
Paper SAS420-2017

More Than Matrices: SAS/IML® Software Supports New Data Structures

Rick Wicklin, SAS Institute Inc.

ABSTRACT

The SAS/IML® language excels in handling matrices and performing matrix computations. A new feature in SAS/IML
14.2 is support for nonmatrix data structures such as tables and lists.

In a matrix, all elements are of the same type: numeric or character. Furthermore, all rows have the same length. In
contrast, SAS/IML 14.2 enables you to create a structure that contains many objects of different types and sizes. For
example, you can create an array of matrices in which each matrix has a different dimension. You can create a table,
which is an in-memory version of a data set. You can create a list that contains matrices, tables, and other lists.

This paper describes the new data structures and shows how you can use them to emulate other structures such as
stacks, associative arrays, and trees. It also presents examples of how you can use collections of objects as data
structures in statistical algorithms.

INTRODUCTION

Prior to SAS/IML 14.2, the matrix was the only data type for SAS/IML computations. A matrix is a rectangular data
type that contains n rows and m columns. Vectors (n D 1 or m D 1) and scalars (n D m D 1) are special cases of
matrices.

Matrices arise naturally in all areas of multivariate statistics and are used in statistical computations such as
optimization, linear algebra, and simulation. However, for storing data, two-dimensional matrices have some limitations:

� A matrix must contain either all numeric or all character values. You cannot create a matrix in which one column
has numeric values and another column has character values.

� A matrix is a fixed size. If you want to insert a new column into an existing matrix, you need to allocate a new
larger matrix and copy the old and new data into the larger matrix.

� Each column (and row) of a matrix contains the same number of elements. You cannot create a matrix in which
one column contains four elements and another contains forty.

� A matrix is inherently two-dimensional. For some applications you might want to create an array of matrices.

� A matrix is not an ideal structure for representing hierchical or nested data.

Beginning with SAS/IML 14.2, you can create new nonmatrix data structures. One new structure is a data table (also
called simply a table), which is an in-memory version of a data set. A table is a rectangular data structure, but it can
hold both numerical and character data. You can efficiently add new columns to tables without reallocating memory
and copying the old data. You can create a table from a SAS® data set or from a SAS/IML matrix.

SAS/IML 14.2 also supports lists. The objects in a list can be of different sizes and types. A list can contain disparate
data such as numeric matrices, character matrices, tables, and other lists. Lists are a convenient way to store related
or hierachical data.

In this paper, the word “variable” can have several meanings. To avoid confusion, this paper uses the following
conventions and shows the font used for each term:

� A variable is a column in a data set.

� A column is a column in a SAS/IML table.

� A symbol is the name of any SAS/IML matrix, vector, or table.

� A dynamic variable is a symbol that is named in the DYNAMIC statement in the TEMPLATE procedure.

1

DATA TABLES IN THE SAS/IML LANGUAGE

Tables are a convenient way to store mixed-type data and to pass data to built-in and user-defined functions. Tables
are rectangular, but they do not support algebraic operations. For example, you cannot add two tables together, even
if all the columns of the table are numeric.

CREATE A TABLE FROM A SAS DATA SET

You can use the new TableCreateFromDataSet function to create an in-memory table directly from a SAS data set.
The following statements read the Sashelp.Class data set into a table:

proc iml;
tClass = TableCreateFromDataSet("Sashelp", "Class");

The tClass symbol is the name of a SAS/IML table. The symbol can be passed as an argument to any SAS/IML
function that supports tables. For example, you can use the NROW and NCOL functions in SAS/IML to retrieve the
number of rows and columns, respectively, for the tClass table:

nrow = nrow(tClass);
ncol = ncol(tClass);
print nrow ncol;

These statements produce Figure 1.

Figure 1 Number of Rows and Columns for a Table

nrow ncol

19 5

The TableCreateFromDataSet function supports an optional third argument with which you can specify data set options
that filter the data. For example, you can use the DROP=, KEEP=, OBS=, and WHERE= options to restrict data, as
shown in the following statements:

dsOpt = "drop=Name rename=(Weight=Mass) where=(Sex='M')";
tBoys = TableCreateFromDataSet("Sashelp", "Class", dsOpt); /* filter data */

Because of the WHERE= option, the tBoys table contains only male students. Because of the DROP= option, the
table does not contain the Name variable. Because of the RENAME= option, the Weight variable is renamed to
Mass.

In a similar way, the TableWriteToDataSet subroutine creates a SAS data set from an in-memory table. The subroutine
supports an optional argument with which you can specify data set options.

EXTRACT AND ADD DATA COLUMNS

A powerful feature of the SAS/IML table is that you can use the TableAddVar subroutine to efficiently add new columns
of data to the table. You can use the TableGetVarData function to extract one or more columns from the table into a
matrix.

For example, the following statements create a data table from the Sashelp.Class data set, extract the Weight and
Height variables into vectors, and apply a standard formula to compute the body mass index (BMI) for each student in
the data. The BMI values are then added to the table as a new column.

/* Compute BMI from the Height and Weight vars */
X = TableGetVarData(tClass, {"Weight" "Height"});
weight = X[,1]; height = X[,2];
BMI = weight / height##2 * 703; /* standard formula */
call TableAddVar(tClass, "BMI", BMI); /* add "BMI" col to tClass */

As indicated by the example, the TableGetVarData function takes two arguments: a table and a vector of column
names. The return value is a SAS/IML matrix. Similarly, the TableAddVar subroutine takes three arguments: a table, a
vector of column names, and a SAS/IML matrix that contains the data.

2

GET AND SET ATTRIBUTES OF VARIABLES

SAS/IML provides many functions that you can use to obtain attributes of columns in a table. Most functions return a
row vector that provides information about the columns, such as names, labels, and types (character or numeric).
For example, suppose that you create a table from the Sashelp.Cars data set and you want to obtain attributes of
some of the variables. In Base SAS® software, you can use the CONTENTS procedure to discover the type, format,
and label of each variable. In SAS/IML, you can call functions that provide the same information, as shown by the
following example:

tCars = TableCreateFromDataSet("Sashelp", "Cars"); /* create table */
varNames = {"Origin" "Invoice" "EngineSize" "MPG_City"}; /* column names */
Type = TableGetVarType(tCars, varNames); /* get types */
Format = TableGetVarFormat(tCars, varNames); /* get formats */
Label = TableGetVarLabel(tCars, varNames); /* get labels */
Attribs = Type // Format // Label; /* vertical concatenation */
print Attribs[colname=varNames rowname={"Type" "Format" "Label"}];

Figure 2 shows attributes for four variables. The output shows that three variables are numerical, one has a format,
and two have labels.

Figure 2 Attributes of Variables

Attribs

Origin Invoice EngineSize MPG_City

Type C N N N

Format DOLLAR8.

Label Engine Size (L) MPG (City)

In a similar way, SAS/IML provides subroutines that enable you to set attributes for columns of a table. For example,
the TableSetVarFormat subroutine sets formats and the TableSetVarLabel subroutine sets labels that are associated
with columns.

PASS TABLES TO MODULES

Tables are ideal for holding the results of statistical computations. The following SAS/IML function computes descriptive
statistics and places the results in a table. The function returns a table of statistics.

proc iml;
/* Compute descriptive statistics for numerical vars in 'tbl'.

Return k x 6 table with statistics */
start DescStats(tbl);

cols = loc(TableIsVarNumeric(tbl)); /* get column numbers */
if ncol(cols)=0 then do; /* no numeric columns in table */

return TableCreate(); /* return an empty table */
end;
vars = TableGetVarName(tbl, cols); /* names of numerical vars */
T = TableCreate("Variable", T(vars));
m = TableGetVarData(tbl, cols); /* extract numeric data into matrix */
N = T(countn(m, "col")); /* compute descriptive stats */
mean = T(mean(m));
std = T(std(m));
min = T(m[><,]);
max = T(m[<>,]);

call TableAddVar(T, "N", N); /* num obs for each column */
call TableAddVar(T, "Mean", mean); /* mean for each column */
call TableAddVar(T, "StdDev", std); /* std dev for each column */
call TableAddVar(T, "Minimum", min); /* minimum for each column */
call TableAddVar(T, "Maximum", max); /* maximum for each column */
call TableSetVarFormat(T, {"Mean" "StdDev"}, {"7.3" "7.3"});
return T;

finish;

3

table = TableCreateFromDataSet("Sashelp", "Class");
stats = DescStats(table); /* stats for each numeric column */

The preceding program demonstrates a few features of tables:

� You can pass tables to user-defined functions. You can also return tables from functions.

� The TableIsVarNumeric function returns a binary vector that indicates which columns in a table are numeric.

� To perform numerical computations, you can use the TableGetVarData function to extract numerical columns
into a matrix.

� You can use the TableSetVarFormat function to set the formats for columns. Those formats are used if you save
or print a table.

PRINT TABLES

SAS/IML supports the TablePrint subroutine for displaying an in-memory table. The previous section creates a table
called stats. If you want to see the contents of the table, call the TablePrint subroutine as follows:

call TablePrint(stats);

Figure 3 shows the output from the most basic usage of the TablePrint subroutine.

Figure 3 Descriptive Statistics for Numeric Columns

stats

Obs Variable N Mean StdDev Minimum Maximum

1 Age 19 13.316 1.493 11 16

2 Height 19 62.337 5.127 51.3 72

3 Weight 19 100.026 22.774 50.5 150

The following list describes a few of the basic options for the TablePrint subroutine. See the SAS/IML User’s Guide for
the complete list.

� The ID= option specifies a column to use as row headers. By default, row numbers are used as row headers.

� The JUSTIFY= option specifies the horizontal alignment (left, center, or right) for each column. By default,
character columns are left-justified and numeric columns are right-justified.

� The LABEL= option specifies a header for the entire table. By default, the subroutine prints the name of the
SAS/IML symbol as the table header.

� The NUMOBS= option specifies the number of rows to print. By default, all rows are printed.

� The VAR= option specifies which columns to print. By default, all columns are printed.

The simplest way to use the options is to specify keyword-value pairs after the TablePrint call but before the semicolon,
as follows. To demonstrate these options, the following statement prints the stats table that was defined earlier.
Notice that keyword-value pairs are used to specify the arguments and that you can specify the arguments in any
order.

call TablePrint(stats) var={"Minimum" "Mean" "Maximum"}
ID="Variable"
label="Descriptive Statistcs"
justify={'R' 'C' 'R' 'C'};

Figure 4 shows the output.

4

Figure 4 Table Printed by Using Options

Descriptive Statistcs

Variable Minimum Mean Maximum

Age 11 13.316 16

Height 51.3 62.337 72

Weight 50.5 100.026 150

PRINT TABLES BY USING A CUSTOM TEMPLATE

For more sophisticated printing, you can specify an ODS template to be used to display the table. You can use a
built-in template from a statistical procedure, or you can define your own template. This section demonstrates how
you can use the TEMPLATE procedure to define and use a custom template. For an introduction to using PROC
TEMPLATE, see Smith (2007, 2013).

Recall that the Sashelp.Class data set includes variables that indicate gender and weight. When you display the
Sashelp.Class data, you might want to highlight males by using a light blue background and females by using a pink
background. Furthermore, you might want to highlight any child who weighs more than 100 pounds by using a light
orange background. The following call to PROC TEMPLATE defines a table template (named CustomColor1) that
uses the CELLSTYLE statement to color cells that satisfy certain criteria:

proc template;
define table CustomColor1;

cellstyle _COL_ = 2 && _VAL_ = "M" as {backgroundcolor=LightBlue},
COL = 2 && _VAL_ = "F" as {backgroundcolor=Pink},
COL = 5 && _VAL_ > 100 as {backgroundcolor=LightOrange};

end;
run;

The following call to the TablePrint subroutine uses the TEMPLATE= option to specify the name of the template to be
used to display the table:

proc iml;
tbl = TableCreateFromDataSet("Sashelp", "Class");
call TablePrint(tbl) numobs=6

template="CustomColor1";

In Figure 5, the cells in the Sex column are colored pink or blue. Cells in the Weight column are colored orange for
students who weigh more than 100 pounds. The table does not have a main header because the template does not
define one.

Figure 5 Color Cells According to Their Values

Name Sex Age Height Weight

Alfred M 14 69 112.5

Alice F 13 56.5 84

Barbara F 13 65.3 98

Carol F 14 62.8 102.5

Henry M 14 63.5 102.5

James M 12 57.3 83

The previous example uses hard-coded values for the colors, but templates also support dynamic variables that can
be specified at run time. The DYNAMIC= option in the TablePrint subroutine enables you to specify values for dynamic
variables in templates.

5

The following call to PROC TEMPLATE defines a table (named CustomColor2) that uses dynamic variables:

proc template;
define table CustomColor2;

dynamic MaleColor FemaleColor OverweightColor;
cellstyle _COL_ = 2 && _VAL_ = "M" as {backgroundcolor=MaleColor},

COL = 2 && _VAL_ = "F" as {backgroundcolor=FemaleColor},
COL = 5 && _VAL_ > 100 as {backgroundcolor=OverweightColor};

end;
run;

This version of the template uses the DYNAMIC statement to indicate that the values for the symbols MaleColor,
FemaleColor, and OverweightColor can be specified at run time. You can specify dynamic variables by using
the DYNAMIC= option in the TablePrint subroutine.

The value of the DYNAMIC= option in the TablePrint subroutine is a character vector of keyword-value pairs. Each
element of the vector specifies the name of a dynamic variable in a template, an equal sign, and the name of a
SAS/IML symbol whose value will be used for the corresponding dynamic variable.

For example, the following program contains three SAS/IML symbols: M, F, and Wt. Each symbol contains a string
that specifies a valid SAS color name. The dynamicVar vector contains three elements, each of which specifies a
keyword-value pair, where the keyword specifies a dynamic variable in the CustomColor2 template. The first element
of the vector indicates that the value of the MaleColor dynamic variable will be “LightGreen,” which is the value of the
symbol M. The second element indicates that the value of the FemaleColor dynamic variable will be “LightRed,” and
so on.

proc iml;
tbl = TableCreateFromDataSet("Sashelp", "Class");
M = "LightGreen"; /* color for males */
F = "LightRed"; /* color for females */
Wt = "LightGrey"; /* color for heavy students */
/* Syntax: DynamicVar1=Symbol1, DynamicVar2=Symbol2, ... */
dynamicVar = {"MaleColor=M" "FemaleColor=F" "OverweightColor=Wt"};
call TablePrint(tbl) numobs=6

template="CustomColor2"
dynamic=dynamicVar;

The output is shown in Figure 6.

Figure 6 Output from a Custom Template That Contains Dynamic Variables

Name Sex Age Height Weight

Alfred M 14 69 112.5

Alice F 13 56.5 84

Barbara F 13 65.3 98

Carol F 14 62.8 102.5

Henry M 14 63.5 102.5

James M 12 57.3 83

For even more advanced printing options, you can use the DEFINE COLUMN statement in PROC TEMPLATE
to customize the format, style, justification, and other features of a column. The TablePrint subroutine supports
column-specific rendering through the COLTEMPLATE= option. See the SAS/IML User’s Guide for details.

LISTS IN THE SAS/IML LANGUAGE

In this paper, the word “list” refers to a SAS/IML data structure that can contain other data structures. A list is a
container object. An item in a list can be a matrix, a table, or another list. Lists enable you to store and access objects
of different types, shapes, and sizes. Lists are a convenient way to store related data and to pass that data to modules.

6

You can use the ListAddItem and ListInsertItem subroutines to insert new items into a list. You can use the
ListDeleteItem subroutine to remove items from a list. You can use the ListSetItem subroutine to modify an existing
item.

You cannot perform arithmetic operations on lists. For example, you cannot add two lists. However, you can extract
the data into matrices and perform a computation on the matrices.

LISTS AS DYNAMIC ARRAYS

A SAS/IML list is similar to a dynamic array. A dynamic array (also called a growable array) is a random-access array
that can grow and shrink. Items in a dynamic array are directly accessed by specifying their position (index).

You can use lists to hold matrices of various sizes and shapes. This section shows you how to do the following:

� create a list by using the ListCreate function

� add items to a list by using the ListAddItem subroutine

� modify items in a list by using the ListSetItem subroutine

� insert items in a list by using the ListInsertItem subroutine

� delete items in a list by using the ListDeleteItem subroutine

Suppose you want to store two matrices. You can use the ListCreate function to create a list that contains room for
two items. You can then use the ListSetItem subroutine to set values for the items, as follows:

proc iml;
L = ListCreate(2); /* L is a list of 2 items */
call ListSetItem(L, 1, 1:3); /* 1st item of L is vector 1:3 */
call ListSetItem(L, 2, {4 3, 2 1}); /* 2nd item of L is 2x2 matrix */

As demonstrated by the ListSetItem subroutine, the first argument to most list-related functions is the name of the list
object (L). The second argument specifies positions or names of items. For the ListSetItem subroutine, the third item
specifies the value. This is the same order (item, index, value) that you would use to assign a matrix element by using
the matrix syntax M[i]=value.

If you use the ListAddItem subroutine to add more items to the list, the list will automatically grow to accommodate the
new items. The new items are added to the end of the list, so after the call the list L contains three items.

X = {3 1, 4 2, 5 3}; /* define 3x2 matrix */
call ListAddItem(L, X); /* add X as 3rd item of L */

You can also insert a new item into the middle of a list. The indices of later items are incremented. For example, the
following statement inserts a new item as the second item of the list. After the call, the items that were originally the
second and third items become the third and fourth items, respectively.

call ListInsertItem(L, 2, -1:1); /* insert new item into L */

You can use the ListSetItem subroutine to replace or modify an item. For example, the following statement replaces
the first item in the list, which is currently a three-element numeric vector, with a four-element character matrix:

call ListSetItem(L, 1, {A B, C D}); /* modify 1st item of L */

You can use the ListGetItem function to extract an item. For example, the following statement extracts the third list
item into a SAS/IML matrix:

S = ListGetItem(L, 3); /* copy 3rd item of L to S */

If you decide that you no longer want an item in a list, you can use the ListDeleteItem subroutine to delete the item.
For example, the following statement deletes the third item in the list:

call ListDeleteItem(L, 3); /* delete 3rd item in list */

7

It is worth mentioning that the ListGetItem function (and other list-related functions) supports an optional third argument
that specifies whether the list changes after the item is extracted. By default, a list item is copied from the list ('c') but
the list does not change. Alternatively, you can delete the item ('d') or move the item ('m'). When you delete an item,
the length of the list decreases. When you move an item, the list item is set to the empty matrix. So, for example, the
previous two statements could have been combined into a single statement: S = ListGetItem(L, 3, 'd').
An example is provided later in this paper.

THE LISTUTIL PACKAGE AND THE STRUCTURE OF LISTS

The previous section shows that you can dynamically add, insert, delete, and modify items in a list. When you modify
a list multiple times, it can be difficult to know the state of the list. For example, at the end of the previous section, how
many items does the list L contain? What types of items are in the list? What are the sizes of the items?

Fortunately, there are programmatic ways to answer these questions. Continuing the example from the previous
section, you can use the ListLen function to obtain the number of items in a list, as shown in Figure 7:

numItems = ListLen(L);
print numItems;

Figure 7 The Number of Items in a List

numItems

3

If you want detailed information about the type and size of items in a list, you can load the ListUtil package, which is
distributed and installed as part of SAS/IML 14.2. The ListUtil package contains two modules that display information
about lists:

� The Struct subroutine prints a table that shows the structure of any SAS/IML object.

� The ListPrint subroutine prints items in a list. If a list contains sublists, they are also printed.

For example, you can call the Struct module to display a high-level description of a list, as shown in Figure 8:

package load ListUtil;
run Struct(L);

Figure 8 Display the Structure of a List

L

Name Level NRow NCol Type Value1 Value2 Value3 Value4 More

L 0 . 3 List L[1] L[2] L[3]

=> L[1] 1 2 2 Char A B C D

=> L[2] 1 1 3 Num -1 0 1

=> L[3] 1 3 2 Num 3 1 4 2 ...

The Struct subroutine displays a table that summarizes the list. The first row shows that the list is named L and that it
contains three items. The items are not named, so they are displayed as L[1], L[2], and L[3].

The second row of Figure 8 summarizes L[1], the first item in the list. The item is a 2 � 2 character matrix whose
first four values are A, B, C, and D. The third row summarizes L[2], the second item in the list. The item is a 1 � 3
numeric matrix whose values are –1, 0, and 1. The fourth row summarizes L[3], which is a 3 � 2 numeric matrix. The
ellipsis in the last column indicates that the item contains values that are not displayed. Notice that values are listed in
row-major order.

8

Figure 8 is a convenient summary of the items in a list. If you prefer to print the items, use the ListPrint subroutine, as
follows:

run ListPrint(L);

The output from the ListPrint subroutine is shown in Figure 9. The output is self-explanatory. The first output is a text
string that shows the name of the list. Each item is then printed. If the items were named, the matrix labels would
contain the item names instead of the generic labels “Item 1,” “Item 2,” and “Item 3.”

Figure 9 Print Each Item in a List

--------- List = L---------

Item
1

A B

C D

Item 2

-1 0 1

Item
3

3 1

4 2

5 3

OPERATIONS ON LIST ITEMS

As stated earlier, you cannot perform arithmetic operations on the items of a list. However, you can extract the item
into a SAS/IML matrix or vector and then perform any matrix computation.

To illustrate this technique, consider a list that holds three vectors. In the following example, the data vectors have
different lengths, so the data do not fit neatly into a matrix:

proc iml;
X = {1,3,5,7,9}; /* 5 obs */
Y = {2,4,3,4,4,1}; /* 6 obs */
Z = {1,2,3,4,5,6,7,8,9,10}; /* 10 obs */
Lst = ListCreate();
call ListAddItem(Lst, X);
call ListAddItem(Lst, Y);
call ListAddItem(Lst, Z);

Suppose you want to compute the mean for each item in a list. You can iterate over the items in the list. For each item,
you can extract the data into a vector and compute the mean, as follows:

means = j(1, ListLen(Lst)); /* allocate result vector */
do i = 1 to ListLen(Lst); /* for each item */

v = ListGetItem(Lst, i); /* extract data */
means[i] = mean(colvec(v)); /* save mean of vector */

end;

print means[colname={X Y Z}];

Figure 10 shows the results.

Figure 10 Mean Value of Each List Item

means

X Y Z

5 3 5.5

9

LISTS, STRUCTS, and ASSOCIATIVE ARRAYS

By using lists in SAS/IML, you can emulate many different data structures. This section describes structs and
associative arrays. Stacks and trees are discussed in subsequent sections.

A struct is a collection of named items called members. The members can be inhomogeneous, which means they do
not have to be the same type or size.

You can use SAS/IML lists to emulate a struct. For example, suppose you are storing information about students who
are taking a statistics course. For each student, you want to record the student’s name, class period, and test scores.
If you use matrices to store these data, you need to use multiple matrices, as shown by the following example:

proc iml;
Name = "Ronald Fisher"; /* name of student */
Period = 3; /* in 3rd period class */
Scores = {100 97 94 100 100}; /* test scores */

It is often convenient to use a list to group these data into a single object that you can pass into modules:

Student = ListCreate(3);
call ListSetItem(Student, 1, Name);
call ListSetItem(Student, 2, Period);
call ListSetItem(Student, 3, Scores);

The Student symbol is a list object that contains three items. For an object that contains many items, you might find
it hard to remember what information is stored in each item. However, you can name the items in the list and refer to
the items by their names. When you name items in a list, the list is similar to an associative array.

An associative array (also called a map or a dictionary) is a set of key-value pairs. You can specify items in an
associative array by using the key. In the SAS/IML language, you can use the ListSetName subroutine to assign
names to some or all items, as follows:

call ListSetName(Student, 1:3, {"Name" "Class Period" "Scores"});

In the previous statement, the second argument (1:3) specifies the indices of the items and the third argument
specifies the corresponding names for the items.

You can access a named item by its name in addition to its index. For example, the following statements are equivalent;
they each retrieve the test scores for the student:

S1 = ListGetItem(Student, "Scores"); /* extract by name */
S2 = ListGetItem(Student, 3); /* extract by index */

You might know at the outset that you want to access items by using names. In that case, you can use an alternate
syntax of the ListCreate function to create a named array. The following statements show an alternate way to create
and fill a named array:

Student = ListCreate({"Name" "Class Period" "Scores"});
call ListSetItem(Student, "Name", Name);
call ListSetItem(Student, "Class Period", Period);
call ListSetItem(Student, "Scores", Scores);

In the alternative syntax, the item names are defined in the call to the ListCreate function, which allocates space for
three items and assigns the names. The subsequent calls to the ListSetItem subroutine use a name instead of an
index to reference the items.

As described previously, you can use the Struct module in the ListUtil package to display a summary of the contents
of the list:

package load ListUtil;
run Struct(Student);

Figure 11 shows the results.

10

Figure 11 Summary of Student Information

Student

Name Level NRow NCol Type Value1 Value2 Value3 Value4 More

Student 0 . 3 List Name Class Period Scores

=> Name 1 1 1 Char Ronald Fisher

=> Class Period 1 1 1 Num 3

=> Scores 1 1 5 Num 100 97 94 100 ...

PASS LISTS TO MODULES

Suppose you want to write a SAS/IML module that computes a regression. To perform the computation, the module
requires information about the data and the model. For example, you might pass several parameters to the module,
such as a data table, a string that specifies the response variable, and a vector of strings that specify the independent
variables. For a sophisticated regression algorithm, the algorithm might also require character or numeric arguments
that control the regression algorithm. For a complicated regression module, you might need to pass in a dozen or
more parameters.

A primary usage of SAS/IML lists is to store related items so that you can pass a single object to modules. As shown
in the preceding section, you can pack the data and parameters into an associative array. You can then pass that one
object to the module. The module can unpack the relevant components and perform its computations.

For example, the following module implements an ordinary least squares regression:

proc iml;
/* Regression module takes a list that contains three items:

"Data" : Table that contains the data to analyze
"DepVar" : Name of the dependent variable
"IndepVar" : Row vector that contains the names

of the independent variables in the model
Assume numerical and nonmissing values.

*/
start Regression(S);
/* 1. Extract data and variable names from argument */
tbl = ListGetItem(S, "Data"); /* data in table */
YName = ListGetItem(S, "DepVar"); /* dependent variable name */
Y = TableGetVarData(tbl, YName); /* response values */
XNames = ListGetItem(S, "IndepVar"); /* independent variable names */
n = nrow(tbl); /* assume nonmissing values */
p = 1 + ncol(XNames); /* number of effects */
X = j(n, p, 1); /* add intercept column */
X[,2:p] = TableGetVarData(tbl, XNames); /* data matrix */

/* 2. Compute parameter estimates and related statistics */
xpxi = inv(X`*X); /* inverse of X'X */
b = xpxi * (X`*Y); /* parameter estimates */
resid = y - X*b; /* residuals */
dfe = n - p; /* error degrees of freedom */
mse = ssq(resid)/dfe; /* mean square error */
stdb = sqrt(vecdiag(xpxi)*mse); /* standard error of estimates */
t = b / stdb; /* t statistic */
prob = 1-cdf("F", t#t, 1, dfe); /* p-values */

/* 3. Create and print parameter estimates table */
PE = TableCreate({"Estimate" "StdErr" "tValue" "Probt"},

b || stdb || t || prob);
call TableAddVar(PE, "Variable", "Intercept" // XNames`);
call TablePrint(PE) template="Stat.Reg.ParameterEstimates";

finish;

The argument to the module is a named list that contains three items. The “data” item contains the data. The “DepVar”
item is a character string that specifies the name of the response variable in the table. The “IndepVar” item is a vector

11

of strings that specifies the names of the independent variables in the table. The module performs the following three
tasks:

1. Unpacks the items from the list and extracts the data into a response vector Y and a data matrix X.

2. Uses matrix computations to obtain parameter estimates and related statistics for the regression model.

3. Creates a table that contains the statistics and prints the table by using the same ODS template
(Stat.Reg.ParameterEstimates) that the REG procedure uses.

To call the module, you need to pack the data and options into a list. The following statements create a data table from
the Sashelp.Class data. The data are added to a list, as are the names of the dependent and independent variables.
Finally, the module is called. The results are shown in Figure 12 for a model that predicts Weight as a linear function
of Height and Age.

/* Pack data and options into a list and call the module */
Model = ListCreate({"DepVar" "IndepVar" "Data"});
tClass = TableCreateFromDataSet("Sashelp", "Class");
call ListSetItem(Model, "Data", tClass);
call ListSetItem(Model, "DepVar", "Weight");
call ListSetItem(Model, "IndepVar", {"Height" "Age"});
run Regression(Model);

Figure 12 Parameter Estimates Table

Parameter Estimates

Variable
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept -141.22376 33.38309 -4.23 0.0006

Height 3.59703 0.90546 3.97 0.0011

Age 1.27839 3.11010 0.41 0.6865

Figure 12 indicates that the Age variable is not statistically significant. The following statements drop the Age variable
from the model and refit the model. The final result is shown in Figure 13.

call ListSetItem(Model, "IndepVar", {"Height"});
run Regression(Model);

Figure 13 Revised Parameter Estimates Table

Parameter Estimates

Variable
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept -143.02692 32.27459 -4.43 0.0004

Height 3.89903 0.51609 7.55 <.0001

STACKS

An elementary data structure in computer science is a stack. A stack is a linear array in which objects can be inserted
and removed only at the beginning of the array. A push operation adds an item to the front of the array; a pop operation
removes the item at the front of the array. A stack obeys the last-in first-out (LIFO) principle.

When you use SAS/IML lists to emulate a sophisticated data structure, it is often useful to define helper functions that
use list-related functions to implement methods for working with the data structure.

For example, if you want to use SAS/IML lists to emulate a stack, you can use the ListInsertItem operation to implement
the push operation and use the ListGetItem function to implement the pop operation. To demonstrate this fact, the
SAS/IML Sample Library contains the following modules that use lists and list operations to emulate stacks and stack
operations:

12

� The StackCreate function initializes a stack. When called with zero arguments, the function returns an empty
stack.

� The StackPush subroutine pushes an item onto the top of an existing stack.

� The StackPop function returns the item at the top of the stack and removes the item from the stack.

� The StackPeek function returns the item at the top of the stack but does not change the stack.

� The StackIsEmpty function returns 1 if the stack is empty and 0 if the stack contains at least one item.

The modules are thin wrappers around list-related functions. Many of the functions contain only one line. The wrappers
hide implementation details from the user. For example, in theory the push operation adds items to the top of a stack.
In practice, however, the StackPush subroutine uses the ListAddItem subroutine to add items to the end of a list. The
following functions implement the push, pop, and peek operations for stacks while hiding the details of how these
operations are implemented:

proc iml;
/* Define helper functions for a stack, which is a 1-D LIFO structure */
start StackCreate(item=);

S = ListCreate(); /* create empty list */
if ^IsSkipped(item) then /* if item is specified, */

call ListAddItem(S, item); /* add item to list */
return S;

finish;

/* Push an item onto the stack */
start StackPush(S, item);

call ListAddItem(S, item); /* add item to the end */
finish;

/* Pop an item from the stack */
start StackPop(S);

return ListGetItem(S, ListLen(S), 'd'); /* get last item; delete from list */
finish;

/* Peek at the item at the top of the stack without removing it */
start StackPeek(S);

return ListGetItem(S, ListLen(S)); /* get last item; list unchanged */
finish;

/* Return 1 if stack is empty; 0 otherwise */
start StackIsEmpty(S);

return (ListLen(S) = 0);
finish;

To demonstrate how to use these functions, the following example implements a common programming task that uses
stacks. The task is to use the push operation to build a stack of words, and then use the pop operation to retrieve the
words in reverse order. The following statements define a string and use the COUNTW and SCAN functions in Base
SAS to break the string into a vector that has one word per element:

/* Create sentence */
str = "Now is the time for all good men to come to the aid of their party.";
n = countw(str, " ."); /* blanks and periods are delimiters */
words = scan(str, 1:n, " ."); /* break string into vector of words */

S = StackCreate(); /* create an empty stack */
do i = 1 to ncol(words);

run StackPush(S, words[i]); /* push each item onto the stack */
end;
print (StackPeek(S))[L="Top of Stack"]; /* the last word is on top */

13

/* Retrieve the data in reverse order */
w = j(1, ncol(words), " ");
do i = 1 to ncol(w); /* pop each item; insert into vector */

w[i] = StackPop(S);
end;
print w[L="Reversed Words"];

if StackIsEmpty(S) then
print "Stack is empty";

else print (StackPeek(S))[L="Top of Stack"];

The output from the program is shown in Figure 14. The program illustrates pushing items onto a stack and popping
items off the stack. In practice there are simpler ways to reverse the words in a sentence, such as the matrix
expression words[,ncol(words):1]. However, this exercise demonstrates how you can use SAS/IML lists to
emulate a stack.

Figure 14 Using a Stack to Reverse Words

Top
of

Stack

party

Reversed Words

party their of aid the to come to men good all for time the is Now

Stack is empty

In the same way, you can define helper functions for a queue, which is a one-dimensional first-in first-out (FIFO) data
structure. See the SAS/IML User’s Guide and the SAS/IML Sample Library for details.

LISTS OF LISTS

A previous example uses a list to store data for a student in a class. If you have data for multiple students, you might
want to create an array of structures. This section demonstrates how to implement an array of data structures by using
a list of lists.

Rather than continue with the student example, this section uses a list of lists to represent a multivariate finite-mixture
distribution. Recall that the density for a finite-mixture distribution is a linear combination of component densities,
where the coefficients are the mixing probabilities. For example, if Xi � N.�i ; †i /, are multivariate normal random
variables, then Y D †k

i �iXi is a mixture of k normal components, where the �i are the mixing probabilities such
that †k

i �i D 1. Thus to specify the parameters of the mixture distribution, you need to specify the mixing probabilities,
the mean vectors, and the covariance matrices for each of the component distributions.

It makes sense to use a struct to hold the information for each component and to use an array of structs to hold
the information for the mixture distribution. In the following program, the comp symbol is a three-item structure that
contains the mixing probability, the mean vector, and the covariance matrix for each normal component. The Mixture
symbol is an array that contains parameters for a mixture of k D 3 components.

proc iml;
Mixture = ListCreate();
/* First component of mixture of multivariate normals */
comp = ListCreate({"MixProb" "mu" "Sigma"});
call ListSetItem(comp, "MixProb", 0.35);
call ListSetItem(comp, "mu", {32 16 5});
call ListSetItem(comp, "Sigma", {17 7 3,

7 5 1,
3 1 1});

call ListAddItem(Mixture, comp); /* copy structure into Mixture */

14

/* Second component of mixture (reuse same structure) */
call ListSetItem(comp, "MixProb", 0.5);
call ListSetItem(comp, "mu", {30 8 4});
call ListSetItem(comp, "Sigma", {90 27 16,

27 9 5,
16 5 4});

call ListAddItem(Mixture, comp); /* copy structure into Mixture */

/* Third component of mixture (reuse same structure) */
call ListSetItem(comp, "MixProb", 0.15);
call ListSetItem(comp, "mu", {49 7 5});
call ListSetItem(comp, "Sigma",{103 16 11,

16 4 2,
11 2 2});

call ListAddItem(Mixture, comp); /* copy structure into Mixture */

package load ListUtil;
run Struct(Mixture);

Figure 15 shows the structure of the list of lists. The main list (Mixture) contains three sublists. The Level column in
the output indicates whether an item is a list, a sublist, or an item in a sublist.

Figure 15 A List of Lists

Mixture

Name Level NRow NCol Type Value1 Value2 Value3 Value4 More

Mixture 0 . 3 List Mixture[1] Mixture[2] Mixture[3]

=> Mixture[1] 1 . 3 List MixProb mu Sigma

=> => MixProb 2 1 1 Num 0.35

=> => mu 2 1 3 Num 32 16 5

=> => Sigma 2 3 3 Num 17 7 3 7 ...

=> Mixture[2] 1 . 3 List MixProb mu Sigma

=> => MixProb 2 1 1 Num 0.5

=> => mu 2 1 3 Num 30 8 4

=> => Sigma 2 3 3 Num 90 27 16 27 ...

=> Mixture[3] 1 . 3 List MixProb mu Sigma

=> => MixProb 2 1 1 Num 0.15

=> => mu 2 1 3 Num 49 7 5

=> => Sigma 2 3 3 Num 103 16 11 16 ...

An advantage of storing parameters in a list is that you can pass the list to user-defined functions. For example, the
following function simulates a random sample from a mixture of multivariate Gaussian distributions. The function
accepts a list that contains any number of component functions. The components can be for data of any dimension.
The module performs the following computations, which are described in Wicklin (2013, p. 140):

� Gets the number of components, k.

� Gets the vector of mixing probabilities, � . You can use the ListGetSubItem function to directly retrieve the
mixing probability for each sublist.

� Uses the RandMultinomial function to draw a random observation from the multinomial distribution with
parameters � . The resulting vector of counts specifies the number of observations, Ni , that should be drawn
from the i th component.

� Simulates Ni random observations from each component.

� Returns the matrix that contains the random observations from the component densities.

15

start RandMVNMixture(NumObs, L);
/* Get vector of mixing probabilities */
k = ListLen(L); /* k = number of components */
pi = j(1, k); /* vector of mixing probs */
do i = 1 to k;

pi[i] = ListGetSubItem(L, i||1); /* mixing probs: 1st item in i_th sublist */
end;
N = RandMultinomial(1, NumObs, pi); /* multinomial counts such as {26 51 23 } */
X = j(NumObs, k); /* allocate matrix for data */
b = 1; /* beginning row */
do i = 1 to k; /* for each component */

e = b + N[i] - 1; /* ending row */
mu = ListGetSubItem(L, i||2); /* mean vector: 2nd item in i_th sublist */
Cov = ListGetSubItem(L, i||3); /* cov matrix: 3rd item in i_th sublist */
X[b:e,] = RandNormal(N[i], mu, Cov); /* generate i_th MVN sample */
b = e + 1; /* next group starts at this row */

end;
return X;
finish;

call randseed(12345);
X = RandMVNMixture(100, Mixture);

Figure 16 shows a panel of scatter plots for the simulated data. To illustrate the contributions of each component,
each observation is displayed by using a marker that indicates the component from which it was generated. You
can see that the clusters are well separated in the .x1; x2/ projections, but that the data from the second and third
components overlap in the .x3; x2/ projection.

Figure 16 Simulated Clustered Trivariate Data

BINARY TREES

A tree contains nodes and directed edges. A tree starts with a root node. The root node is connected via branches to
other nodes, called child nodes. Every node except the root node has exactly one parent node. A binary tree is a tree
in which each parent node has at most two child nodes.

As shown in the previous section, SAS/IML lists can contain other lists. You can use this fact to emulate a binary
search tree (BST). In a binary search tree, each node has a value (called a key), a link to a left child node, and a link
to a right child node. Either or both child nodes might be null.

16

A binary search tree is useful when you want to search a list of items to see whether it contains a specified value. By
starting at the root node, you can quickly determine whether the value is in the tree. If it is not, you can insert the
value into the tree by modifying one of the null child nodes of an existing node. In a balanced binary tree that contains
n items, the expected time to search the tree is O.log.n//.

The SAS/IML User’s Guide shows how to use lists to emulate a binary search tree. The main idea is to represent a
node by using a three-item list that contains a key value, a left node, and a right node. By setting the left or right node
to be another three-item list, you can create a list of lists (to an arbitrary depth) that reflects the structure of a binary
search tree.

The following example shows how to use the BST modules that are defined in the SAS/IML Sample Library. The
%INCLUDE statement defines the BST modules, and the LOAD statement loads the definitions into a SAS/IML
session. (You can specify the SOURCE option in the %INCLUDE statement to display the contents of the program
file.) The BST is created from a vector that contains six unique values. Figure 17 shows a graphical representation of
the tree.

/* L[1] is key value, L[2] is left child, L[3] is right child */
proc format;

value BSTFmt 1='Key' 2='Left' 3='Right';
value TorF 0='False' other='True';

run;
%include sampsrc(LstBST.sas); /* define BST modules */
proc iml;
load module = _all_; /* load BST modules */
package load ListUtil;

x = {5 3 1 9 1 6 4}`;
bst = BSTCreate(x); /* initialize BST */

title "Diagram of Binary Search Tree";
run BSTPlot(bst); /* plot the BST */
run Struct(bst); /* summarize structure */

Figure 17 Visualization of a Binary Search Tree

Figure 18 shows a summary of the BST as a list of lists. The Struct subroutine displays items of sublists, but not
sublists of sublists. Consequently, although level-2 sublists are indicated in the output, the items in these branches are
not displayed.

17

Figure 18 Structure of a List of Lists

Diagram of Binary Search TreeDiagram of Binary Search Tree

bst

Name Level NRow NCol Type Value1 Value2 Value3 Value4 More

bst 0 . 3 List bst[1] bst[2] bst[3]

=> bst[1] 1 1 1 Num 5

=> bst[2] 1 . 3 List bst[2][1] bst[2][2] bst[2][3]

=> => bst[2][1] 2 1 1 Num 3

=> => bst[2][2] 2 . 3 List

=> => bst[2][3] 2 . 3 List

=> bst[3] 1 . 3 List bst[3][1] bst[3][2] bst[3][3]

=> => bst[3][1] 2 1 1 Num 9

=> => bst[3][2] 2 . 3 List

=> => bst[3][3] 2 0 0 Empty

After you construct the tree, you can search the tree to see whether it contains specified values. In the following
statements, the value 6 is found in the tree whereas the value 10 is not found.

targets = {6 10}; /* look up key value */
do i = 1 to ncol(targets);

Target = targets[i];
Found = BSTLookup(Path, bst, Target); /* is value in tree? */
print Target Found[format=TorF.] Path[format=BSTFmt.];

end;

Figure 19 shows whether each value is found and displays the sequence of paths that the search algorithm follows to
determine whether the value is in the tree.

Figure 19 Search for Values in a Binary Search Tree

Target Found Path

6 True Right Left

Target Found Path

10 False Right Right

CONCLUSIONS

This paper demonstrates the new table and list data structures in SAS/IML 14.2.

A table is a rectangular data structure that contains both character and numeric data. Tables are convenient for
passing mixed-type data to modules. The TablePrint subroutine provides enhanced capabilities for printing tables,
such as support for formats, text alignment, and printing subsets of a table. The TablePrint subroutine also enables
you to define and use a custom template to print a table.

A list is a general object that can contain matrices, tables, and other lists. A list is similar to a dynamic array in that it
can grow or shrink as items are added or deleted. You can pass a list to an SAS/IML module, which enables you to
pass parameters and data to an algorithm. Lists can be used to emulate well-known data structures such as structs,
associative arrays, stacks, and binary trees.

18

REFERENCES

Smith, K. D. (2007). “PROC TEMPLATE Tables from Scratch.” In Proceedings of the SAS Global Forum 2007
Conference. Cary, NC: SAS Institute Inc. http://www2.sas.com/proceedings/forum2007/221-2007.
pdf.

Smith, K. D. (2013). PROC TEMPLATE Made Easy: A Guide for SAS Users. Cary, NC: SAS Institute Inc.

Wicklin, R. (2013). Simulating Data with SAS. Cary, NC: SAS Institute Inc.

APPENDIX: FREQUENTLY ASKED QUESTIONS ABOUT SAS/IML TABLES AND LISTS

Q: I have not yet upgraded to SAS/IML 14.2. Can I still use lists?

A: No. Tables and lists were introduced in SAS/IML 14.2. You cannot use these features in a previous release.

Q: Can I print a list? The PRINT statement doesn’t seem to work on lists.

A: You can use modules in the ListUtil package, which is distributed with SAS/IML, to examine the contents of lists. As
shown in this paper, the ListPrint module prints items in a list and the Struct module displays a summary of the list
items. Neither module recursively prints all levels of a list; they display items in a list and items in a sublist.

Q: Lists in other languages support subscripts to assign items or to extract items from a list. Can I do that in SAS/IML?

A: Not yet, but soon! The SAS/IML developers are implementing a more succinct syntax for lists in a future release.

Q: Can I apply a function to every item of a list? For example, if every item in a list contains a vector, can I easily
compute the mean of each item?

A: To apply a function to every item of a list, write a loop over the list items, extract each item, and compute the result.
For the example of computing the mean of each item, see the example in the section “Operations on List Items.”

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Rick Wicklin
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

19

http://www2.sas.com/proceedings/forum2007/221-2007.pdf
http://www2.sas.com/proceedings/forum2007/221-2007.pdf

