
1

Paper SAS431-2017

Go Ahead and _BREAK_-down: Advanced COMPUTE Block Examples

Cynthia Zender, SAS Institute Inc.

ABSTRACT
When you look at examples of the REPORT procedure, you see code that tests _BREAK_ and
RBREAK, but you wonder what’s the breakdown of the COMPUTE block? And, sometimes, you need
more than one break line on a report, or you need a customized or adjusted number at the break.
Everything in PROC REPORT that is advanced seems to involve a COMPUTE block. This paper provides
examples of advanced PROC REPORT output that uses _BREAK_ and _RBREAK_ to customize the
extra break lines that you can request with PROC REPORT. Examples include how to get custom
percentages with PROC REPORT, how to get multiple break lines at the bottom of the report, how to
customize break lines, and how to customize LINE statement output. This presentation is aimed at the
intermediate to advanced report writer who knows some about PROC REPORT, but wants to get the
breakdown of how to do more with PROC REPORT and the COMPUTE block.

INTRODUCTION

Don't break up with PROC REPORT over the COMPUTE block and BREAK processing. This paper will
cover advanced COMPUTE block examples using PROC REPORT. PROC REPORT is one of those
procedures that you can use for a long time without needing to do anything advanced with the COMPUTE
block. PROC REPORT can produce many types of output, from simple detail reports to summarized
reports. Like its predecessors PROC PRINT and PROC MEANS, PROC REPORT has syntax that
enables you to control the variables that you want to see on a report and the statistics that you will get for
analysis variables. Like PROC TABULATE, PROC REPORT can generate crosstabular reports.

What PROC REPORT brings to the party is the ability to customize report output by calculating new
report items and customizing the report at specific places on the report. The customization steps occur in
the PROC REPORT COMPUTE block, which is not included in PRINT, MEANS, and TABULATE.

All the examples in the paper use the SASHELP.SHOES data set. In the ZIP file that contains the
programs, all the WORK data sets that are needed for the examples are created in the
Example_Before_Setup.sas program. Please refer to that file to see the subsets that are used.
SASHELP.SHOES has ten unique REGION values. However, for most of these examples, only two or
three REGION values are needed for illustration purposes. In some programs, a WHERE statement is
used in PROC REPORT to reduce the number of PRODUCTS that will be shown on a report.

PROC REPORT, in the COMPUTE block, enables you to include DATA step processing and to use
familiar DATA step statements such as the assignment statement, the SUM statement, and the LENGTH
statement. When PROC REPORT first starts, it enters a "preprocessing" phase. It scans the REPORT
syntax to perform any necessary setup such as any summarizing or ordering that needs to happen based
on the type of report you've requested.

In addition, PROC REPORT puts the COMPUTE block syntax in a "hold" state so that the appropriate
statements can be called into action as needed. But, to understand the COMPUTE block, first you need
be comfortable with simple COMPUTE block syntax.

FIRST THINGS FIRST: SIMPLE COMPUTE BLOCKS AND PROC REPORT

What I call a "simple" COMPUTE block is the form of COMPUTE block that most people learn first. It is
the COMPUTE block that creates a new report item on the report output. The item is assigned a value in
the COMPUTE block. The value could be a constant value or a calculated item, or it could be derived
from other variables or report items that are in the COLUMN statement.

The first program illustrates defaults (Example_Beginning_Defaults.sas), which produces Output 1.
Report A1 shows the default report that you would get from the following code:

2

** Refer to PROC SORT to see how subset created;

proc report data=shoes;

 title 'A1) Default Report Only Numeric Variables';

 column sales returns inventory ;

run;

Because the COLUMN statement contains only numeric variables, all of the rows for the SALES,
RETURNS, and INVENTORY variables from the WORK.SHOES data are summarized, producing a one-
line "grand total" report.

Report A2, in the same program, illustrates the use of the simple COMPUTE block to calculate two new
report items, called PROFIT and PCTINV. These items do not exist in SASHELP.CLASS, so they do not
exist in the subset of data that is sent to PROC REPORT. Instead, PROC REPORT computes these
values by executing the statements inside the COMPUTE block every time it needs to populate a data
cell. In this case, the COMPUTE block executes only one time for each item because there is only one
row on the report.

Here is the code that generates Report A2:

proc report data=shoes;

 title 'A2) Default Report Only Numeric Variables';

 title2 'With COMPUTE block for new report items';

 column sales returns Profit inventory PctInv; 1

 define profit / computed f=dollar14.; 2

 define pctinv / computed f=percent9.2; 2

 compute profit; 3

 profit = sum(sales.sum,-1*returns.sum);

 endcomp;

 compute pctinv; 3

 pctinv = sales.sum / inventory.sum;

 endcomp;

run;

Output 1: Report with Computed Items

3

In order for PROFIT and PCTINV to be computed correctly, three statements in the PROC REPORT code
are necessary because the statements work together:

1. Both PROFIT and PCTINV had to be listed in the COLUMN statement in the order (from left to
right) in which they should appear on the report.

2. The DEFINE statements had to be provided to specify a usage of COMPUTED and a format for
each report item.

3. The COMPUTE/ENDCOMP block for each item instructed PROC REPORT what expression
should be used in order to assign a value to PROFIT and PCTINV.

Because SALES, INVENTORY, and RETURNS are being treated as ANALYSIS variables with a default
statistic of SUM, they must be referred to in an assignment statement using a compound name:
SALES.SUM, INVENTORY.SUM and RETURNS.SUM.

In the code for Report A2, there is a separate COMPUTE block for each computed report item. However,
one of the features of PROC REPORT is that it builds each report row from left to right. Therefore, the
exact same output could be generated by putting both assignment statements in the COMPUTE block for
PCTINV, as shown below, with the modified code for report A3 that produces the same output as shown
for report A2 in Output 1.

proc report data=shoes;

 title 'A3) Default Report Only Numeric Variables';

 column sales returns Profit inventory PctInv;

 define profit / computed f=dollar14.;

 define pctinv / computed f=percent9.2;

 compute pctinv;

 profit = sum(sales.sum,-1*returns.sum);

 pctinv = sales.sum / inventory.sum;

 endcomp;

run;

If you prefer to keep your simple COMPUTE block assignment statements together, then this technique
enables you to accomplish that goal. Remember that PROC REPORT fills the data cells on a report row
by working from left to right. So this same technique, which puts both assignment statements in the
COMPUTE block for PROFIT, would not work:

proc report data=shoes;

 title 'A4) Default Report Only Numeric Variables';

 title2 'With 1 COMPUTE block for both new report items';

 column sales returns Profit inventory PctInv;

 define profit / computed f=dollar14.;

 define pctinv / computed f=percent9.2;

 compute profit;

 profit = sum(sales.sum,-1*returns.sum);

 pctinv = sales.sum / inventory.sum;

 endcomp;

run;

This code will not generate errors, but it does generate missing values for PCTINV. The reason this code
generates missing values for PCTINV is that the point in time at which PROC REPORT puts PROFIT on
the report row, PROC REPORT has not yet placed INVENTORY on the report row. If you run this
program, your results will not be what you expect. Output 2 shows the result of using the wrong
placement for PCTINV in the COMPUTE block for PROFIT:

4

Output 2: Missing Values for the PCTINV Computed Item

The two most challenging aspects about using the simple COMPUTE block are remembering the left-to-
right rule of PROC REPORT and using the COMPOUND name, variable.statistic for analysis variables in
your assignment statement.

But what if you want to see these same columns, but organized by REGION and PRODUCT? That is
easy to do by adding REGION and PRODUCT to the COLUMN statement. By default, PROC REPORT
will treat the variables as display items and will display every row in the input data. This subset of data
has 96 observations. However, the desired report should have one summary line for every unique
combination of REGION and PRODUCT. This means that both REGION and PRODUCT will need to
have a DEFINE statement with a usage of GROUP. If you just add REGION and PRODUCT to the
COLUMN statement, without a DEFINE usage of GROUP, then PROC REPORT, by default, will treat the
variables as display items and will display every row in the input data. This subset of data has 96
observations. However, the desired report will have one summary line for every unique combination for
REGION and PRODUCT. In other words, the desired report is a summary report, which means that both
REGION and PRODUCT must have a DEFINE statement with a usage of GROUP.

This code will generate the desired summary report:

proc report data=shoes spanrows;

 column region product sales returns Profit inventory PctInv ;

 define region / group;

 define product / group;

 define profit / computed f=dollar14.;

 define pctinv / computed f=percent9.2;

 compute pctinv;

 profit = sum(sales.sum,-1*returns.sum);

 pctinv = sales.sum / inventory.sum;

 endcomp;

run;

The majority of the program is the same as that seen previously. The only changes are the use of the
SPANROWS option, which causes the GROUP variable for REGION to span multiple rows for
PRODUCT. For example, in Output 3 notice how the cell for Asia in the REGION column spans all the
cells for the PRODUCT rows. In addition, a DEFINE statement is used for REGION and PRODUCT to
indicate that they should have a usage of GROUP so that multiple rows for each unique
REGION/PRODUCT combination would be collapsed or summarized. The resulting output is shown in
Output 3, Report B.

5

Output 3: Using GROUP Items with COMPUTED Items

So far, in the output, the only rows on the report are the column header rows and the cells that show the
summarized data. There are no extra report rows, and there are no subtotals or grand totals on the
report.

If a usage of ORDER had been specified for REGION or PRODUCT or both REGION and PRODUCT,
then the report would have shown all 96 observations from WORK.SHOES. Instead, the resulting report

6

has three regions, with the summary for each of the eight products within each region. The final report
has a total of 24 report rows, plus the column header row.

To get subtotals and grand totals, only two statements must be added to the PROC REPORT code:

 break after region/summarize;

 rbreak after / summarize;

The BREAK statement will add an extra subtotal row after every unique value of REGION, and the
RBREAK statement will add a grand total row at the bottom of the report, as shown in Output 4.

Output 4: Adding Subtotals and Grand Totals

7

The subtotal rows are highlighted with a blue arrow in Output 4, Report C. You see the grand total row at
the bottom of the report. PROC REPORT has added four additional report rows, all derived from the data
and placed at the location that is specified in the BREAK and RBREAK statements.

Internally, when PROC REPORT performs break processing, it uses a helper variable called _BREAK_ to
identify which rows are derived from data and which rows are on the report because of break processing.
We use this helper variable in upcoming programs. A useful technique for understanding how PROC
REPORT sets the value of the _BREAK_ variable is to create an output data set using the OUT= option
of PROC REPORT:

proc report data=shoes spanrows out=work.repout;

The WORK.REPOUT data set is displayed using PROC PRINT in Output 5.

Output 5: Values of the _BREAK_ Variable Displayed in PROC PRINT Output

The value of the _BREAK_ variable from the BREAK statement is the name of the variable, REGION,
which was listed in the BREAK statement. The value of the _BREAK_ variable from the RBREAK
statement (at the bottom of the report) is _RBREAK_. This makes it easy to perform conditional
processing in your COMPUTE blocks. The name of the variable to test is always _BREAK_ and the
possible values are the name of a GROUP or ORDER item, _RBREAK_, or _PAGE_.

Notice in Output 5 for the report rows that were summarized from the data, the value of _BREAK_ is
blank. Now, you can see exactly which rows were added to the report by the break processing.

The final example in this section illustrates other uses of the COMPUTE block with the LINE statement,
which is not related to the creation of a report item. To illustrate how COMPUTE processing works, quite

8

a few extra rows are added to the report that we've been working with. To fit the output onto one page
and to illustrate the COMPUTE behavior, the number of regions is limited to two and the number of
products limited to three in the code, using a WHERE statement:

 proc report data=shoes spanrows;

 where region in ('Asia' 'Canada') and

 product in ('Boot' 'Sandal' 'Slipper');

 title 'D) Many of the Other Forms of COMPUTE';

 ** rest of code same as previous **;

 compute before _page_;

 line '1) COMPUTE BEFORE _PAGE_';

 endcomp;

 compute before;

 line '2) COMPUTE BEFORE';

 endcomp;

 compute before region;

 line '3) COMPUTE BEFORE region';

 endcomp;

 compute after region;

 line '4) COMPUTE AFTER region';

 endcomp;

 compute after;

 line '5) COMPUTE AFTER';

 endcomp;

 compute after _page_;

 line '6) COMPUTE AFTER _PAGE_';

 endcomp;

run;

The LINE statement, which is unique to PROC REPORT, functions like a PUT statement in the DATA
step. In Output 6, the results of the various LINE statements within each COMPUTE block are shown.

9

Output 6: Possible Locations for the COMPUTE Blocks to Add Rows to the Output

For a thorough description of COMPUTE block execution, refer to Jane Eslinger's 2015 paper R, which is
listed in the References section.

The difference between the simple COMPUTE and the COMPUTE output that is shown in Output 6 is that
the COMPUTE block with a report item reference, COMPUTE PROFIT or COMPUTE PCTINV, has an
impact on a data cell on each report row, and the LINE statements in the 6 COMPUTE blocks inserts a
row at a specific location on the report. Notice how lines 3 and 4 were repeated for every unique value of
the group item REGION, immediately before the first occurrence of REGION and immediately after the
last occurrence of REGION.

Another important feature to note is that the COMPUTE output always stays within the boundary of the
table and, as you can see, the LINE statement output spans the entire table width. In Output 6, a gray
frame surrounds the entire table, and the LINE statement output stays within this frame area. You can
use ODS STYLE overrides to alter the presentation aspects of the line output. You'll see examples of
such overrides in the following sections.

EXAMPLE 1: COMPUTE BEFORE/AFTER _PAGE_

There are two urgent reasons to use COMPUTE BEFORE or AFTER _PAGE_. One reason is to insert
logos or images either before or after your report table. The other reason is to use the area above or
below the table for captions or explanatory text. Both examples are shown in the following code. For the
caption example, only the changed COMPUTE blocks are shown:

 proc report data=shoes spanrows;

 where region in ('Asia' 'Canada') and

 product in ('Boot' 'Sandal' 'Slipper');

 title 'Ex 1a) COMPUTE BEFORE/AFTER _PAGE_';

 column region product sales returns Profit inventory PctInv ;

 define region / group;

10

 define product / group;

 define profit / computed f=dollar14.;

 define pctinv / computed f=percent9.2;

 break after region/summarize;

 rbreak after / summarize;

 compute pctinv;

 profit = sum(sales.sum,-1*returns.sum);

 pctinv = sales.sum / inventory.sum;

 endcomp;

 compute before _page_ / style={background=white

 preimage="shoe_zoo.png"};

 line ' ';

 endcomp;

 compute after _page_ / style={background=white

 preimage="shoe_zoo.png"};

 line ' ';

 endcomp;

 run;

 proc report data=shoes spanrows;

 title 'Ex 1b) COMPUTE BEFORE/AFTER _PAGE_';

 ** same code as Ex 1a **;

 compute before _page_ / style=Header{fontweight=bold fontsize=18pt};

 line "Shoe Zoo: We've got everything from boots to bunny slippers!";

 endcomp;

 compute after _page_ / style=Header{fontweight=bold fontsize=18pt};

 line "Shoe Zoo: We've got everything from boots to bunny slippers!";

 endcomp;

 run;

Output 7 shows the results of using the COMPUTE BEFORE _PAGE_ and COMPUTE AFTER _PAGE_
statements to insert images, and Output 8 shows the insertion of captions. The image, in this case, is
stored in the same location where the output file is stored. If the image were in a different location from
the location of the HTML file or if you were using ODS PDF or ODS RTF, you would have to use a fully
qualified pathname for the image location.

11

Output 7: Insert Images with COMPUTE BEFORE/AFTER _PAGE_

Output 8: Insert Captions with COMPUTE BEFORE/AFTER _PAGE_

When you use the PAGE option in PROC REPORT or BY-group processing, then the COMPUTE
BEFORE _PAGE_ block will be executed for every page that is generated. For example, with only one
change to the previous caption program, the results will be dramatically different because there will be a
logical page (for HTML) that is created for every BY group. For RTF and PDF, there will be a physical
page for every BY group unless the STARTPAGE=NO option is used.

When a logical or physical page starts, SAS will repeat all the PROC REPORT titles and the column
headers, and the COMPUTE BEFORE _PAGE_ text. Here is the code:

12

 proc report data=shoes spanrows;

 by region;

 where region in ('Asia' 'Canada') and

 product in ('Boot' 'Sandal' 'Slipper');

 title 'Ex 1c) COMPUTE BEFORE/AFTER _PAGE_';

 column region product sales returns Profit inventory PctInv ;

 define region / group;

 define product / group;

 define profit / computed f=dollar14.;

 define pctinv / computed f=percent9.2;

 break after region/summarize;

 rbreak after / summarize;

 compute pctinv;

 profit = sum(sales.sum,-1*returns.sum);

 pctinv = sales.sum / inventory.sum;

 endcomp;

 compute before _page_ / style=Header{fontweight=bold fontsize=18pt};

 line "Shoe Zoo: We've got everything from boots to bunny slippers!";

 endcomp;

 compute after _page_ / style=Header{fontweight=bold fontsize=18pt};

 line "Shoe Zoo: We've got everything from boots to bunny slippers!";

 endcomp;

 run;

In Output 9, you can tell that the output was created with BY-group processing because the BYLINE
appears under the title, and outside the frame of the table.

Output 9: Results with the BY Statement

13

When you use BY-group processing, note how each BY group is treated as a separate entity. The
BREAK statement and the RBREAK statements are both executed for each BY group. Usually, if you are
implementing BY-group processing, you would use either the BREAK statement or the RBREAK
statement, but not both, depending on how you wanted the summary line to look. Another feature of the
report is that, by default, PROC REPORT inserts the BYLINE information beneath the TITLE and above
each logical page of output. In an HTML file, there is a logical page delineated by the gray horizontal rule
line that appears between each BY-group's table. In RTF and PDF files, there would be a physical page
between the tables.

When you use the PAGE option in the BREAK statement, you take advantage of PAGE processing,
whereby PROC REPORT inserts a page break between the GROUP or ORDER variables. PROC
REPORT puts a logical break in HTML output and a physical page break in RTF and PDF output. In the
following code, the BY statement was removed and the PAGE option was used instead (Note that only
the changes from the previous program are shown.)

proc report data=shoes spanrows;

 ** same WHERE statement for 2 regions and 3 products**;

 title 'Ex 1d) COMPUTE BEFORE/AFTER _PAGE_';

 ** same code as previous **;

 break after region/summarize page;

 ** same code as previous **;

run;

When you review Output 10, you will see that only the BREAK statement is executed for every value of
the GROUP item, REGION. In addition, the RBREAK statement is correctly executed one time at the end
of the report, and the grand total appears on a logical page by itself.

Output 10: Results with the PAGE Option in the BREAK Statement

One final modification will add a simple COMPUTE block to the code. But this time, instead of calculating
a new variable, the desired change will be to have "Asia Total", "Canada Total", and "Grand Total" as the

14

values that are displayed in the REGION cell on the summary line. This means that we want to add a
simple COMPUTE block for REGION to our previous code with the PAGE option.

 compute region;

 if upcase(_break_) = 'REGION' then do;

 region = catx(' ',region, 'Total');

 end;

 else if _break_ in ('_RBREAK_') then do;

 region = 'Grand Total';

 end;

 endcomp;

Note how the CATX function is used to concatenate the value of REGION with the string 'Total'. At the
RBREAK value for the _BREAK_ automatic variable, the value that is assigned to REGION will be
'Grand Total' (instead of the usual blank value), as shown in Output 10). The point of this example is that
you can use a COMPUTE block to alter the value that is displayed for an existing report item and that is
based on a variable. Under usual circumstances, you would not alter the data cells on the report rows.
But changing the value that is displayed at a break is one of the most common reasons for using a
COMPUTE block to assign a new value to an item on the BREAK or RBREAK location.

The results of using the simple COMPUTE target are shown in Output 11.

Output 11: Adding a COMPUTE REGION Block to Change the Summary Line

15

The next example will explore COMPUTE BEFORE and COMPUTE AFTER without using the _PAGE_
value as the target location.

EXAMPLE 2: COMPUTE BEFORE/AFTER

If you refer back to Output 6, the type of breaks in this section will be the ones numbered 2 and 5. The
biggest difference is that the COMPUTE BEFORE _PAGE_ text is placed above the column headers, but
the text from the COMPUTE BEFORE is beneath the column headers. This placement of COMPUTE
BEFORE text makes this type of COMPUTE block fall out of favor quickly. Most people tend to use
COMPUTE AFTER more than COMPUTE BEFORE. To show what will happen with COMPUTE BEFORE
and COMPUTE AFTER, consider this code:

 proc report data=shoes spanrows;

 title 'Ex 2a) COMPUTE BEFORE/AFTER with LINE';

 column region product sales returns Profit inventory PctInv ;

 define region / group;

 define product / group;

 define profit / computed f=dollar14.;

 define pctinv / computed f=percent9.2;

 break after region/summarize;

 rbreak after / summarize;

 compute pctinv;

 profit = sum(sales.sum,-1*returns.sum);

 pctinv = sales.sum / inventory.sum;

 endcomp;

 compute before / style=Header{fontweight=bold fontsize=18pt};

 line "Shoe Zoo: We've got everything from boots to bunny slippers!";

 endcomp;

 compute after / style=Header{fontweight=bold fontsize=18pt};

 line "Shoe Zoo: We've got everything from boots to bunny slippers!";

 endcomp;

 run;

This program uses the same WHERE statement as the previous example to filter the data for two regions
and three products. The results are shown in Output 12. In the output, the LINE output from the
COMPUTE BEFORE statement looks out of place when it is between the column headers and the first
report row. But the COMPUTE AFTER text looks identical to the Output 8 results for the COMPUTE
AFTER _PAGE_ location.

Output 12: Using COMPUTE BEFORE and COMPUTE AFTER without _PAGE_

16

A useful feature of COMPUTE AFTER is the ability to insert custom rows of information, based on the
data. What if you wanted to see the overall averages for all the regions that appeared on the report,
whether there were two regions or ten regions? What if you still wanted the grand total break line to
appear at the bottom of the report rows?

Both types of break information can be added to the report. But to do this, you'll need to modify the code
slightly. To start, the report will need some helper variables, which declared as alias items in the
COLUMN statement:

 column region product sales returns Profit inventory PctInv

 sales=salesmn returns=retmn inventory=invmn;

In this COLUMN statement, the variables for SALES, RETURNS, and INVENTORY are used a second
time on the report and are assigned aliases because the MEAN statistic will be requested for each of
these three items. The results that are created with this revised COLUMN statement appear in Output 13.

Each of these three report items has been defined as an analysis item with a statistic of MEAN. Then the
NOPRINT option has also been specified in each DEFINE statement to prevent the columns from
appearing on the final report, but still allowing their values to be used in the COMPUTE AFTER break
processing. Only the changed code or the new code is shown for this program, as follows:

 ods escapechar='^';

 proc report data=shoes spanrows;

 column region product sales returns Profit inventory PctInv

 sales=salesmn returns=retmn inventory=invmn;

 *** same code as previous program ***;

 define salesmn / mean noprint;

 define retmn / mean noprint;

 define invmn / mean noprint;

 break after region/summarize;

 rbreak after / summarize style=Header;

 *** same COMPUTE block for PCTINV ***;

 compute after / style=Header{just=l fontweight=bold fontsize=14pt};

 region = 'All Regions';

 cinv = left(put(invmn,dollar10.));

 csal = left(put(salesmn,dollar10.));

 cret = left(put(retmn,dollar10.));

 line "^{style[textdecoration=underline]Averages for These Regions}";

 line "Inventory: " cinv $varying50.;

 line "Sales: " csal $varying50.;

 line "Returns: " cret $varying50.;

 endcomp;

 run;

Notice how the text "All Regions" has been assigned to the value for REGION at the report break. In
addition, the style for the summary line is set to a header in the RBREAK statement.

In the COMPUTE AFTER statement, the style of the COMPUTE AFTER line text is changed after the
slash (/). A default value of Header is specified for these lines, with overrides for the justification, font
weight, and font size attributes. Underlining for the text "Averages for These Regions" was accomplished
through the use of ODS ESCAPECHAR syntax and the TEXTDECORATION style attribute.

Finally, temporary character variables are created to be formatted character versions of the SALESMN,
RETMN, and INVMN aliases. The character strings that result from the PUT function are left-justified so
that, when written to the results file, the formatted dollar values will be padded on the right with blanks
instead of being padded on the left.

The benefit of using the aliases and the NOPRINT techniques means that a prior summarization step with
PROC MEANS or PROC TABULATE is not necessary in order to calculate the averages for the final LINE

17

statements. Because the summary values for the aliases are available at the COMPUTE AFTER location,
they can be written, formatted, or used in other calculations, at the end of the report, as desired.

Output 13: Using COMPUTE AFTER with Customized Text

Here is one final note about using COMPUTE AFTER and either BY-group processing or PAGE
processing in the BREAK statement. Consider this BREAK statement:

 break after region / summarize page;

The COMPUTE AFTER line output will appear only one time on the report: at the end of the report on a
logical page by itself. However, with BY-group processing, every BY group is treated as a complete entity,
which means that for every BY group, the COMPUTE AFTER line output will appear at the bottom of the
BY group, as shown in Output 9. This is useful information to keep in mind when you are trying to decide
whether to use PAGE or BY.

Next, we'll move to a discussion about the most commonly used form of BREAK processing and how to
write extra lines with a target-variable that is used with both COMPUTE BEFORE and COMPUTE
AFTER.

EXAMPLE 3: COMPUTE BEFORE AND COMPUTE AFTER TARGET-VARIABLE

When you use a target variable in your COMPUTE statement, you must also have defined the target
variable as either a GROUP or ORDER usage. Break processing before or after a report group in PROC
REPORT requires one of these usages. If you do not specify a usage for a character variable, the default
is DISPLAY. Consider this combination of code in a full program

 define region / display noprint;

 define region / noprint;

 compute before region;

 compute after region;

You would get an error message in the log, as shown in Output 14. To avoid this error, I always
recommend that you explicitly list a usage for your DEFINE statements instead of taking the default.
Considering usage (DISPLAY, ORDER, GROUP, ACROSS, COMPUTED)and explicitly coding the

18

default or an alternative usage indicates that you've planned your report and that you understand the
impact of usage on the resulting report. It also indicates that you understand the options for BREAK
processing and COMPUTE processing that are available for that program.

Output 14: Log Displays Error Message with Wrong Usage

So consider this code that uses REGION appropriately as a GROUP item on the report:

 proc report data=shoes spanrows

 style(summary)=Header;

 column region product sales returns Profit inventory PctInv ;

 define region / group noprint;

 define product / group;

 define profit / computed f=dollar14.;

 define pctinv / computed f=percent9.2;

 break after region/summarize;

 rbreak after / summarize;

 compute pctinv;

 profit = sum(sales.sum,-1*returns.sum);

 pctinv = sales.sum / inventory.sum;

 endcomp;

 compute before region/

 style=Header{just=l fontweight=bold fontsize=12pt};

 length brkline $100;

 brkline = catx(' ','Region: ',region);

 line brkline $varying100.;

 endcomp;

 run;

Results are shown in Output 15: Notice how the COMPUTE block for REGION is executed before the first
report row of the group is placed on the report. The COMPUTE BEFORE statement for the first group will
always appear between the column headers and the first row of the group. In this case, in addition to
being declared as a GROUP usage, the REGION variable is declared as a NOPRINT item, as well. This
means that REGION can be used, such as to create the temporary report variable BRKLINE, but the
REGION value will not be displayed on every report row. The temporary variable BRKLINE is used in the
COMPUTE block to hold the string "Region: Asia" or "Region: Canada", which will be displayed at the top

19

of each REGION group. Notice that a LENGTH statement is used to explicitly set the length of the
temporary variable. Since we do not know what the length of each region is, ahead of time, it is
considered a best practice to provide a LENGTH statement for any character variables that are used as
temporary variables in PROC REPORT Compute blocks.

Output 15: Results with COMPUTE BEFORE REGION Using a Target Variable

Because the PROC REPORT statement had a style override for the SUMMARY location on the report,
both of the subtotal rows and the grand total row are given the same style characteristics as the column
headers. The custom line above the group comes from the COMPUTE BEFORE REGION COMPUTE
block and the LINE statement. The subtotal and grand total rows come from the BREAK AFTER REGION
statement. At this point, COMPUTE AFTER is not being used.

The next example will introduce COMPUTE AFTER REGION to the report. When PROC REPORT was
originally written for the LISTING destination, the BREAK statement used a SKIP option to insert a blank
line between each GROUP or ORDER section on the report. However, the SKIP option is not supported
by ODS destinations such as RTF, PDF, or HTML. Instead, the method that is used to replicate the SKIP
behavior for all destinations, except LISTING, is the COMPUTE AFTER target-variable construct. Here is
an example:

 compute after region/ style=Header;

 line ' ';

 endcomp;

The results of this COMPUTE AFTER block, in conjunction with the BREAK statement, produces the
same output as SKIP for the LISTING destination. In the code, the COMPUTE BEFORE block was
changed as well. Instead of putting "Region:" in front of the value for each region, you can use a simple
LINE statement to write out the value of REGION at the break with this code:

 compute before region/

 style=Header{just=c fontweight=bold fontsize=12pt};

 line region $varying100.;

 endcomp;

The results of using this code that was changed from the previous program is shown in Output 16.

20

Output 16: COMPUTE AFTER Inserts Blank Line between Groups

How do you feel about the blank line between the “Canada Total" and the “Grand Total” row? Some
people like it. Some people don't like it. Output 16 shows how you can replicate the SKIP behavior if you
want.

Output 17 shows that it is possible to suppress LINE output when you want to do that. The key to
suppressing LINE output is to understand that PROC REPORT always writes LINE output. It does not
execute LINE statements conditionally. But when you tell PROC REPORT to write the LINE with a
formatted length of 0, PROC REPORT is smart enough to suppress writing the LINE. This is
accomplished for Output 17.

Output 17 uses the same WORK.SHOES subset for Asia and Canada as the previous example. In this
subset of the data, the only blank line to be suppressed is the one for the Canada group, which is the last
group. This means that for Canada rows, when break processing happens, the length of the line needs to
be assigned a value of 0. This changed code will accomplish that goal:
 proc report data=shoes spanrows

 style(summary)=Header;

 *** column and define statements same as previous code ***;

 *** compute block for pctinv same as previous code ***;

 break after region/summarize;

 rbreak after / summarize;

 compute before region/

 style=Header{just=c fontweight=bold fontsize=12pt};

 line region $varying100.;

 brktxt = ' ';

 if region = 'Canada' then reglg = 0;

 else reglg = 1;

 endcomp;

 compute after region/ style=Header;

 line brktxt $varying. reglg;

 endcomp;

21

 compute product;

 if upcase(_break_) = 'REGION' then product=catx(' ',region,'Total');

 else if _break_ = '_RBREAK_' then product = 'Grand Total';

 endcomp;

 run;

Notice how COMPUTE BEFORE REGION is doing some extra work. Although the LINE statement is the
same as shown previously, there are some added statements in the COMPUTE block that test the value
of REGION. First, the temporary variable, BRKTXT, is created to hold the single blank. Then, the value of
REGION is tested. If the value of REGION is CANADA, which is the last REGION for this subset, then the
length of the temporary variable, REGLG, is assigned a value of 0. Otherwise, the temporary variable,
REGLG, is assigned a length of 1. For this program, the test for the last REGION value was hardcoded.
But SAS macro programmers know that you can create a macro variable to test the value instead.

In the program that produced Output 16, the $VARYING format was used with a hard-coded length of 100
($VARYING100.). The syntax for the $VARYING format allows you to provide a length that can be
considered a "maximum number of characters" (such as 100), when you always want to write a value, but
are not sure ahead of time what the maximum length of the variable is. However, you can also provide a
variable name with $VARYING., as shown above. This gives you more flexibility to control the length of
what is written at the break point and even more flexibility because a length variable with a value of 0 will
cause the LINE statement output to be suppressed.

Notice how the COMPUTE AFTER REGION block is now simplified. The LINE statement will always
execute after the BREAK has been performed for REGION. But since the text and the length of the text
were set in the COMPUTE BEFORE REGION block, the COMPUTE AFTER REGION needs a LINE
statement along with the $VARYING. format and the REGLG variable for providing the length to write. As
described, if the length to write is 0, then the LINE output will be suppressed. Notice that the LINE output
spans the width of the entire table. The ODS destinations, except LISTING, do not provide accurate
alignment of information beneath specific columns because they use proportional fonts to write output.
Also, LINE commands with pointer controls such as @15 or @30 are impractical because they do not act
the same for proportionally spaced fonts as they do for the LISTING destination.

Output 17: Suppressing LINE Statement Output

22

The last piece of business is to add some identifying text on the summary lines. In Output 13, this was
done in the COMPUTE AFTER block. However, in Output 17, it looks better with the text for PRODUCT
changed to be either “Asia Total” or “Canada Total” for the BREAK AFTER REGION rows and if the text
for PRODUCT was changed to “Grand Total” for the RBREAK AFTER row. Both changes are
accomplished in the COMPUTE block for PRODUCT with a test for the value of _BREAK_, which is the
automatic variable that PROC REPORT creates when BREAK processing is performed in a PROC
REPORT step. Just remember that the length of the variable that is assigned a value, in this case,
PRODUCT, must be wide enough to accommodate the text string for display at the breakpoint.

The ability to create a temporary report variable in the COMPUTE BEFORE target-variable in the
COMPUTE block opens up more possibilities for reporting than what was illustrated in Output 17.
Because these temporary variables retain their values until you reset the values, more complex break
processing is possible. The next section shows some examples that use temporary variables.

EXAMPLE 4: MORE COMPLEX BREAK PROCESSING

What if the desired report uses data-driven information at a break? For example, you need to generate a
summary report showing sales for each PRODUCT and REGION. But for every region, you need to write
a summary line that essentially highlights the top product that is sold for the region. One way to approach
this task would be to presummarize the data using PROC MEANS or PROC SQL and then to create
macro variables for the top product for each region. There is no need to do this preprocessing if you tap
into the power of the COMPUTE block and the ability to use temporary variables.

Consider this code:

proc report data=shoes spanrows

 style(summary)=Header;

 *** same COLUMN and DEFINE statements as previous ***;

 break after region/summarize;

 rbreak after / summarize;

 compute pctinv;

 profit = sum(sales.sum,-1*returns.sum);

 pctinv = sales.sum / inventory.sum;

 endcomp;

 compute before region /

 style=Header{just=l fontweight=bold fontsize=12pt};

 topprod = .;

 thisregion = region;

 line Region $varying100.;

 endcomp;

 compute sales;

 if _break_ = ' ' then do;

 if sales.sum gt topprod then do;

 topprod = sales.sum;

 holdprod = Product;

 end;

 end;

 endcomp;

 compute product;

 if upcase(_break_) = 'REGION' then product=catx(' ',region,'Total');

 else if _break_ = '_RBREAK_' then product = 'Grand Total';

 endcomp;

 compute after region /

 style=Header{just=l fontweight=bold fontsize=12pt};

 brkline=catx(' ','Top Product for', thisregion, 'is',holdprod,

 'with sales of',put(topprod,dollar14.));

23

 line brkline $varying100.;

 line ' ';

 endcomp;

run;

Partial output is shown in Output 18. In the COMPUTE BEFORE REGION block, the temporary variable
TOPPROD is initialized to missing at the start (BEFORE) of each region. TOPPROD will hold the highest
SALES amount for one PRODUCT for this region. HOLDPROD will hold the name of the PRODUCT with
the highest sales. So, in the COMPUTE SALES block, the current value of SALES.SUM is compared to
the retained value of TOPPROD. The comparison is done only on the report rows that are based on data
rather than on the BREAK rows. If the value for SALES.SUM on the current report row is greater than the
currently held value for TOPPROD, then the name of the Product on this report row is assigned to
another temporary variable called HOLDPROD. The test for the _BREAK_ variable prevents the grand
total or the region total from being considered the highest value.

This comparison will be done on every product for a single region. By the end of the group for one region,
the variable TOPPROD will hold the highest SALES value, and the variable THISREGION will hold the
name of the current REGION group that is being processed and HOLDPROD will hold the name of the
highest PRODUCT sales for this region. This is the information that is used in the COMPUTE AFTER
REGION block when the temporary BRKLINE is created using the CATX function. Once the BRKLINE
variable is created, the last thing that happens in the COMPUTE AFTER REGION block is the LINE
statement for BRKLINE and the LINE statement put a blank line beneath the custom text under the
REGION summary.

Output 18: Custom Break Line Added after Each Region

24

Throughout this paper, so far, the PCTINV report item has been a COMPUTED item with a custom
percentage. Although PROC TABULATE wins the award for having the most choices for calculating
percents, PROC REPORT runs a close second because PROC REPORT supports the PCTN and
PCTSUM statistics. But the ability to perform custom calculations enables you to generate values, such
as custom percentages or the percent of a group.

Before jumping into a custom calculation for a percent, let's see the code that uses PCTSUM as the
statistic for a numeric variable:

 proc report data=pctshoes nowd spanrows

 style(summary)=Header;

 column region product Sales Sales=psal;

 define region / group 'Region' f=$25.

 style(column)=Header;

 define product / group 'Product';

 define Sales / sum 'Sales' f=comma14.;

 define psal / pctsum 'Percent of Report Total' f=percent9.2;

 break after region / summarize;

 rbreak after / summarize;

 compute sales;

 if upcase(_break_) in ('REGION' '_RBREAK_') then do;

 call define(_col_,'format','dollar15.');

 end;

 endcomp;

 run;

This code is very straightforward. The alias item, PSAL, uses SALES a second time on the report,
requesting the PCTSUM statistic for the column. PROC REPORT does not multiply percents by 100, so
the regular PERCENT format is specified for that column. The COMMA14. format is used for the SALES
column, but a CALL DEFINE statement changes the format to a DOLLAR format in the BREAK lines.

Output 19: Results Using PCTSUM for the SALES Variable

25

If you want to show two percents on the report, you use the simple PCTSUM, as shown in Output 19, as
well as the percent of the REGION. This means that on every row, the SALES value needs to be divided
by the REGION group's total sales. Again, temporary variables will help do this calculation.

Here's the code that illustrates how to calculate the percents in a custom COMPUTE block:

 proc report data=pctshoes nowd spanrows

 style(summary)=Header;

 title 'Ex 4c1) Percent PROC REPORT';

 title2 'Calculated with Temporary Variables';

 column region product Sales PctGrp Sales=psal;

 define region / group 'Region' f=$25.

 style(column)=Header;

 define product / group 'Product';

 define Sales / sum 'Sales' f=comma14.;

 define pctgrp / computed 'Percent of Region' f=percent9.2;

 define psal / pctsum 'Percent of Total' f=percent9.2;

 break after region / summarize;

 rbreak after / summarize;

 compute before region;

 grptot=Sales.sum;

 endcomp;

 compute PctGrp;

 PctGrp=Sales.sum / grptot;

 endcomp;

 compute sales;

 if upcase(_break_) in ('REGION' '_RBREAK_') then do;

 call define(_col_,'format','dollar15.');

 end;

 endcomp;

 compute after;

 PctGrp = .;

 region = 'Overall Report';

 endcomp;

 run;

In this code, there are only a few changes that are needed in order to calculate the custom percent of
each sale for a region. In a COMPUTE BEFORE REGION block, a temporary variable named GRPTOT is
created and is assigned the summary value for SALES.SUM. Because PROC REPORT summarizes the
data before it starts writing the report rows, the summary for each REGION is available at the beginning
of the group rows and at the end of the group rows, too.

Next, there is a COMPUTE block for the PCTGRP report item, which appears in the COLUMN statement
and also in the DEFINE statement with a usage of COMPUTED. The value for PCTGRP is calculated as
the SALES.SUM divided by the temporary variable GRPTOT.

In the COMPUTE SALES block, a CALL DEFINE statement will override the default format for the SALES
value. On most of the report rows, the COMMA14 format will be used. But for the summary rows, which
are identified by testing the automatic _BREAK_ variable, the format will be changed to the DOLLAR15
format. This provides the flexibility to have one format for most of the rows, and then to change the format
at the BREAK location according to some other criterion.

On the "grand total" row or on the final row written by the RBREAK statement, the value for REGION,
which is normally a blank for the RBREAK row, will be "Overall Report". Also, the PCTGRP column will be

26

assigned a missing value. The MISSING=' ' system option was set before this code ran, and so instead of
seeing a '.' on the final row for PCTGRP, the cell just appears as a blank, as shown in Output 20. If
PCTGRP were not assigned a missing value, the calculation for PCTGRP would be performed at the end
of the report, resulting in an undesirable percentage value, as shown in Output 21.

Output 20: Custom Percent of GROUP Variable

Output 21: Final Row without Adjustment Shows Undesirable Percent

In the ZIP file of programs for this paper, you will find a bonus program in the Example 4 code that
includes a comment on every row to show that the correct value of GRPTOT is being used to divide the
value for SALES.SUM on every row, as shown in Output 22 for the Canada region.

Output 22: Bonus Program Shows Exactly How PCTGRP Is Calculated

27

EXAMPLE 5: MULTIPLE BREAK LINES

One of the limitations of the technique shown in Output 13 is that the LINE statement output spans the
entire table and is not in columnar format. Sometimes you need to add extra information into break lines,
but you want to see the report data aligned in columns and you want to control the extra lines.

The concept of using helper variables to insert extra break lines has already been discussed in other
papers. Allison McMahill Booth had an example in her 2007 paper, which is listed in the References
section.

For every extra summary line to be added to the report, you need a helper variable that is available for
break processing. If you want four extra summary lines, as shown in Output 23, you need four helper
variables. The following DATA step program contains four helper variables:

data newshoes;

 set shoes;

 brka = '1';

 brkb = '2';

 brkc = '3';

 brkd = '4';

 output;

run;

The value of these variables will be the same for all the rows in the input data, assuming that you want to
have the extra summary lines only at the bottom of the report. Standard BREAK statements will be used
in the PROC REPORT code, and since the values are the same for all the observations, the BREAK
AFTER processing will execute only one time for each helper variable. The code is similar to the code
that produced Output 13. The following code contains the relevant statements. Refer to the ZIP file for the
complete program:

proc report data=newshoes spanrows;

 column brka brkb brkc brkd

 region product sales returns Profit inventory PctInv

 sales=salescnt sales=salesmn returns=retmn inventory=invmn;

 define brka / group noprint;

 define brkb / group noprint;

 define brkc / group noprint;

 define brkd / group noprint;

 *** DEFINE for Region, Product, Profile, PctInv same as previous **;

 define salescnt / N "Sales Count" f=comma6. noprint;

 define salesmn / mean "Avg Sales" noprint;

 define retmn / mean "Avg Returns" noprint;

 define invmn / mean "Avg Inventory" noprint;

 break after region/summarize style=Header;

 break after brka / summarize style=Header;

 break after brkb / summarize style=Header;

 break after brkc / summarize style=Header;

 break after brkd / summarize style=Header;

 rbreak after / summarize style=Header;

 compute region;

 if upcase(_break_) = 'BRKD' then Region = 'Count of Sales';

 else if upcase(_break_) = 'BRKC' then Region = 'Avg Sales';

 else if upcase(_break_) = 'BRKB' then Region = 'Avg Returns';

 else if upcase(_break_) = 'BRKA' then Region = 'Avg Inventory ';

 endcomp;

 compute after region;

 brkline = ' ';

 if region = 'Canada' then lgbrk = 1;

 else lgbrk = 0;

28

 line brkline $varying. lgbrk;

 endcomp;

 compute invmn;

 if upcase(_break_) = 'BRKD' then product = put(salescnt,comma6.);

 else if upcase(_break_) = 'BRKC' then product = put(salesmn,dollar14.);

 else if upcase(_break_) = 'BRKB' then product = put(retmn,dollar14.);

 else if upcase(_break_) = 'BRKA' then product = put(invmn,dollar14.);

 if upcase(_break_) in ('BRKA', 'BRKB', 'BRKC', 'BRKD') then do;

 sales.sum=.;

 pctinv = .;

 profit = .;

 returns.sum=.;

 inventory.sum = .;

 call define('product','style','style=Header{just=r}');

 end;

 endcomp;

run;

Without the extra COMPUTE blocks, the BREAK statements for BRKA, BRKB, BRKC and BRKD will
produce the same numbers as shown on the RBREAK summary line. This means that the values for the
alias analysis (NOPRINT) variables must be moved into the correct cells on the new summary lines.

Remember the left-to-right rule of PROC REPORT. The COMPUTE block for PRODUCT or REGION
cannot access the values for the four alias variables SALESCNT, SALESMN, RETMN, and INVMN. But a
COMPUTE block for INVMN can access all the values that appear to its left in the COLUMN statement.

Output 23: Using Helper Variables to Add Extra Summary Lines

In the COMPUTE block for REGION, the identifying label for each summary is assigned based on the
value of the automatic _BREAK_ variable. Then, in the COMPUTE block for INVMN, a PUT function is
used to write the alias column values into the PRODUCT cell on every row. But the other visible cells on
these four rows are assigned a value of missing so that the duplicated values do not appear. Finally, a
CALL DEFINE statement changes the justification of the four PRODUCT cells to right-justified.

29

To place a single blank line between the summary for Canada and the extra summary lines, the
technique of setting a variable, in this case, LGBRK, to 0 is used in the COMPUTE AFTER REGION
block. The BRKLINE temporary variable is set to a blank value, and the temporary variable LGBRK is
assigned a value of 0 for every REGION value except for Canada. This has the effect of displaying only
one blank line as a separator, where desired.

Notice that BRKA is the first variable that is listed in the COLUMN statement, but it is the last BREAK line
that is inserted before the RBREAK line. In a similar manner, BRKD is the final helper variable that is
listed in the COLUMN statement, but it is the first of the four BREAK lines that is inserted after the last
REGION.

To understand how this works, all you have to do is remove the NOPRINT option from the DEFINE
statements, as illustrated by the results shown in Output 24.

Output 24: Results Displaying All Values Including the NOPRINT Items

There are other features of PROC REPORT, such as the CALL DEFINE and STYLE overrides, that were
used in this paper, but were not emphasized in great detail. I hope this paper has motivated you to learn
more about how PROC REPORT can help you generate production-quality reports.

CONCLUSION

Don't break up with BREAK processing and the COMPUTE block! Once you understand the "breakdown"
of the relationship between BREAK and RBREAK processing and the ability of the COMPUTE block to
write custom text and use temporary variables, the COMPUTE block will become one of the most useful
techniques in your SAS and PROC REPORT toolbox. The ZIP file with all the programs used in this paper
will be available for download from the SAS Global Forum 2017 website.

REFERENCES

Booth, Allison McMahill. 2010. "Evolve from a Carpenter’s Apprentice to a Master Woodworker: Creating
a Plan for Your Reports and Avoiding Common Pitfalls in REPORT Procedure Coding." Proceedings of
the SAS Global Forum 2010 Conference. Cary, NC: SAS Institute Inc.
Available http://support.sas.com/resources/papers/proceedings10/133-2010.pdf.

Booth, Allison McMahill. 2011. "Beyond the Basics: Advanced REPORT Procedure Tips and Tricks
Updated for SAS® 9.2." Proceedings of the SAS Global Forum 2011 Conference. Cary, NC: SAS Institute
Inc.
Available http://support.sas.com/resources/papers/proceedings11/246-2011.pdf.

Booth, Allison McMahill. 2012. "PROC REPORT Unwrapped: Exploring the Secrets behind One of the
Most Popular Procedures in Base SAS® Software." Proceedings of the Pharmaceutical Industry 2012

http://support.sas.com/resources/papers/proceedings10/133-2010.pdf
http://support.sas.com/resources/papers/proceedings11/246-2011.pdf

30

SAS Users Group Conference. Cary, NC: SAS Institute Inc.
Available http://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF20-SAS.pdf.

Booth, Allison McMahill. 2007. "Beyond the Basics: Advanced PROC REPORT Tips and Tricks."
Proceedings of the SAS Global Forum 2007 Conference. Cary, NC: SAS Institute Inc.
Available http://support.sas.com/rnd/papers/sgf07/sgf2007-report.pdf.

Eslinger, Jane. 2015. "The REPORT Procedure: A Primer for the Compute Block." Proceedings of the
SAS Global 2015 Conference, Cary, NC: SAS Institute Inc.
Available https://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf.

Zender, Cynthia L. 2008. "Creating Complex Reports." Proceedings of the SAS Global Forum 2008
Conference. Cary, NC: SAS Institute Inc.
Available http://www2.sas.com/proceedings/forum2008/173-2008.pdf.

Zender, Cynthia L., and Allison M. Booth. 2013. "Turn Your Plain Report into a Painted Report Using
ODS Styles." Proceedings of the SAS Global Forum 2013 Conference. Cary, NC: SAS Institute Inc.
Available http://support.sas.com/resources/papers/proceedings13/366-2013.pdf.

Zender, Cynthia L. 2014. "Paper SAS388-2014, Sailing Over the ACROSS Hurdle in PROC REPORT."
Proceedings of the SAS Global Forum 2014 Conference. Cary, NC: SAS Institute Inc.
Available http://support.sas.com/resources/papers/proceedings14/SAS388-2014.pdf.

ACKNOWLEDGMENTS

The author wishes to thank Michele Ensor, Jane Eslinger, Chevell Parker, and Bari Lawhorn who
generously reviewed the paper. Thanks are also due to the paper editor, Vicki Leary, who improved the
readability of this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Cynthia Zender
SAS Institute Inc.
Cynthia.Zender@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.pharmasug.org/proceedings/2012/TF/PharmaSUG-2012-TF20-SAS.pdf
http://support.sas.com/rnd/papers/sgf07/sgf2007-report.pdf
https://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf
http://www2.sas.com/proceedings/forum2008/173-2008.pdf
http://support.sas.com/resources/papers/proceedings13/366-2013.pdf
http://support.sas.com/resources/papers/proceedings14/SAS388-2014.pdf

