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ABSTRACT  
Factorization machines are a new type of model that is well suited to very high-cardinality, sparsely 
observed transactional data. This paper presents the new FACTMAC procedure, which implements 
factorization machines in SAS® Visual Data Mining and Machine Learning. This powerful and flexible 
model can be thought of as a low-rank approximation of a matrix or a tensor, and it can be efficiently 
estimated when most of the elements of that matrix or tensor are unknown. Thanks to a highly parallel 
stochastic gradient descent optimization solver, PROC FACTMAC can quickly handle data sets that 
contain tens of millions of rows. The paper includes examples that show you how to use PROC 
FACTMAC to recommend movies to users based on tens of millions of past ratings, predict whether fine 
food will be highly rated by connoisseurs, restore heavily damaged high-resolution images, and discover 
shot styles that best fit individual basketball players. 

INTRODUCTION 

Factorization models, which include factorization machines as a special case, are a broad class of 
models popular in statistics and machine learning. For example, principal component analysis is a well-
known type of factorization model that has long been a staple of dimensionality reduction. For another 
example, matrix factorization has been widely used in text analysis and recommender systems. More 
recently, Rendle (2010, 2012) has proposed factorization machines for recommender systems and click-
through rate prediction. Factorization machines are a powerful model that significantly extends matrix 
factorization. 

Factorization machines are included in SAS Visual Data Mining and Machine Learning. The initial release 
supported matrix factorization with biases, and the latest implementation supports pairwise-interaction 
tensor factorization and nonnegative factorization. A macro is provided in the Appendix so that you can 
still perform pairwise-interaction tensor factorization even if you have PROC FACTMAC from the first 
release of SAS Visual Data Mining and Machine Learning. 

This paper begins by briefly explaining the most relevant technical details of factorization machines for 
data scientists. Then it focuses on applications of factorization machines to solve real-world business 
problems. The application sections, which can be read by non-experts, include usage tips as well as 
code. The following application examples are presented: 

 recommending movies to users based on tens of millions of past ratings

 predicting whether a fine food item will be highly rated by connoisseurs

 restoring heavily damaged high-resolution images

 discovering shot styles that best fit individual basketball players

From these examples, you will learn how to spot which types of problems are good candidates for 
factorization machines, how to prepare data for PROC FACTMAC, how to score new data by using score 
code or PROC ASTORE, and what strategies to use for choosing parameters and training the best 
factorization machine models. 

THE FACTORIZATION MACHINE MODEL 

This section begins with a brief mathematical description of factorization machines. Assuming a training 
set 𝐷 = {(𝒙𝑖 , 𝑦𝑖)}, with 𝑖 = 1, … , 𝑛, where 𝒙𝑖 refers to the ith observation and 𝑦𝑖 refers to the ith target 
value, the factorization machine model of order 2 is written as 
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where 𝒙 = (𝑥1, … , 𝑥𝑝) is an observed p-dimensional input feature vector, 𝑦̂ is the predicted target,  

𝑤0 is a global bias, 𝑤𝑗 are per-feature biases, and 𝑣𝑗𝑓 denotes coordinate f of the k-dimensional factor 

vector 𝒗𝑗.  

The overall factor matrix 𝑽 of size 𝑝 × 𝑘 is the concatenation of the row vectors 𝒗𝑗 for 𝑗 = 1, … , 𝑝.  

The number of factors is k. The model parameters to be estimated are 𝑤0, 𝑤1, … , 𝑤𝑝 and 𝑽.  

The estimation is done by minimizing the root mean square error (RMSE), which is defined as 
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over the training set 𝐷. 

Interestingly, it is known that factorization machines approximate polynomial-kernel support vector 
machines and are more resistant to overfitting when the design matrix is sparse (Rendle 2010). 

FACTORIZATION MACHINES FOR RECOMMENDATIONS 

Recommender systems are a diverse class of algorithms that aim to learn user preferences in order to 
recommend items such as movies, books, or songs. The purpose is to predict which ratings a user would 
hypothetically give to a set of items and then to recommend items that the user is likely to prefer the most. 
As illustrated in Figure 1, users and items form a matrix. This matrix is potentially very large, because 
there can be millions of users and items. Moreover, it is very sparsely observed, because usually only a 
very small fraction of historical ratings are available. 

  

Figure 1. Matrix factorization for a recommender system. Users and items are characterized by 
their respective k-dimensional factor vectors. 

 

You can overcome these challenges by factorizing the matrix into lower-dimensional user and item 
factors, which can be used to predict new ratings. For recommender systems, the input vector is typically 
constructed using binary indicator variables for user u and item i, as illustrated in Figure 2. 
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Figure 2. Input vector for recommender systems. 

 

The factorization machine model is then equivalent to the following equation for predicting new ratings: 

𝑦̂(𝒙) = 𝑦̂(𝑢, 𝑖) = 𝑤0 + 𝑤𝑢 + 𝑤𝑖 + ∑ 𝑣𝑢𝑓𝑣𝑖𝑓

𝑘

𝑓=1

 

EXAMPLE: RECOMMENDING MOVIES 

This example draws on data that are derived from companies that provide movies for online viewing. A 
company wants to offer its customers recommendations of movies that they might like. These 

recommendations are based on ratings that users provide.The MovieLens data set, which contains 

movie ratings, was developed by the GroupLens project at the University of Minnesota and is available at 

http://grouplens.org/datasets/movielens (Harper and Konstan 2015). This example uses the MovieLens 

100K version.  

The MovieLens 100K data set has four columns: user ID, item ID (each item is a movie), timestamp, and 

rating. This example predicts the rating for a specified user ID and an item ID. The data set is very sparse 
because most combinations of users and movies are not rated.  

You can download the compressed archive file from the URL 
http://files.grouplens.org/datasets/movielens/ml-100k.zip and use any third-party unzip tool to extract all 
the files from the archive and store them in the destination directory of your choice. The file that contains 

the ratings is named u.data. Assuming that your destination directory is ~/data, the following DATA 

step loads the data table from the directory into your CAS session:  

   proc casutil; 

      load file="~/data/u.data"    /*or other user-defined location*/ 

      casout="movlens" 

      importoptions=(filetype="CSV" delimiter="TAB" getnames="FALSE" 

                   vars=("userid" "itemid" "rating" "timestamp")); 

   run; 

 

The following statements show how to use PROC FACTMAC to predict movie ratings:  

   proc factmac data=mycas.movlens nfactors=10 learnstep=0.15 

                                    maxiter=20  outmodel=factors; 

 

      input userid itemid /level=nominal; 

      target rating /level=interval; 

      output out=mycas.out1 copyvars=(userid itemid rating); 

   run; 

 

The NFACTORS parameter corresponds to k in the model equations. The LEARNSTEP parameter is an 
optimization parameter that controls how fast the stochastic gradient descent solver learns. Smaller 
values increase accuracy but might require a larger number of iterations to reach a good solution. 

The following statements print the first 10 observations in the Factors data table, which is specified in 

the OUTMODEL= option in the PROC FACTMAC statement. The output is shown in Figure 3. 

   proc print data=factors(obs=10); 

   run; 

http://grouplens.org/datasets/movielens
http://files.grouplens.org/datasets/movielens/ml-100k.zip
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Figure 3. Factors data table for the MovieLens data set. 

 

When the model is saved in the mycaslib.astore data table, you can predict new ratings by using the 

ASTORE procedure, as in the following statements: 

 

   proc astore;  

      score data = mycaslib.valid  

      out=mycaslib.ScoreValid copyvar = rating 

      rstore = mycaslib.astore; 

   run;  

 

The first 20 predicted ratings are shown in Figure 4. 
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Figure 4. Predicted movie ratings. The predictions are in the P_rating column. 

 

EXAMPLE: RECOMMENDING FINE FOODS 

In this example, you can use PROC FACTMAC to analyze fine food reviews. The Amazon Fine Foods 
data set, available at https://snap.stanford.edu/data/web-FineFoods.html, consists of ratings and text 
reviews of gourmet foods sold by Amazon (Leskovec and Krevl 2014). The data span a period of more 
than 10 years, including all ~500,000 reviews up to October 2012. The data include product and user 
information, ratings, and a plaintext review. 

The input variables are product/productId, review/userId, review/profileName, review/helpfulness, 
review/score, review/time, review/summary and review/text. Here is an example of content in the 
review/text field: 

I have bought several of the Vitality canned dog food products and have found them all to be of good 
quality. The product looks more like a stew than a processed meat and it smells better. My Labrador is 
finicky and she appreciates this product better than most. 

 

Unlike the data set in the movie recommendation example, this data set include more than two nominal 
input variables. In this situation, the factorization machine model is equivalent to the following pairwise-
interaction tensor factorization equation: 

https://snap.stanford.edu/data/web-FineFoods.html
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𝑦̂(𝒙) = 𝑦̂(𝑢𝑠𝑒𝑟, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑡𝑖𝑚𝑒, ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠 ) 
           = 𝑤0 + 𝑤𝑢𝑠𝑒𝑟 + 𝑤𝑝𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑤𝑡𝑖𝑚𝑒 + 𝑤ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠 

                +〈𝒗𝑢𝑠𝑒𝑟 , 𝒗𝑝𝑟𝑜𝑑𝑢𝑐𝑡〉 + 〈𝒗𝑢𝑠𝑒𝑟 , 𝒗𝑡𝑖𝑚𝑒〉 + ⋯ + 〈𝒗𝑢𝑠𝑒𝑟 , 𝒗ℎ𝑒𝑙𝑝𝑓𝑢𝑙𝑛𝑒𝑠𝑠〉 

 

This model considers every interaction between pairs of input variables. Although you might find this 
equation cumbersome, the corresponding PROC FACTMAC syntax is actually quite simple to specify. 
After importing the data into SAS, you can train the model by using the following code: 

   proc factmac data=mycas.amazon_foods 

      nFactors=20 learnStep=0.01 maxIter=50 outModel=mycas.factors; 

      input userId productId time helpfulness /level=nominal; 

      target reviewScore /level=interval; 

      output out=mycas.out1 copyvars=(userId productId time helpfulness); 

   run; 

 

If you have PROC FACTMAC from the initial release of SAS Visual Data Mining and Machine Learning, 
you can alternatively use the following code: 

   %pairwiseFactMac(inputVarList=userId productId time helpfulness, 

                 target=reviewScore, 

                 dataset=amazon_foods, 

                 maxIter=50, 

                 nFactors=20, 

                 learnStep=0.01, 

                 configFile=); 

 

The pairwiseFactMac macro is provided in the Appendix at the end of this paper. 

The model achieves an RMSE of 0.91, which is competitive with other methods. You can visit 
https://github.com/sassoftware/enlighten-apply for additional code snippets and tips for incorporating the 
text of the reviews into the analysis. Interestingly, the Amazon Fine Food reviews are overwhelmingly 
positive, and coffee is by far the most popular product, well ahead of chocolate. 

FACTORIZATION MACHINES FOR IMAGE RECONSTRUCTION 

In image processing, it is sometimes necessary to perform reconstruction based on damaged copies of 
an image. You can use PROC FACTMAC for this purpose, by using the following code example: 

   proc factmac data=mycaslib.sparsePixels 

      outmodel=factors 

      maxiter=500 

      nfactors=100 

      learnstep=0.01 

      seed=12345; 

      input x y  /level=nominal; 

      target pixelValue /level=interval; 

      output out=mycaslib.FactMacScore copyvar = (x y pixelValue); 

   run; 

https://github.com/sassoftware/enlighten-apply
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The sparsePixels data table consists of three columns: x, y, and pixelValue. Each row corresponds to 

a nonmissing pixel. The results are shown in Figure 5. In this example, the corrupted image has 50% 
missing pixels. 

Note that factorization machines are suitable for imputing many other types of data besides images. 

 

 

     

Figure 5. Image reconstruction. Left: Original image. Center: 50% missing pixels. Right: Image 
reconstructed using PROC FACTMAC. 

 

FACTORIZATION MACHINES FOR PREDICTIVE MODELING IN BASKETBALL 

The data for this example consist of basketball shots recorded during the 2015–2016 NBA season, from 
October 2015 through March 2016. The data set was downloaded using the API available from 
Sportradar.com. Every shot taken by every player is recorded, excluding free throws. Figure 6 shows how 
shot success varies by where on the court the shot was taken and whether the player is a center, forward, 
or guard. 

The input variables that are used for the analysis are player_name, action_type, shot_zone_area, and 
shot_zone_range. The target variable is constructed by computing the log-odds of shot success per 
player. 

In this example, as in the food reviews example, there are more than two nominal variables. Hence, you 
can perform pairwise-interaction tensor factorization. 
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Figure 6. Shot success by court location and player position. Data from Sportradar.com. 

 

The following code performs pairwise-interaction tensor factorization for this data set: 

 

   proc factmac data=mycaslib.nbaShooting_summarized 

      outmodel=factors 

      maxiter=50 

      nfactors=10 

      learnstep=0.03 

      input player_name action_type shot_zone_area shot_zone_range 

                   /level=nominal; 

      target logit /level=interval; 

      output out=mycaslib.ScoreTrain copyvar=logit; 

      savestate rstore=mycaslib.astore; 

   run; 

 

You can score a held-out data set by using the following statements: 

   proc astore;  

      score data = mycaslib.valid  

      out=mycaslib.ScoreValid&i copyvar = (&target.) 

      rstore = mycaslib.astore&i.; 

   run; 
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Alternatively, if PROC FACTMAC in your release of SAS Visual Data Mining and Machine Learning does 
not support tensor factorization, you can use the following code to perform pairwise-interaction tensor 
factorization and score a held-out validation data set: 

   %pairwiseFactMac(inputVarList=player_name action_type shot_zone_area 

                       shot_zone_range, 

                 target=logit, 

                 dataset=ray.nbaShooting_Summarized, 

                 maxIter=50, 

                 nFactors=10, 

                 learnStep=0.03, 

                 configFile=); 

 

The pairwiseFactMac macro is provided in the Appendix at the end of this paper. 

In addition to achieving an RMSE value of 0.93, which favorably compares to 1.39 for a support vector 
machine used with the same data, the factorization machine analysis reveals multiple insights. The 
following action types are most associated with shot success (they have the highest estimated bias 
values): 

 running dunk shot 

 running layup 

 driving layup 

 alley-oop dunk shot 

 dunk shot 

 cutting dunk shot 

 putback layup 

 driving dunk shot 

 tip dunk shot 

 driving dunk shot 

 

As you can see, a large proportion of these action types are dunk shots. In contrast, the following action 
types are most associated with shot failure: 

 turnaround hook shot 

 turnaround jump shot 

 fadeaway jump shot 

 driving floating layup 

 turnaround fadeaway shot 

 running jump shot 

 hook shot 
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 step-back jump shot 

 pull-up jump shot 

 jump shot 

 

These action types are known to represent difficult, acrobatic shots. In addition, Figure 7 shows a 
visualization of the player and action factor vectors on the same plot. Because these are high-
dimensional vectors, a 2D visualization is created using the t-distributed stochastic neighbor embedding 
(t-SNE) method (Van der Maaten and Hinton 2008). Blue points are actions, and red points are players. 
Similar shots appear close together, as do players who have similar shot profiles (such as Kobe Bryant 
and Russell Westbrook). Also, it appears from the figure that Manu Ginobili is proficient at driving floating 
layups, because his latent factor vector is embedded very near that of the corresponding action. 

 

 

Figure 7. Visualization of player (red) and action (blue) factors. Data from Sportradar.com. 

CONCLUSION 

The FACTMAC procedure implements factorization machines in SAS Visual Data Mining and Machine 
Learning. This new model enables you to solve a variety of tasks, from recommendation to predictive 
modeling and image processing, all of which involve sparse data. Thanks to a highly parallel optimization 
solver, PROC FACTMAC can handle very large data sets. This powerful and flexible method provides not 
only predictions but also meaningful factor representations that can give you insights into many types of 
business problems. 
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APPENDIX 

The following macro implements pairwise-interaction tensor factorization by combining multiple pairwise 
factorization machine models. 

 

      %macro pairwisefactMac( 

         inputVarList=, 

         target=, 

         dataset=, 

         partitionFraction=.7, 

         maxIter=100, 

         nFactors=25, 

         learnStep=0.10, 

         configFile= 

      ); 

 

      %let nInputs = %sysfunc(countw(&inputVarList.)); 

      %put nInputs = &nInputs.; 

      %let k = 2; /*k=2 requests pairs*/ 

 

      %let nCombo = %sysfunc(comb(&nInputs.,&k.)); 

      %put nCombo = &nCombo.; 

 

      %let listQuoted = ; 

 

    *identify each pair inputs; 

      data pairs (keep=pairs); 

            length pairs $65.; 

            array V{&nInputs.} $32 ( 

 

                /*quote each input*/ 

                        %do i = 1 %to &nInputs.; 

                              %let currentVar = %scan(&inputVarList.,&i.); 
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                              "&currentVar." 

                        %end;  

               ); 

 

                     do j=1 to &nCombo.; 

                         call allcomb(j,&k.,of V[*]); 

                         do i = 1 to &k.; 

                            if i=1 then  

                            do;  

                                          pairs=""; 

                                counter=0; 

                            end; 

                            counter=counter+1; 

                            pairs=cat(compress(pairs),' ',compress(V[i])); 

                            if counter=&k. then output; 

                         end; 

                    end; 

      run; 

 

      *save pairs as macro variables; 

      data _null_; 

            set pairs end = eof; 

          call symput ('pair'||strip(_n_),pairs); 

      run;  

 

      *call proc factmac, looping over the pairs;   

     libname mycaslib sasioca ; 

 

      data mycaslib.train mycaslib.valid; 

            set &dataset.; 

            if ranuni(0) le &partitionFraction. then output mycaslib.train; 

                  else output mycaslib.valid; 

      run;  

 

      %do i = 1 %to &nCombo.; 

            proc factmac data=mycaslib.train  

                   maxiter=&maxIter. 
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                  nfactors=&nFactors. 

                  learnstep=&learnStep.; 

                  input &&pair&i. /level=nominal; 

                  target &target. /level=interval; 

                  output out=mycaslib.ScoreTrain&i. copyvar = (&target.); 

                  savestate rstore=mycaslib.astore&i.; 

            run; 

 

            proc astore;  

            score data = mycaslib.valid  

            out=mycaslib.ScoreValid&i copyvar = (&target.) 

                  rstore = mycaslib.astore&i.; 

            run;  

      %end;  

 

      data mycaslib.ScoreTrain; 

            merge  

            %do i = 1 %to &nCombo.; 

                  mycaslib.ScoreTrain&i. (rename=(p_&target. = 

p_&target._&i.)) 

            %end;  

          ; 

            _partInd_ = 1;  

      run;  

 

      data mycaslib.ScoreValid; 

            merge  

            %do i = 1 %to &nCombo.; 

                  mycaslib.ScoreValid&i. (rename=(p_&target. = 

p_&target._&i.)) 

            %end;  

          ; 

 

            _partInd_ = 0; 

      run;  

 

      data mycaslib.ScoreCombined; 

            set mycaslib.ScoreTrain  
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            mycaslib.ScoreValid 

        ; 

      run;  

 

   *build a regression model to predict target using predicted values for all 

pairs;  

   proc regselect  data = mycaslib.scoreCombined; 

      model &target.= 

       %do i=1 %to &nCombo.;    

                  p_&target._&i. 

         %end;  

      ; 

      partition rolevar=_partInd_ (TRAIN="1" VALIDATE="0"); 

   run;  

   quit; 

%mend pairwiseFactMac; 
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