
1

Paper SAS235-2017

The REPORT Procedure and ODS Destination for Microsoft Excel: The
Smarter, Faster Way to Create First-Rate Excel Reports

Jane Eslinger, SAS Institute Inc.

ABSTRACT
Does your job require you to create reports in Microsoft Excel on a quarterly, monthly, or even weekly
basis? Are you creating all or part of these reports by hand, referencing another sheet containing rows and
rows and rows of data? If so, stop! There is a better way!

The new ODS destination for Excel enables you to create native Excel files (XLSX) directly from SAS. Now
you can include just the data you need, create great-looking tabular output, and do it all in a fraction of the
time!

This paper shows you how to use PROC REPORT to create polished tables that contain formulas, colored
cells, and other customized formatting. Also presented in the paper are the destination options used to
create various workbook structures, such as multiple tables per worksheet. Using these techniques to
automate the creation of your Excel reports will save you hours of time and frustration, enabling you to
pursue other endeavors.

INTRODUCTION

No matter which industry you work in, no matter if your company is big or small, reports in Microsoft Excel
are probably a fundamental part of your business life. Microsoft Excel reports seem to be universal and
accepted by everyone. Unfortunately, though, many of those reports are still created manually, consuming
vast amounts of analysts’ time. Well, it is time to change that! You already have SAS® software, so why not
use it to create those Excel reports for you? You can create a SAS program to generate each weekly,
monthly, and quarterly report, and then spend your time on more important tasks. This paper is going to
show you how to do just that. The effort you make now in learning about the ODS destination for Excel will
benefit you later.

You will learn about ODS destination for Excel options that can be used to create the desired workbook
structure. These options include such things as tab names, tab color, specifying the cell in which the report
starts, and specifying the scale to use when printing. All of those options are important to the final look and
feel of the report, which, to the consumer of the report, can be just as important as the numbers.

The examples in this paper focus on creating tabular output with the REPORT procedure. Though the
ODS destination for Excel is also capable of supporting graphical output, this paper concentrates on tables
containing the numbers from your analyses. PROC REPORT provides the capability to mimic the tables
created manually in Excel.

Important features of tables include formulas, colors, and customized formatting. Headers and rows of text
also play an important role in conveying the information that is inside of the report. Each of these topics is
covered through PROC REPORT examples in this paper.

As you read and work through the examples in this paper, please be aware that the ODS destination for
Excel did not become production until the third maintenance release of SAS® 9.4 (SAS 9.4 TS1M3). The
ODS EXCEL statement was available in 9.4 TS1M1; however, it is best if you use SAS 9.4 TS1M3 or later,
especially when creating production-level jobs.

INVEST TIME IN LEARNING THE ODS DESTINATION FOR EXCEL

Your time is valuable, so you want to create Excel reports as quickly as possible and move on to more
interesting or pressing tasks. However, you might wonder if PROC REPORT and the ODS destination for
Excel can create what you need. This is an understandable concern. SAS is really good at creating
reports, but you need to determine whether it can create your report.

2

The best way to determine whether you can mimic your current manual reports is to explore the options
and suboptions available within the ODS destination. These options control the printing, display, and
structural components of each workbook. They play an integral role in producing a high-quality Excel
report that not only conveys numbers but is also easy to navigate.

ODS EXCEL STATEMENT OPTIONS FOR DOCUMENT PROPERTIES

First things first. The ODS EXCEL statement has options just like all other ODS statements. A number of
options in the ODS EXCEL statement are used to control the document properties. Depending on your
business requirements, you might need to use any or all of these options. These options include:

 AUTHOR

 CATEGORY

 COMMENTS

 KEYWORDS

 STATUS

 TITLE

The values for these options must be set in the ODS EXCEL statement that also contains the FILE=
option. In other words, they must be set when document creation is started.

Note: A few options in the ODS EXCEL statement control graphical output: TITLE | NOGTITLE,
GFOOTNOTE | NOGFOOTNOTE, DPI, and IMAGE_DPI. However, this paper is about tabular output, so
please see the SAS® 9.4 Output Delivery System: User's Guide, ODS EXCEL Statement for an
explanation of these options.

ODS EXCEL STATEMENT OPTIONS OPTION

The most important option in the ODS EXCEL statement is called, lamentably, OPTIONS. It enables you
to specify a suboptions list that provides greater control over the structure of your Excel workbook and
worksheets. You will find the OPTIONS option is the one you need to use the most, so spend some time
learning about its uses.

The OPTIONS option is immediately followed by an open parenthesis, unlike other options that are
followed by an equal sign. Within the parentheses, you list the suboptions that you would like to apply to
the worksheet. The value of each suboption must be enclosed in quotation marks. You can use either
single or double quotation marks. It is a little confusing, but once you start to use the ODS EXCEL
statement regularly, you will become more comfortable with the syntax and the difference between
OPTIONS for the ODS statement and suboptions that go in parentheses.

The suboptions within OPTIONS parentheses can be toggled on and off during the creation of the
document, depending on your needs. The suboptions are specific to each individual worksheet. However,
once set, the value of a suboption is retained for all subsequent worksheets until it is changed.

The SAS 9.4 TS1M3 documentation lists approximately 45 suboptions! Roughly half of these control
various printing aspects of the worksheet. The other half control the visual parts that you notice when
viewing the report on the screen. Forty-five suboptions is too many to list in this paper, and too many to
focus on. Consequently, only the most important and commonly used suboptions are demonstrated here.

One suboption is important to mention specifically because it can be confusing. This is the GRIDLINES
suboption. The GRIDLINES suboption does not affect what you see on the screen when you are viewing
the report—it affects only printed output. The “Gray Lines and Borders” section of this paper covers how to
include or exclude the standard light gray lines that you see when you open Microsoft Excel. It also
demonstrates how to outline the table and cells with more pronounced borders.

You might be familiar with the suboption DOC from other ODS tagsets. The DOC suboption is not
available in the ODS destination for Excel. You do not get an error if you include it, but information is not

3

written to the log. All information about options and suboptions for the Excel destination is contained in the
ODS Excel Statement documentation mentioned above.

Suboptions That Control Worksheet Features

Some worksheet features need to be set no matter what type of output the worksheet will contain. This
section discusses the suboptions that are used to control worksheet features.

Example 1, below, includes these suboptions:

 EMBEDDED_TITLES places the title(s) as part of the worksheet.

 EMBEDDED_FOOTNOTES places the footnote(s) as part of the worksheet.

 TAB_COLOR changes the background color of the tab name.

 START_AT identifies the cell in which to place the first column’s header; in SAS 9.4 TS1M3, this must
be listed as two numbers in the form column, row.

 FROZEN_HEADERS specifies header rows that should remain static when scrolling up and down.

Example 1:

ods excel file='example1.xlsx' options(embedded_titles='yes'

 embedded_footnotes='yes' tab_color='purple' start_at='2,4'

 frozen headers='yes');

title 'This title will appear in the worksheet';

footnote 'This footnote will appear in the worksheet';

proc report data=sashelp.class;

run;

ods excel close;

Output 1. Results for Example 1

4

In Output 1, the output starts at cell B4, the result of using the START_AT suboption. Since the
EMBEDDED_TITLES suboption is used, this means that the titles are placed within the document, in cell
B4. One row is skipped between the titles and the table. The table begins on row 6.

Notice the line under row 6. This is a visual indicator of the scrolling capabilities from using
FROZEN_HEADERS. When you scroll farther down the screen, the first six rows remain static.

The ODS destination for Excel also has a suboption called FROZEN_ROWHEADERS, which specifies
that a column should remain static when you scroll left and right. When FROZEN_ROWHEADERS is set
to YES, which column is frozen depends on the procedure. For example, PROC PRINT has an OBS
column, which is considered a row header and is therefore frozen when the FROZEN_ROWHEADERS
suboption is used. PROC REPORT does not have a column designated as a row header. Currently, it is
not possible to designate a column generated by PROC REPORT as a row header. For PROC REPORT,
you have to specify a number value in the FROZEN_ROWHEADERS suboption to freeze a column.

Also, notice that the title and footnote wrap. In Output 1, above, the title and footnote are confined to the
width of the table. You can alter this behavior using the TITLE_FOOTNOTE_NOBREAK suboption. Setting
this option to YES, as shown below in Example 2, prevents the title and footnote from wrapping by
merging as many cells as necessary to hold the title/footnote.

Example 2:

ods excel file='example2.xlsx' options(embedded_titles='yes'

 embedded_footnotes='yes' tab_color='purple' start_at='2,4'

 frozen_headers='yes' title_footnote_nobreak='yes');

Output 2. Results for Example 2 Using TITLE_FOOTNOTE_NOBREAK

5

Suboptions That Control Table Features

The previous section discussed suboptions that control the worksheet features. This section discusses
suboptions that control table features. Frequently used suboptions that provide this control are listed below
and demonstrated in Example 3.

 HIDDEN_ROWS hides specific rows in the worksheet.

 AUTOFILTER turns on Excel filtering capability; can be applied to all columns or a subset of columns.

 ABSOLUTE_COLUMN_WIDTH specifies the column width; one width can be listed for all columns, or
a width can be listed for multiple columns. Cannot be overwritten by style attributes within the
procedure.

 ABSOLUTE_ROW_HEIGHT specifies the row height; one width can be listed for all rows, or a height
can be listed for multiple rows.

Example 3:

ods excel file='example3.xlsx' options(hidden_rows='6' autofilter='1-3'

 absolute_column_width='16' absolute_row_height='25');

proc report data=sashelp.cars;

run;

ods excel close;

Output 3. Results for Example 3

Immediately you can see the difference in the table between Output 3 and Output 1. All of the columns are
the same width, and each row is tall enough to provide visual separation between the data values.

The ABSOLUTE_COLUMN_WIDTH suboption plays a key role in the look of this table. It is one of the last
features applied to the column. It always wins. This means that if you set a column width within the
procedure, ABSOLUTE_COLUMN_WIDTH will override it. This suboption is good to use when you want
the column to be a consistent size no matter how many characters are in the data field. Without this
setting, the width of the column depends on the data values or a width specification within the procedure.

Note: The value specified by ABSOLUTE_COLUMN_WIDTH is not the pixel value you see when manually
widening a column. It is the value shown by right-clicking the column and selecting Column Width.

The drop-down arrows in the first three column headers were created with the AUTOFILTER suboption. A
person reviewing the report can use these filters to subset the report without having to change the data or
rerun the report.

ABSOLUTE_ROW_HEIGHT sets the same height, 25, for all rows in the table, including the header row.

6

In Output 3, above, notice that you cannot see row 6. The row is still present, but you cannot see it
because the HIDDEN_ROWS suboption was used. The HIDDEN_ROWS suboption is especially helpful
for rows created by the BREAK statement. PROC REPORT cannot conditionally execute or print a row
generated by a BREAK statement; this means that the BREAK statement will sometimes have the same
values as the detail row above it because the grouping had only one subgrouping value. The
HIDDEN_ROWS suboption enables you to suppress that repetitive row.

Suboptions That Affect the Number of Worksheets Created

So far, we have discussed suboptions that affect worksheet features and some of the table’s structural
features like column widths. You might have noticed that those sections focused on just one table on one
worksheet. Chances are, though, the reports you create by hand contain multiple worksheets. They might
also contain multiple tables per worksheet.

The default behavior for the destination is to place each table it its own worksheet. Please be aware that
the distinction between table and procedure is very important, especially for PROC REPORT. By default,
PROC REPORT creates just one table, so the output from the procedure creates just one worksheet.
However, using the BREAK statement with the PAGE option generates multiple tables. Each one of these
tables is written to its own worksheet.

The code in Example 4 uses the PAGE option with the break variable SEX. The result, shown in Output 4,
is a workbook with two worksheets.

Example 4:

ODS excel file='example4.xlsx';

proc report data=sashelp.class;

 column sex name age height weight;

 define sex / group;

 break after sex / page;

run;

ods excel close;

Output 4. Results for Example 4

The SHEET_INTERVAL suboption controls if and when more worksheets are created. It has five possible
values, which are explained in the documentation. The value of NONE enables you to put multiple pieces
of output, generated by one procedure or multiple procedures, in the same worksheet. Specifying either a
SHEET_NAME or SHEET_LABEL suboption controls the name of the worksheet. If SHEET_NAME and
SHEET_LABEL are used together, the SHEET_NAME value is used.

Example 5 demonstrates using the SHEET_INTERVAL suboption to keep all of the tables generated by
PROC REPORT in the same worksheet. The SHEET_NAME suboption provides a useful name.

7

Example 5:

ods excel file='example5.xlsx' options(sheet_name='Cars by Make'

 sheet_interval='none');

proc report data=sashelp.cars;

 by make;

 column model type invoice;

run;

ods excel close;

Output 5. Results for Example 5

Please note, if you are using a BY statement, are generating multiple worksheets, and need each sheet to
be named the value of the BY value, you can use #BYVARn, #BYVALn, or #BYLINE in the SHEET_NAME
suboption. The biggest advantage to using BY statements to create multiple sheets is that you have
control over the sheet names.

Code for Multiple Tables in Multiple Worksheets

Now it is time to combine the aforementioned techniques. The next logical progression is to create a file
that has multiple tables in multiple worksheets. Currently, the ODS destination for Excel does not have a
suboption for forcing the creation of a new sheet at a specific place in your program. This ability will likely
be added in a future release of SAS, but for SAS 9.4 TS1M3, you must generate a dummy output object in
order to trigger a new sheet.

First, in Example 6, the SHEET_INTERVAL suboption is set to OUTPUT. The dummy output object is
generated by a DATA _NULL_ step. After the DATA step, the SHEET_INTERVAL suboption is set back to
NONE. Notice that the ODS EXCEL statements used to toggle the SHEET_INTERVAL suboption do not
have the FILE= option; they contain only the OPTIONS option. Also, notice the ODS EXCLUDE

8

statements. These statements prevent the results of the DATA _NULL_ step from being included in the
workbook. Remember, the output object does not need to be seen, just used to start a new worksheet.

Example 6:

ods excel file='example6.xlsx' options(sheet_interval='none'

 sheet_name='Class');

proc report data=sashelp.class;

 column age height weight;

define age / group;

define height / mean;

define weight / mean;

rbreak before / summarize;

run;

proc report data=sashelp.class;

 column sex height weight;

define sex / group;

define height / mean;

define weight / mean;

rbreak before / summarize;

run;

ods excel options(sheet_interval='output');

ods exclude all;

data _null_;

 declare odsout obj();

run;

ods select all;

ods excel options(sheet_interval='none' sheet_name='Heart');

proc report data=sashelp.heart;

 column bp_status height weight;

define bp_status / group;

define height / mean;

define weight / mean;

rbreak before / summarize;

run;

proc report data=sashelp.heart;

 column sex height weight;

define sex / group;

define height / mean;

define weight / mean;

rbreak before / summarize;

run;

ods excel close;

9

Output 6. Results for Example 6

Macro Code for Multiple Worksheets

You might have noticed that the code in Example 6 runs almost exactly the same PROC REPORT step
four times. Often, Excel reports consist of the same table structure used multiple times, only the values
within the table change based on account number, company, school, and so on. The code can be
converted into a macro program, which is a great tool for repetitive steps.

Statements needed to start a new worksheet can also go inside of a macro program. Then you can use
one statement, the macro call, wherever you need it without it clogging up the main part of your program.

Example 7 creates the exact same file as Example 6. The difference is the code that is used. Example 7
places the PROC REPORT code inside of a macro program called %PRCODE. It also places the DATA
NULL step inside of a macro program called newsheet. Each macro program is called and executed the
appropriate number of times in order to generate one workbook containing two worksheets, each with two
tables.

Example 7:

%macro prcode(sheetname, dsname, grpvar);

ods excel options(sheet_interval='none' sheet_name="&sheetname");

proc report data=&dsname;

 column &grpvar height weight;

define &grpvar / group;

define height / mean;

define weight / mean;

rbreak before / summarize;

run;

%mend prcode;

%macro newsheet;

ods excel options(sheet_interval='output');

ods exclude all;

data _null_;

 declare odsout obj();

run;

10

ods select all;

%mend newsheet;

ods excel file='example7.xlsx';

%prcode(Class, sashelp.class, age);

%prcode(Class, sashelp.class, sex);

%newsheet;

%prcode(Heart, sashelp.heart, bp_status);

%prcode(Heart, sashelp.heart, sex);

ods excel close;

One very important aspect to consider when using macros is whether you are generating one file or
multiple files. Example 7 generates only one file; therefore, the ODS EXCEL statement with the FILE=
option is outside of the macro, so it is only executed once. You might need to generate multiple files, each
one for a different division within the company. In that situation, the statement with the FILE= option and
the ODS EXCEL CLOSE statement should be placed within the macro program so that it is executed each
time the macro is executed.

Placing PROC REPORT inside of a macro program is extremely helpful when generating a table that uses
an ACROSS variable and assignment or CALL DEFINE statements are needed for those columns. The
macro code makes it very easy to generate _cn_ references. You might also consider using a macro logic
to generate DEFINE statements for multiple analysis variables.

This paper cannot demonstrate all of the possible ways to use macro programs when generating Excel
reports. Hopefully, the code above gives you an idea of the possibilities that are available to you.

INVEST TIME IN LEARNING PROC REPORT

The time you spent learning about the ODS destination for Excel in the previous section is going to pay off.
Knowing its capabilities and how it works will help you develop your SAS programs faster. And remember,
creating the Excel report via SAS will eventually save you hours of time each month.

Next, you need to spend a little time thinking about the procedure that will help you create that report. As
mentioned in the Introduction, this paper focuses on using PROC REPORT. The paper focuses on using
PROC REPORT to create the tabular output because it can do the following:

 Calculate statistics

 Create columns using data that is not in the data set

 Add lines of text

 Transpose the data without first restructuring the data set

 Add blank rows

 Apply formatting based on values of other variables

The PRINT and TABULATE procedures have some of these capabilities, but not all. PROC REPORT is
the best way to mimic the tables that you currently create manually. No paper can teach you everything
you need to know about PROC REPORT, but it can demonstrate how to achieve the important features of
the tables that you currently have in Excel.

One of the most important aspects of using PRINT, TABULATE, or REPORT to generate the final report is
that you no longer have to dump all of your data into Excel and then manually generate the report. Instead,
you use the full data set as input to PRINT, TABULATE, or REPORT and generate the report for Excel
using the procedure syntax. In most cases, the amount of data sent to Excel will be much smaller.

11

REPORT CREATION

Whether you realize it or not, the Excel report you are creating has a lot of different parts and features.
Each one of those individual characteristics has to be thought about and programmed. One way to make
sure you do not forget anything is to examine a report that you already have and list all of the features it
includes and then use that as a guide.

This section does things a little differently than the previous sections. Instead of showing you the code
followed by the output, we start with the results shown in Output 8 and then concentrate on the code.

The key features of this output are called out by the circled numbers and are explained below. The PROC
REPORT code follows the explanations. The callout numbers in the code and in the explanations
correspond to the numbers in Output 8. The code might seem lengthy, but remember, you did a lot of work
in Excel too! Every piece of your report requires a piece of code.

Output 8. Results for Example 8

The key features of the above Excel report are as follows:

 Section headers with a colored background

 Leading zeros for character variables

12

 Appropriately formatted analysis variables

 Bolded values in all summary rows

 Summary row for each region

 Customized text in the summary row for each region

 Borders on the summary row for each region

 Formulas for the SALE variable in the summary row for each region

 A blank row between each section

⑩ Coloring of the SALE column based on sales criteria

⑪ Summary row for the entire report

⑫ Customized text in the summary row for the entire report

⑬ Borders on the summary row for the entire report

⑭ Change the format for the PRICE variable in the summary row for the entire report

⑮ Formulas for the SALE variable in the summary row for the entire report

Example 8:

data pricedata;

 length productname $50.;

 set sashelp.pricedata;

 if productname="Product8" then product=8;

 else if productname="Product9" then product=9;

 else if productname="Product10" then product=10;

 else if productname="Product11" then product=11;

 productnum = put(product,z3.);

run;

ods excel file='example8.xlsx' options(embedded_titles='yes'

 frozen_headers='yes');

title "Year-end Sales Totals";

proc report data=pricedata style(summary)=[font_weight=bold];

column region regionname product productname productnum cost price

 sale;

 define region / group noprint order=internal;

 define regionname / group noprint;

 define product / group noprint order=internal;

 define productname / group;

 define productnum / group 'Product Number' format=$3.;

 define price / style(column)=[tagattr="format:$#,###.00;$-#,###.00"];

 define cost / style(column)=[tagattr="format:$#,###;$-#,###"];

 define sale / style(column)=[tagattr="format:#,###"];

 break after regionname / summarize;

 rbreak after /summarize; ⑪

 compute before regionname /style=[background=lightblue just=l

 font_weight=bold];

13

 line regionname $20.;

 endcomp;

 compute after regionname;

 productname = catx(' ','Total',regionname);

 if _break_ ^= '' then call define(_row_,'style',

'style=[bordertopstyle=solid bordertopwidth=1pt

bordertopcolor=black borderbottomstyle=solid borderbottomwidth=1pt

borderbottomcolor=black]');

 line ' ';

 endcomp;

 compute after;

 productname = "All Regions"; ⑫

call define(_row_,'style','style=[bordertopstyle=solid

bordertopwidth=1pt bordertopcolor=black borderbottomstyle=solid

borderbottomwidth=1pt borderbottomcolor=black]'); ⑬

call define('price.sum','style','style=[tagattr="format:$#,###;$-

#,###"]'); ⑭

 endcomp;

 compute sale;

 if _break_ = '' then do; ⑩

 if sale.sum < 20000 then call define(_col_,'style',

'style=[background=red]');

 else if sale.sum > 30000 then call define(_col_,'style',

'style=[background=green]');

 end;

 else if upcase(_break_) = 'REGIONNAME' then do;

 if region = 1 then call define('sale.sum','style',

'style=[tagattr="formula:sum(E5:E7) format:#,###"]');

 else if region = 2 then call define('sale.sum','style',

'style=[tagattr="formula:sum(E11:E18) format:#,###"]');

 else if region = 2 then call define('sale.sum','style',

'style=[tagattr="formula:sum(E22:E27) format:#,###"]');

 end;

 else if _break_ = '_RBREAK_' then do; ⑮

 call define('sale.sum','style',

'style=[tagattr="formula:sum(E8,E19,E28) format:#,###"]');

 end;

 endcomp;

run;

ods excel close;

 Section headers with a colored background

Each region in the report needs its own section. The first row of that section should indicate the name
of the region and have a background color. The COMPUTE BEFORE REGIONNAME statement uses
the STYLE= option to apply the background color. The LINE statement within the compute block writes
the name of the region.

 Leading zeros for character variables

PRODUCTNUM is a character variable that contains numbers starting with zeros. Specifying the
format $3. prevents Microsoft Excel from stripping the leading zeros. Another method for

accomplishing the same thing is to specify the type STRING.

14

define productnum / group 'Product Number'

style(column)={tagattr="type:String"};

In a future release of SAS, it is likely you will be able to specify a format to maintain leading zeros.

define productnum / group 'Product Number'

style(column)={tagattr="format:@"};

With all three of these methods, Excel puts small green triangles in the corner of the cell to indicate a
conflict with placing a numeric value in a character column. In a future release of SAS, you will likely be
able to specify the following format to both maintain the zero and avoid the triangles.

define productnum / group 'Product Number'

style(column)={tagattr="format:000"};

 Appropriately formatted analysis variables

The DEFINE statements for the analysis variables use the TAGATTR attribute to specify the Microsoft
Excel formula for that column. The PRICE and COST variables are given a currency format. The SALE
variable is given a numeric format with commas.

 Bolded values in all summary rows

The STYLE(SUMMARY)= option applies bolding to all the summary lines created with either a BREAK
or RBREAK statement.

 Summary row for each region

The BREAK statement generates a summary row for each value of REGIONNAME.

 Customized text in the summary row for each region

It is helpful to delineate the summary row for each region with informative text. For this report, the text
should include the region name. The REGIONNAME column is not printed; therefore, the text needs to
be placed inside the PRODUCTNAME column. The assignment statement for creating the text is
within the COMPUTE AFTER REGIONNAME block.

The DATA step above the PROC REPORT code is required because the original length of the
PRODUCTNAME variable was not long enough to hold all of the text. The length had to be changed
via a DATA step; it cannot be done within PROC REPORT.

 Borders for the summary row for each region

The COMPUTE AFTER REGIONNAME block controls the row generated by the BREAK statement.
The CALL DEFINE statement adds borders to those rows. Notice that the BORDERTOPSTYLE= and
BORDERBOTTOMSTYLE= attributes are set to solid to ensure that the borders appear with the
appropriate style, a solid line.

 Formulas for the SALE variable in the summary row for each region

A CALL DEFINE statement using the TAGATTR attribute to apply a formula is needed for each of the
regions in the report. The cells that are specified in the SUM formula were determined by first creating
the file and determining the row number for each of the region totals.

You will likely need to run the program multiple times to determine the correct column and cell
reference needed for the formula.

 A blank row between sections

The LINE statement specified with blank text inserts the blank row after each region section.

⑩ Coloring of the SALE column based on sales criteria

15

The background color of the SALE column indicates whether the value is well below or well above the
target value. Poor performance is indicated by a red background, and high performance is indicated by
a green background. In this example, the target value is a made-up value that is hardcoded. In more
robust code, the target value could be a macro variable or a variable in the data set. Also, more than
two colors could be applied. The example demonstrates adding the background colors to the cell for
one of the analysis variables, but it could be applied to all three if desired.

⑪ Summary row for the entire report

The RBREAK statement generates an overall summary row for the entire report.

⑫ Customized text on the summary row for the entire report

The COMPUTE AFTER block controls the row generated by the RBREAK statement. The
PRODUCTNAME variable is assigned an appropriate label for the overall summary row.

⑬ Borders on the summary row for the entire report

The CALL DEFINE statement adds borders to that row. Notice that the BORDERTOPSTYLE= and
BORDERBOTTOMSTYLE= attributes are set to solid in order to ensure that the borders appear with
the appropriate style, a solid line.

⑭ Change the format for the PRICE variable in the summary row for the entire report

A CALL DEFINE statement within the COMPUTE AFTER block changes the TAGATTR attribute for
the PRICE column in the overall summary row. Additional CALL DEFINE statements could be used to
change the TAGATTR for the other two analysis columns.

This example uses STYLE as the second argument to CALL DEFINE because SAS is sending a
specific Excel format to the destination. For other formats, like formats defined in SAS, you can use
the same concept. However, instead of STYLE as the second argument, you would use FORMAT.

⑮ Formulas for the SALE variable in the summary row for the entire report

The CALL DEFINE statement uses the TAGATTR attribute to apply a formula to the overall summary
row. The cells that are specified in the SUM function were determined by first creating the file and
seeing which rows contained the region totals. The program is then modified, adding the CALL
DEFINE statement with the correct cell references.

You will likely need to run the program multiple times to determine the correct column and cell
reference needed for the formula.

The first four DEFINE statements (REGION, REGIONNAME, PRODUCT, PRODUCTNAME) were not
mentioned specifically above because they do not directly create any of the features of the final report.
However, the variables in those DEFINE statements play a very important role. The REGION and
PRODUCT variables are numeric values. They correspond to the REGIONNAME and PRODUCTNAME
variables. They are used to ensure that the text values that do appear in the report are in the desired
order. The SASHELP.PRICEDATA data set comes with these numeric values. You might need to create
numeric variables to ensure that your categorical character values are in the desired sort order.

The placement of those variables in the COLUMN statement is also very important. The numeric REGION
variable is followed by the character REGIONNAME variable. Then the numeric PRODUCT is listed,
followed by the character PRODUCTNAME variables. It is important to keep the pairs together and to list
the numeric variable first.

Example 8 has many features for a relatively simple report. The code becomes longer and more complex
with more grouping variables or more lines of text. Using ACROSS variables also adds a layer of
complexity. Planning out your report and ensuring that you have the variables needed to accomplish the
output is important for these types of reports.

CUSTOMIZED TEXT

In Example 8, above, it was relatively straightforward to place customized text in the summary rows. The
LENGTH statement in the DATA step increased the width of the variable and the assignment statement in

16

the compute block provided the text. The process gets more complex if the column you want to add text to
is created by a numeric variable. The ODS destination for Excel does not honor the PRETEXT= attribute
that is sometimes used with other ODS destinations to add text to numeric values.

When planning your report and creating the code, think about the variables you are using. You might have
a variable that is numeric but has a format that displays character strings. If you want additional text in the
report for this column, you must create a character version of the variable. You can create the character
version in a DATA step above the PROC REPORT code or via a COMPUTED column within the PROC
REPORT code.

Example 9 demonstrates creating a character version of REGION. Notice that REGION is in the COLUMN
statement. It must be in the COLUMN statement so that its value is available. It also serves as a grouping
and sorting variable. The format created by the PROC FORMAT step would normally be applied to the
REGION variable, but here it is used to create the CHAR_REG variable.

Example 9:

proc format;

value reg

1 = 'Top Region'

2 = 'Middle Region'

3 = 'Bottom Region';

run;

ods excel file='example9.xlsx';

proc report data=sashelp.pricedata;

 column region char_reg cost price sale;

 define region / group noprint;

 define char_reg / computed 'Region';

 rbreak after / summarize;

 compute char_reg /char length=50;

 char_reg = put(region,reg.);

 if _break_ = '_RBREAK_' then char_reg = 'Total for All Regions';

 endcomp;

run;

ods excel close;

Output 9. Output from Example 9

GRAY LINES AND BORDERS

You might have noticed that the default style for the ODS destination for Excel creates a table with gray
lines, with the rest of the sheet space all white. The style template for the destination was created to make
the table look like what is normally seen in blank Microsoft Excel spreadsheets. This section demonstrates
how to remove those gray lines and how to add borders to the table.

Microsoft Excel’s Gray Lines

As mentioned previously, gray cell lines are not controlled by the GRIDLINES suboption. The GRIDLINES
suboption only has an effect when you look at the spreadsheet in Print Preview mode or when you actually
print the spreadsheet. To remove the gray lines within the spreadsheet, you must change the
BORDERSTYLE style attribute to HIDDEN. PROC TEMPLATE is required to make this change.

17

Example 10:

ods path(prepend) work.templat(update);

proc template;

define style styles.nogray;

 parent=styles.excel;

 class header, data, dataemphasis, linecontent /

 borderstyle=hidden;

end;

run;

ods excel file='example10.xlsx' style=styles.nogray;

proc report data=sashelp.class;

run;

ods excel close;

Output 10. Results for Example 10

Some style templates might not produce the gray lines. If you want to include them, modify the style you
are using with the CLASS statement from the code below.

proc template;

define style styles.gray;

 parent=styles.ocean;

 class header, data, dataemphasis, linecontent /

 borderstyle=solid;

end;

run;

Borders Inside the Table

When creating an Excel report by hand, you can add borders around specific cells by right-clicking them
and choosing Format Cells-Borders. You can also add borders when creating a report with SAS.
Currently, the FRAME= and RULES= attributes often used with PROC REPORT style overrides in other
destinations are not honored in the destination for Excel. PROC TEMPLATE code can generate a new
style that inserts the borders. Example 11 shows code to apply borders to tables generated by PROC
REPORT.

18

Example 11:

ods path(prepend) work.templat(update);

proc template;

define style styles.eborders;

 parent=styles.excel;

 class data /

 borderstyle=solid

 borderwidth=1px

 bordercolor=black;

 class header /

 borderstyle=solid

 borderwidth=1px

 bordercolor=black;

end;

run;

ods excel file='example11.xlsx' style=styles.eborders;

proc report data=sashelp.class;

run;

ods excel close;

Output 11. Results for Example 11

COLOR IN THE HEADERS

Excel reports often have text in the rows above the column headers/labels. They provide dates, company
information, or simply more informative text. PROC REPORT can generate these headers using spanning
headers, via the COLUMN statement. Often, the cells containing the spanning headers need a background
color. Inline formatting commands are used to control the attributes of a spanning header. However,
Microsoft Excel does not honor the BACKGROUND= attribute inside of a spanning header.

To change the background color of text above column headers/labels, you must convert the spanning
headers to variables that can be defined as ACROSS. The first PROC REPORT step in Example 12
demonstrates including spanning headers. The second portion of Example 12 uses a DATA step to create

19

three new variables that contain the spanning header text from the first step. The second PROC REPORT
step then defines the new variables as ACROSS and assigns an appropriate background color.

Example 12:

ods excel file='example12.xlsx' options(sheet_interval='none');

proc report data=sashelp.pricedata;

 column region ('A' cost) ('B' price) ('C' sale);

 define region / group;

 define cost / style(header)=[background=yellow];

 define price / style(header)=[background=lightblue];

 define sale / style(header)=[background=lightred];

run;

data pricedata;

 set sashelp.pricedata;

 acr1='A';

 acr2='B';

 acr3='C';

run;

proc report data=pricedata;

 column region acr1,cost acr2,price acr3,sale;

 define region / group;

 define cost / style(header)=[background=yellow];

 define price / style(header)=[background=lightblue];

 define sale / style(header)=[background=lightred];

 define acr1 / across ' ' style(header)=[background=yellow];

 define acr2 / across ' ' style(header)=[background=lightblue];

 define acr3 / across ' ' style(header)=[background=lightred];

run;

ods excel close;

Output 12. Results for Example 12

CONCLUSION

The ODS destination for Excel provides an amazing opportunity to save time by creating Microsoft Excel
reports directly from SAS. You no longer have to spend hours manually creating your weekly, monthly, or
quarterly report.

The combination of PROC REPORT and the ODS destination for Excel has the capability to create tabular
output that includes lines of text, colors, and customized formatting. The resulting workbook can have
multiple tables per worksheet and multiple worksheets. You can even include formulas so that it is obvious
how a value was calculated.

20

The time you spend learning this destination and PROC REPORT will be invaluable. You will eliminate
hours of wasted time that could be used on more important tasks than formatting an Excel workbook!

REFERENCES

SAS Institute Inc. 2016. SAS 9.4 Output Delivery System: User’s Guide. Cary, NC: SAS Institute Inc.
Available at
http://support.sas.com/documentation/cdl/en/odsug/67921/HTML/default/viewer.htm#titlepage.htm.

Eslinger, Jane. 2016. The SAS Programmer’s PROC REPORT Handbook Basic to Advanced Reporting
Techniques. Cary, NC: SAS Press.

ACKNOWLEDGMENTS

The author is immensely grateful to Marty French for her inspiration, patience, and challenging questions,
and to Cynthia Zender and Chevell Parker, both of whom contributed to this paper, and to Vivian McGee,
who edited the paper.

RECOMMENDED READING

Parker, Chevell. 2016. "A Ringside Seat: The ODS Excel Destination versus the ODS ExcelXP Tagset."
Proceedings of the SAS Global Forum 2016 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings16/SAS5642-2016.pdf.

Eslinger, Jane. 2015. "The REPORT Procedure: A Primer for the Compute Block." Proceedings of the
SAS Global Forum 2015 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jane Eslinger
SAS Institute Inc.
Cary, NC
Email: support@sas.com
Web: support.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/odsug/67921/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/resources/papers/proceedings16/SAS5642-2016.pdf
http://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf

