
1

Paper SAS388-2017

Factorization Machines: A New Tool for Sparse Data

Jorge Silva and Raymond E. Wright, SAS Institute Inc.

ABSTRACT
Factorization machines are a new type of model that is well suited to very high-cardinality, sparsely
observed transactional data. This paper presents the new FACTMAC procedure, which implements
factorization machines in SAS® Visual Data Mining and Machine Learning. This powerful and flexible
model can be thought of as a low-rank approximation of a matrix or a tensor, and it can be efficiently
estimated when most of the elements of that matrix or tensor are unknown. Thanks to a highly parallel
stochastic gradient descent optimization solver, PROC FACTMAC can quickly handle data sets that
contain tens of millions of rows. The paper includes examples that show you how to use PROC
FACTMAC to recommend movies to users based on tens of millions of past ratings, predict whether fine
food will be highly rated by connoisseurs, restore heavily damaged high-resolution images, and discover
shot styles that best fit individual basketball players.

INTRODUCTION

Factorization models, which include factorization machines as a special case, are a broad class of
models popular in statistics and machine learning. For example, principal component analysis is a well-
known type of factorization model that has long been a staple of dimensionality reduction. For another
example, matrix factorization has been widely used in text analysis and recommender systems. More
recently, Rendle (2010, 2012) has proposed factorization machines for recommender systems and click-
through rate prediction. Factorization machines are a powerful model that significantly extends matrix
factorization.

Factorization machines are included in SAS Visual Data Mining and Machine Learning. The initial release
supported matrix factorization with biases, and the latest implementation supports pairwise-interaction
tensor factorization and nonnegative factorization. A macro is provided in the Appendix so that you can
still perform pairwise-interaction tensor factorization even if you have PROC FACTMAC from the first
release of SAS Visual Data Mining and Machine Learning.

This paper begins by briefly explaining the most relevant technical details of factorization machines for
data scientists. Then it focuses on applications of factorization machines to solve real-world business
problems. The application sections, which can be read by non-experts, include usage tips as well as
code. The following application examples are presented:

 recommending movies to users based on tens of millions of past ratings

 predicting whether a fine food item will be highly rated by connoisseurs

 restoring heavily damaged high-resolution images

 discovering shot styles that best fit individual basketball players

From these examples, you will learn how to spot which types of problems are good candidates for
factorization machines, how to prepare data for PROC FACTMAC, how to score new data by using score
code or PROC ASTORE, and what strategies to use for choosing parameters and training the best
factorization machine models.

THE FACTORIZATION MACHINE MODEL

This section begins with a brief mathematical description of factorization machines. Assuming a training
set 𝐷 = {(𝒙𝑖 , 𝑦𝑖)}, with 𝑖 = 1, … , 𝑛, where 𝒙𝑖 refers to the ith observation and 𝑦𝑖 refers to the ith target
value, the factorization machine model of order 2 is written as

2

�̂�(𝑥) = 𝑤0 + ∑ 𝑤𝑗𝑥𝑗

𝑝

𝑗=1

+ ∑ ∑ 𝑥𝑗𝑥𝑗′

𝑝

𝑗′=1

𝑝

𝑗=1

∑ 𝑣𝑗𝑓𝑣𝑗′𝑓

𝑘

𝑓=1

where 𝒙 = (𝑥1, … , 𝑥𝑝) is an observed p-dimensional input feature vector, �̂� is the predicted target,

𝑤0 is a global bias, 𝑤𝑗 are per-feature biases, and 𝑣𝑗𝑓 denotes coordinate f of the k-dimensional factor

vector 𝒗𝑗.

The overall factor matrix 𝑽 of size 𝑝 × 𝑘 is the concatenation of the row vectors 𝒗𝑗 for 𝑗 = 1, … , 𝑝.

The number of factors is k. The model parameters to be estimated are 𝑤0, 𝑤1, … , 𝑤𝑝 and 𝑽.

The estimation is done by minimizing the root mean square error (RMSE), which is defined as

RMSE = √
1

𝑛
∑(�̂�(𝑥𝑖) − 𝑦𝑖)2

𝑛

𝑖=1

over the training set 𝐷.

Interestingly, it is known that factorization machines approximate polynomial-kernel support vector
machines and are more resistant to overfitting when the design matrix is sparse (Rendle 2010).

FACTORIZATION MACHINES FOR RECOMMENDATIONS

Recommender systems are a diverse class of algorithms that aim to learn user preferences in order to
recommend items such as movies, books, or songs. The purpose is to predict which ratings a user would
hypothetically give to a set of items and then to recommend items that the user is likely to prefer the most.
As illustrated in Figure 1, users and items form a matrix. This matrix is potentially very large, because
there can be millions of users and items. Moreover, it is very sparsely observed, because usually only a
very small fraction of historical ratings are available.

Figure 1. Matrix factorization for a recommender system. Users and items are characterized by
their respective k-dimensional factor vectors.

You can overcome these challenges by factorizing the matrix into lower-dimensional user and item
factors, which can be used to predict new ratings. For recommender systems, the input vector is typically
constructed using binary indicator variables for user u and item i, as illustrated in Figure 2.

3

Figure 2. Input vector for recommender systems.

The factorization machine model is then equivalent to the following equation for predicting new ratings:

�̂�(𝒙) = �̂�(𝑢, 𝑖) = 𝑤0 + 𝑤𝑢 + 𝑤𝑖 + ∑ 𝑣𝑢𝑓𝑣𝑖𝑓

𝑘

𝑓=1

EXAMPLE: RECOMMENDING MOVIES

This example draws on data that are derived from companies that provide movies for online viewing. A
company wants to offer its customers recommendations of movies that they might like. These

recommendations are based on ratings that users provide.The MovieLens data set, which contains

movie ratings, was developed by the GroupLens project at the University of Minnesota and is available at

http://grouplens.org/datasets/movielens (Harper and Konstan 2015). This example uses the MovieLens

100K version.

The MovieLens 100K data set has four columns: user ID, item ID (each item is a movie), timestamp, and

rating. This example predicts the rating for a specified user ID and an item ID. The data set is very sparse
because most combinations of users and movies are not rated.

You can download the compressed archive file from the URL
http://files.grouplens.org/datasets/movielens/ml-100k.zip and use any third-party unzip tool to extract all
the files from the archive and store them in the destination directory of your choice. The file that contains

the ratings is named u.data. Assuming that your destination directory is ~/data, the following DATA

step loads the data table from the directory into your CAS session:

 proc casutil;

 load file="~/data/u.data" /*or other user-defined location*/

 casout="movlens"

 importoptions=(filetype="CSV" delimiter="TAB" getnames="FALSE"

 vars=("userid" "itemid" "rating" "timestamp"));

 run;

The following statements show how to use PROC FACTMAC to predict movie ratings:

 proc factmac data=mycas.movlens nfactors=10 learnstep=0.15

 maxiter=20 outmodel=factors;

 input userid itemid /level=nominal;

 target rating /level=interval;

 output out=mycas.out1 copyvars=(userid itemid rating);

 run;

The NFACTORS parameter corresponds to k in the model equations. The LEARNSTEP parameter is an
optimization parameter that controls how fast the stochastic gradient descent solver learns. Smaller
values increase accuracy but might require a larger number of iterations to reach a good solution.

The following statements print the first 10 observations in the Factors data table, which is specified in

the OUTMODEL= option in the PROC FACTMAC statement. The output is shown in Figure 3.

 proc print data=factors(obs=10);

 run;

http://grouplens.org/datasets/movielens
http://files.grouplens.org/datasets/movielens/ml-100k.zip

4

Figure 3. Factors data table for the MovieLens data set.

When the model is saved in the mycaslib.astore data table, you can predict new ratings by using the

ASTORE procedure, as in the following statements:

 proc astore;

 score data = mycaslib.valid

 out=mycaslib.ScoreValid copyvar = rating

 rstore = mycaslib.astore;

 run;

The first 20 predicted ratings are shown in Figure 4.

5

Figure 4. Predicted movie ratings. The predictions are in the P_rating column.

EXAMPLE: RECOMMENDING FINE FOODS

In this example, you can use PROC FACTMAC to analyze fine food reviews. The Amazon Fine Foods
data set, available at https://snap.stanford.edu/data/web-FineFoods.html, consists of ratings and text
reviews of gourmet foods sold by Amazon (Leskovec and Krevl 2014). The data span a period of more
than 10 years, including all ~500,000 reviews up to October 2012. The data include product and user
information, ratings, and a plaintext review.

The input variables are product/productId, review/userId, review/profileName, review/helpfulness,
review/score, review/time, review/summary and review/text. Here is an example of content in the
review/text field:

I have bought several of the Vitality canned dog food products and have found them all to be of good
quality. The product looks more like a stew than a processed meat and it smells better. My Labrador is
finicky and she appreciates this product better than most.

Unlike the data set in the movie recommendation example, this data set include more than two nominal
input variables. In this situation, the factorization machine model is equivalent to the following pairwise-
interaction tensor factorization equation:

https://snap.stanford.edu/data/web-FineFoods.html

6

�̂�(𝒙) = �̂�(𝑢𝑠𝑒𝑟, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑡𝑖𝑚𝑒, ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠)
 = 𝑤0 + 𝑤𝑢𝑠𝑒𝑟 + 𝑤𝑝𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑤𝑡𝑖𝑚𝑒 + 𝑤ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠

 +〈𝒗𝑢𝑠𝑒𝑟 , 𝒗𝑝𝑟𝑜𝑑𝑢𝑐𝑡〉 + 〈𝒗𝑢𝑠𝑒𝑟 , 𝒗𝑡𝑖𝑚𝑒〉 + ⋯ + 〈𝒗𝑢𝑠𝑒𝑟 , 𝒗ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠〉

This model considers every interaction between pairs of input variables. Although you might find this
equation cumbersome, the corresponding PROC FACTMAC syntax is actually quite simple to specify.
After importing the data into SAS, you can train the model by using the following code:

 proc factmac data=mycas.amazon_foods

 nFactors=20 learnStep=0.01 maxIter=50 outModel=mycas.factors;

 input userId productId time helpfulness /level=nominal;

 target reviewScore /level=interval;

 output out=mycas.out1 copyvars=(userId productId time helpfulness);

 run;

If you have PROC FACTMAC from the initial release of SAS Visual Data Mining and Machine Learning,
you can alternatively use the following code:

 %pairwiseFactMac(inputVarList=userId productId time helpfulness,

 target=reviewScore,

 dataset=amazon_foods,

 maxIter=50,

 nFactors=20,

 learnStep=0.01,

 configFile=);

The pairwiseFactMac macro is provided in the Appendix at the end of this paper.

The model achieves an RMSE of 0.91, which is competitive with other methods. You can visit
https://github.com/sassoftware/enlighten-apply for additional code snippets and tips for incorporating the
text of the reviews into the analysis. Interestingly, the Amazon Fine Food reviews are overwhelmingly
positive, and coffee is by far the most popular product, well ahead of chocolate.

FACTORIZATION MACHINES FOR IMAGE RECONSTRUCTION

In image processing, it is sometimes necessary to perform reconstruction based on damaged copies of
an image. You can use PROC FACTMAC for this purpose, by using the following code example:

 proc factmac data=mycaslib.sparsePixels

 outmodel=factors

 maxiter=500

 nfactors=100

 learnstep=0.01

 seed=12345;

 input x y /level=nominal;

 target pixelValue /level=interval;

 output out=mycaslib.FactMacScore copyvar = (x y pixelValue);

 run;

https://github.com/sassoftware/enlighten-apply

7

The sparsePixels data table consists of three columns: x, y, and pixelValue. Each row corresponds to

a nonmissing pixel. The results are shown in Figure 5. In this example, the corrupted image has 50%
missing pixels.

Note that factorization machines are suitable for imputing many other types of data besides images.

Figure 5. Image reconstruction. Left: Original image. Center: 50% missing pixels. Right: Image
reconstructed using PROC FACTMAC.

FACTORIZATION MACHINES FOR PREDICTIVE MODELING IN BASKETBALL

The data for this example consist of basketball shots recorded during the 2015–2016 NBA season, from
October 2015 through March 2016. The data set was downloaded using the API available from
Sportradar.com. Every shot taken by every player is recorded, excluding free throws. Figure 6 shows how
shot success varies by where on the court the shot was taken and whether the player is a center, forward,
or guard.

The input variables that are used for the analysis are player_name, action_type, shot_zone_area, and
shot_zone_range. The target variable is constructed by computing the log-odds of shot success per
player.

In this example, as in the food reviews example, there are more than two nominal variables. Hence, you
can perform pairwise-interaction tensor factorization.

8

Figure 6. Shot success by court location and player position. Data from Sportradar.com.

The following code performs pairwise-interaction tensor factorization for this data set:

 proc factmac data=mycaslib.nbaShooting_summarized

 outmodel=factors

 maxiter=50

 nfactors=10

 learnstep=0.03

 input player_name action_type shot_zone_area shot_zone_range

 /level=nominal;

 target logit /level=interval;

 output out=mycaslib.ScoreTrain copyvar=logit;

 savestate rstore=mycaslib.astore;

 run;

You can score a held-out data set by using the following statements:

 proc astore;

 score data = mycaslib.valid

 out=mycaslib.ScoreValid&i copyvar = (&target.)

 rstore = mycaslib.astore&i.;

 run;

9

Alternatively, if PROC FACTMAC in your release of SAS Visual Data Mining and Machine Learning does
not support tensor factorization, you can use the following code to perform pairwise-interaction tensor
factorization and score a held-out validation data set:

 %pairwiseFactMac(inputVarList=player_name action_type shot_zone_area

 shot_zone_range,

 target=logit,

 dataset=ray.nbaShooting_Summarized,

 maxIter=50,

 nFactors=10,

 learnStep=0.03,

 configFile=);

The pairwiseFactMac macro is provided in the Appendix at the end of this paper.

In addition to achieving an RMSE value of 0.93, which favorably compares to 1.39 for a support vector
machine used with the same data, the factorization machine analysis reveals multiple insights. The
following action types are most associated with shot success (they have the highest estimated bias
values):

 running dunk shot

 running layup

 driving layup

 alley-oop dunk shot

 dunk shot

 cutting dunk shot

 putback layup

 driving dunk shot

 tip dunk shot

 driving dunk shot

As you can see, a large proportion of these action types are dunk shots. In contrast, the following action
types are most associated with shot failure:

 turnaround hook shot

 turnaround jump shot

 fadeaway jump shot

 driving floating layup

 turnaround fadeaway shot

 running jump shot

 hook shot

10

 step-back jump shot

 pull-up jump shot

 jump shot

These action types are known to represent difficult, acrobatic shots. In addition, Figure 7 shows a
visualization of the player and action factor vectors on the same plot. Because these are high-
dimensional vectors, a 2D visualization is created using the t-distributed stochastic neighbor embedding
(t-SNE) method (Van der Maaten and Hinton 2008). Blue points are actions, and red points are players.
Similar shots appear close together, as do players who have similar shot profiles (such as Kobe Bryant
and Russell Westbrook). Also, it appears from the figure that Manu Ginobili is proficient at driving floating
layups, because his latent factor vector is embedded very near that of the corresponding action.

Figure 7. Visualization of player (red) and action (blue) factors. Data from Sportradar.com.

CONCLUSION

The FACTMAC procedure implements factorization machines in SAS Visual Data Mining and Machine
Learning. This new model enables you to solve a variety of tasks, from recommendation to predictive
modeling and image processing, all of which involve sparse data. Thanks to a highly parallel optimization
solver, PROC FACTMAC can handle very large data sets. This powerful and flexible method provides not
only predictions but also meaningful factor representations that can give you insights into many types of
business problems.

REFERENCES

Harper, F. M., and Konstan, J. A. (2015). “The MovieLens Datasets: History and Context.” ACM
Transactions on Interactive Intelligent Systems (TiiS) 5:19 pages.
http://dx.doi.org/10.1145/2827872.

Leskovec, J., and Krevl, A. (2014). SNAP Datasets: Stanford Large Network Dataset Collection.

https://snap.stanford.edu/data.

Rendle, S. (2010). “Factorization Machines.” In Proceedings of the 10th IEEE International Conference on
Data Mining (ICDM). Piscataway, NJ: Institute of Electrical And Electronics Engineers.

11

Rendle, S. (2012). “Factorization Machines with libFM.” ACM Transactions on Intelligent Systems and
Technology 3:1–22.

Sportradar AG. (2017). Sportradar.com. St. Gallen, Switzerland.

Van der Maaten, L. J. P., and Hinton, G. E. (2008). “Visualizing Data Using t-SNE.” Journal of Machine
Learning Research 9:2579–2605.

APPENDIX

The following macro implements pairwise-interaction tensor factorization by combining multiple pairwise
factorization machine models.

 %macro pairwisefactMac(

 inputVarList=,

 target=,

 dataset=,

 partitionFraction=.7,

 maxIter=100,

 nFactors=25,

 learnStep=0.10,

 configFile=

);

 %let nInputs = %sysfunc(countw(&inputVarList.));

 %put nInputs = &nInputs.;

 %let k = 2; /*k=2 requests pairs*/

 %let nCombo = %sysfunc(comb(&nInputs.,&k.));

 %put nCombo = &nCombo.;

 %let listQuoted = ;

 *identify each pair inputs;

 data pairs (keep=pairs);

 length pairs $65.;

 array V{&nInputs.} $32 (

 /*quote each input*/

 %do i = 1 %to &nInputs.;

 %let currentVar = %scan(&inputVarList.,&i.);

12

 "¤tVar."

 %end;

);

 do j=1 to &nCombo.;

 call allcomb(j,&k.,of V[*]);

 do i = 1 to &k.;

 if i=1 then

 do;

 pairs="";

 counter=0;

 end;

 counter=counter+1;

 pairs=cat(compress(pairs),' ',compress(V[i]));

 if counter=&k. then output;

 end;

 end;

 run;

 *save pairs as macro variables;

 data _null_;

 set pairs end = eof;

 call symput ('pair'||strip(_n_),pairs);

 run;

 *call proc factmac, looping over the pairs;

 libname mycaslib sasioca ;

 data mycaslib.train mycaslib.valid;

 set &dataset.;

 if ranuni(0) le &partitionFraction. then output mycaslib.train;

 else output mycaslib.valid;

 run;

 %do i = 1 %to &nCombo.;

 proc factmac data=mycaslib.train

 maxiter=&maxIter.

13

 nfactors=&nFactors.

 learnstep=&learnStep.;

 input &&pair&i. /level=nominal;

 target &target. /level=interval;

 output out=mycaslib.ScoreTrain&i. copyvar = (&target.);

 savestate rstore=mycaslib.astore&i.;

 run;

 proc astore;

 score data = mycaslib.valid

 out=mycaslib.ScoreValid&i copyvar = (&target.)

 rstore = mycaslib.astore&i.;

 run;

 %end;

 data mycaslib.ScoreTrain;

 merge

 %do i = 1 %to &nCombo.;

 mycaslib.ScoreTrain&i. (rename=(p_&target. =

p_&target._&i.))

 %end;

 ;

 partInd = 1;

 run;

 data mycaslib.ScoreValid;

 merge

 %do i = 1 %to &nCombo.;

 mycaslib.ScoreValid&i. (rename=(p_&target. =

p_&target._&i.))

 %end;

 ;

 partInd = 0;

 run;

 data mycaslib.ScoreCombined;

 set mycaslib.ScoreTrain

14

 mycaslib.ScoreValid

 ;

 run;

 *build a regression model to predict target using predicted values for all

pairs;

 proc regselect data = mycaslib.scoreCombined;

 model &target.=

 %do i=1 %to &nCombo.;

 p_&target._&i.

 %end;

 ;

 partition rolevar=_partInd_ (TRAIN="1" VALIDATE="0");

 run;

 quit;

%mend pairwiseFactMac;

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jorge Silva
jorge.silva@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

