95.19+- 0.74 95.86+- 0.30 95.86+- 0.30 80.37+- 0.72 94.92+- 1.40 94.53+- 0.86   

13 LED Display Domain + 

17 Irrelev ant Attributes 

73.96+- 1.22 73.96+- 1.22 74.25+- 0.88 74.27+-1.17 74.70+- 1.21 19.79+- 0.73 73.25+- 0.39 74.08+- 0.92   

14 Letter Recognition 68.33+- 0.58 73.19+- 0.77 78.75+- 0.63 72.07+- 0.63 70.80+- 5.37 10.98+- 0.27 78.69+- 0.46 77.66+- 0.43   

15 Lymphography 80.81+- 1.56 81.49+- 1.83 79.32+- 0.77 83.78+- 1.51 74.19+- 3.71 61.62+- 3.89 81.35+- 1.56 74.86+- 0.88   

16 Nursery 82.92+- 0.65 86.46+- 0.69 89.25+- 0.39 91.45+- 0.63 91.02+- 0.25 90.86+- 0.34 92.27+- 0.47 97.41+- 0.16   

17 Statlog (Landsat 

Satellite) 

81.39+- 0.73 86.36+- 0.51 86.31+- 0.79 86.58+- 0.49 84.56+- 0.65 72.78+- 0.29 87.84+- 0.60 85.55+- 0.38   

18 Statlog (Image 
Segmentation) 

89.45+- 0.71 91.09+- 1.71 93.04+- 0.81 91.09+- 1.71 67.01+- 2.34 58.83+- 3.24 92.78+- 0.90 93.56+- 0.74   

19 Soybean (Large) 89.78+- 0.35 89.78+- 0.35 92.97+- 0.99 89.43+- 0.44 60.97+- 2.80 44.22+- 3.67 91.80+- 0.51 91.65+- 1.01   

20 SPECT Heart 72.06+- 1.65 75.36+- 1.04 73.41+- 1.38 80.60+- 1.25 69.96+- 2.74 78.35+- 1.66 82.25+- 1.20 79.33+- 1.51 81.95+- 1.97 

21 Molecular Biology 

(Splice-Junction Gene 
Sequences) 

95.31+- 0.51 95.38+- 0.47 95.71+- 0.71 96.05+- 0.16 92.61+- 7.13 80.46+- 1.61 95.48+- 0.70 94.17+- 0.62   

22 Tic-Tac-Toe Endgame 66.08+- 1.49 79.04+- 1.58 72.03+- 0.70 77.14+- 0.82 75.03+- 3.02 77.10+- 0.80 98.10+- 0.09 93.28+- 0.67 98.33+- 0.00 

23 Statlog (Vehicle 
Silhouettes) 

62.01+- 0.84 70.26+- 1.29 71.25+- 0.80 70.26+- 1.39 58.96+- 5.60 63.55+- 1.77 70.09+- 0.91 69.36+- 0.48   

24 Congressional Voting 

Records 

94.80+- 0.53 95.17+- 0.16 95.13+- 0.72 94.90+- 0.10 94.99+- 0.38 93.79+- 2.11 95.82+- 0.99 95.08+- 0.42 95.40+- 0.43 

25 Wav eform Database 

Generator(Version 1) 

78.31+- 1.48 78.31+- 1.48 73.68+- 1.77 78.35+- 1.33 78.62+- 1.50 62.43+- 3.43 81.78+- 0.85 70.27+- 3.06   

*SVM for binary target only 

Table 9. Classification Accuracy on 25 UCI Machine Learning Data Sets 
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CONCLUSION 

This paper describes Bayesian network (BN) classifiers, introduces the HPBNET procedure, and shows 
how you can use the procedure to build BN classifiers. It also compares the competitive prediction power 
of BN classifiers with other state-of-the-art classifiers, and shows how you can use a SAS macro to 
visualize the network structures.  
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APPENDIX 

%macro createBNCdiagram(target=Class, outnetwork=net); 

 

   data outstruct; 

        set &outnetwork; 

        if strip(upcase(_TYPE_)) eq 'STRUCTURE' then output; 

        keep _nodeid_   _childnode_  _parentnode_; 

   run; 

 

   data networklink; 

       set outstruct; 

        linkid = _N_; 

        label linkid ="Link ID"; 

   run; 

 

   proc sql; 

      create table work._node1 as 

         select distinct  _CHILDNODE_ as  node 

         from networklink; 

      create table work._node2  as 

         select distinct _PARENTNODE_  as node 

         from networklink; 

   quit; 

 

   proc sql; 

      create table work._node as 

         select node 

         from work._node1 

         UNION 

         select node 

         from work._node2; 

   quit; 

 

   data bnc_networknode; 

       length NodeType $32.; 

       set work._node; 

       if strip(upcase(node)) eq strip(upcase("&target")) then do; 

         NodeType = "TARGET"; 

         NodeColor=2; 

       end; 

       else  do; 

         NodeType = "INPUT"; 

         NodeColor = 1; 

       end; 

       label NodeType ="Node Type" ; 

       label NodeColor ="Node Color" ; 

 

   run; 

 

   data parents(rename=(_parentnode_ = _node_)) children(rename=(_childnode_ 

= _node_)) links; 

       length _parentnode_ _childnode_ $ 32; 

       set networklink; 

       keep _parentnode_ _childnode_ ; 

   run; 
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   /*get list of all unique nodes*/ 

   data nodes; 

       set parents children; 

   run; 

 

   proc sort data=nodes; 

       by _node_; 

   run; 

 

   data nodes; 

       set nodes; 

       by _node_; 

       if first._node_; 

      _Parentnode_ = _node_; 

      _childnode_ = ""; 

   run; 

 

   /*merge node color and type */ 

   data nodes; 

       merge nodes bnc_ 

 networknode (rename=(node=_node_ nodeColor=_nodeColor_ 

nodeType=_nodeType_)); 

       by _node_; 

   run; 

 

   /*sort color values to ensure consistent color mapping across networks */ 

   /*note that the color mapping is HTML style dependent though */ 

   proc sort data=nodes; 

       by  _nodeType_; 

   run; 

 

   /*combine nodes and links*/ 

   /* need outsummaryall for model report*/ 

   data bnc_networksummary(drop=_shape_ _nodecolor_ _nodepriority_ _shape_  

_nodeID_ _nodetype_ _linkdirection_) bnc_networksummaryall; 

       length _parentnode_ _childnode_ $ 32; 

       set nodes links; 

       drop _node_; 

       if _childnode_ EQ "" thendo; 

               _nodeID_ = _parentnode_; 

               _nodepriority_ = 1; 

               _shape_= "OVAL"; 

           end; 

       else do; 

         _linkdirection_ = "TO"; 

         output bnc_networksummary; 

       end; 

       output bnc_networksummaryall; 

       label _linkdirection_="Link Direction"; 

   run; 

 

    proc datasets lib=work nolist nowarn; 

         delete _node _node1 _node2 nodes links parents children; 

   run; 

 

   quit; 
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   proc template; 

      define statgraph bpath; 

         begingraph / DesignHeight=720 DesignWidth=720; 

            entrytitle "Bayesian Network Diagram"; 

            layout region; 

              pathdiagram fromid=_parentnode_ toid=_childnode_ / 

              arrangement=GRIP 

              nodeid=_nodeid_ 

              nodelabel=_nodeID_ 

              nodeshape=_shape_ 

              nodepriority=_nodepriority_ 

              linkdirection=_linkdirection_ 

              nodeColorGroup=_NodeColor_ 

                        textSizeMin = 10 

               ; 

            endlayout; 

         endgraph; 

      end; 

   run; 

 

   ods graphics; 

   proc sgrender data=bnc_networksummaryall template=bpath; 

   run; 

 

%mend; 

 

%createBNCdiagram; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


