ABSTRACT
With SAS® Viya™ and SAS® Cloud Analytic Services (CAS), SAS is moving into a new territory where SAS® Analytics is accessible to popular scripting languages using open APIs. Python is one of those client languages. We demonstrate how to connect to CAS, run CAS actions, explore data, build analytical models, and then manipulate and visualize the results using standard Python packages such as Pandas and Matplotlib. We cover a wide variety of topics to give you a bird's eye view of what is possible when you combine the best of SAS with the best of open source.

INTRODUCTION
This paper is a gentle introduction to using Python to access analytics from CAS. We begin with information on how to obtain the Python client and install it. We then show you how to connect to an existing CAS server and run actions. With those basics out of the way, we move on to more interesting subjects like loading data, performing simple analytics, and basic visualizations. We also demonstrate how to operate on tables in CAS using the popular Pandas DataFrame API. Finally, we cover some basic analytical modeling.

This might seem like a lot of territory to cover, but after working through it you’ll have a broad understanding of how to interact with CAS and we hope you will be inspired to start using it in your own processes.

DOWNLOADING AND INSTALLING THE PYTHON CAS CLIENT
The Python client to CAS treads on new ground for SAS. It is actually maintained in an open-source project in GitHub. This means that you can browse the source, submit issues, and contribute code just as with any other open-source project. The code submissions are vetted and verified by SAS before being accepted just as if it were written in-house. Releases of the software are available from GitHub as well as the SAS support website. However, in order to install it we first need to have a running Python installation.

The easiest way to get Python and all of the dependencies installed is to use the Anaconda distribution from Continuum Analytics. This is a Python distribution intended for data science use. It includes dozens of packages that you likely will want to use at some point anyway all packaged together in a single installer. The Anaconda releases are available at the following address:

https://www.continuum.io/downloads

You simply download and install the appropriate package for your platform. Note that you should be using the 64-bit version of Python. In addition, Python is delivered in two major versions: 2.7 and 3.x. There are many people that still use the 2.7 release, but it is in maintenance mode. All current development of Python is done in the 3.x track. If you are new to Python, you should probably start with version 3.x. If you are already familiar with Python, you can use whichever version you are currently using.

Once you have Python installed, you can move on to installing the Python CAS client. Since the source code and API documentation are available from GitHub, we’ll use that as the source for the download. The URL for the Python client, known as the SAS Scripting Wrapper for Analytics Transfer (SWAT), follows:

https://github.com/sassoftware/python-swat
On this page, you can see the README information about the SAS SWAT package that outlines the requirements, the procedure for installing it, and a very short code example. The API documentation is available at this address:

https://sassoftware.github.io/python-swat/

This page has much more complete information about the installation and usage of the SAS SWAT package. It includes API documentation for all of the objects in the SAS SWAT package as well. You definitely want to add this URL to your bookmarks.

Because we want to install the SAS SWAT package, we need to go to the page of releases at the following URL:

https://github.com/sassoftware/python-swat/releases

This page contains the latest releases of the software. In most instances, you will want the latest production release of the package. There are possibly two options for installation packages depending on the platform that you are running Python on. Some platforms support binary and REST interfaces to CAS; others support only REST. If there is a platform-specific installer listed in the release files (for v1.0.0, only Linux 64 had a specific installer), you should use that. It enables you to connect to CAS using either the binary interface or REST interface. If you don’t see a platform-specific file, you should just use the Source Code distribution. The Source Code distribution is pure Python and works on any platform that Python runs on, but it can connect only to the REST interface of CAS. The downside is that the REST interface has more overhead when talking to the server, so it will be slower than the binary interface.

In either case, you can simply right-click the link to the installation file and copy the link. You then can paste the link as an argument to the \texttt{pip install} command that came with your Python distribution. The command below shows an example. The version number here has been removed. You should use whatever the most recent release is. Note that the same package works with both the 2.7 and 3.x versions of Python. The URL below is broken across the line for readability.

\begin{verbatim}
pip install https://github.com/sassoftware/python-swat/releases/download/vX.X.X/python-swat-X.X.X-linux64.tar.gz
\end{verbatim}

After you have that installed, you should be able to import the package from Python. We use the \texttt{ipython} interpreter in our examples. It’s a nice wrapper for the standard Python interpreter that makes interactive use more user-friendly. On UNIX-based platforms, you simply execute the \texttt{ipython} command in the terminal. On Windows, you should have an IPython choice in the Anaconda menu.

With Python up and running, you can now load the SWAT package as follows:

\begin{verbatim}
In [1]: import swat
\end{verbatim}

Now that we have Python and SWAT installed, we can connect to CAS.

CONNECTING TO CAS

We assume that you already have a running CAS server you can connect to. Describing the installation and startup of CAS is beyond the scope of this paper. There are four pieces of information that you need to connect to CAS from SWAT: 1) host name, 2) port number, 3) user name, and 4) password. The host name is the name of the server that CAS is running on. This can also be an IP address. The port number is the port that SWAT connects to. As mentioned in the previous section, you might be able to connect to only the REST port of CAS if a platform-specific SWAT installer was not available for your platform. Finally, a user name and password are required to authenticate to the server.
The easiest way to create a connection to CAS is to specify all of these explicitly to the `CAS` class constructor in the SWAT package:

In [2]: conn = swat.CAS('cas.mycompany.com', 5570, 'username', 'password')

After you have a connection to CAS, you can try running a simple action like `serverstatus` to verify that the connection is working:

In [3]: conn.serverstatus()
Out[3]: [About]

{"CAS": 'Cloud Analytic Services',
 'Copyright': 'Copyright © 2014-2016 SAS Institute Inc. All Rights Reserved.',
 'System': {'Hostname': 'cas.mycompany.com',
 'Model Number': 'x86_64',
 'OS Family': 'LIN X64',
 'OS Name': 'Linux',
 'OS Release': '2.6.32-504.12.2.el6.x86_64',
 'OS Version': '#1 SMP Sun Feb 1 12:14:02 EST 2015'},
 'Version': '3.02',
 'VersionLong': 'V.03.02M0D12082016',
 'license': {'expires': '02Feb2017:00:00:00',
 'gracePeriod': 62,
 'site': 'SAS Institute Inc.',
 'siteNum': 1,
 'warningPeriod': 31}}

[server]

Server Status

 nodes actions
 0 1 10

[nodestatus]

Node Status

 name role uptime running stalled
 0 cas.mycompany.com controller 387.823 0 0

+ Elapsed: 0.000662s, mem: 0.0934mb

If you feel uneasy about putting your user name and password in your program, SWAT supports Authinfo files for storing that information so it can be looked up in a more secure manner. We won't go into the details of that here. The documentation in the GitHub project outlines the details of setting that up.

Now that we have a connection to a CAS server, let's try working with some CAS actions.

WORKING WITH CAS ACTIONS

We have seen the output of the `serverstatus` action, but you might be wondering what other actions are available. There are a few ways of displaying them. The first is using the tab completion feature of IPython:
In [4]: conn.<tab>
Display all 374 possibilities? (y or n)
conn.about conn.listnodes
conn.accesscontrol.addacaction conn.listresults
conn.accesscontrol.addactionset conn.listsasopts
conn.accesscontrol.addaccaslib conn.listservopts
conn.accesscontrol.addaccolumn conn.listsessions
conn.accesscontrol.addactable conn.listsesssops
conn.accesscontrol.assumerole conn.loadactionset
conn.accesscontrol.checkinallobjects conn.loaddatasource
conn.accesscontrol.checkoutobject conn.loadindex
conn.accesscontrol.commitactrans conn.loadlibrefs
conn.accesscontrol.completebackup conn.loadsasstate
conn.accesscontrol.createbackup conn.loadtable
conn.accesscontrol.deletebwlist conn.log

... truncated ...

This displays all CAS action sets, actions, and other attributes on the connection, but it does give you a
general idea of what’s available. You can also ask CAS directly what actions are available by using the
help action.

In [5]: conn.help()
NOTE: Available Action Sets and Actions:

NOTE: builtins
NOTE: addNode - Adds a machine to the server
NOTE: removeNode - Remove one or more machines from the server
NOTE: help - Shows the parameters for an action or lists all
 available actions
NOTE: listNodes - Shows the host names used by the server
NOTE: loadActionSet - Loads an action set for use in this session
NOTE: installActionSet - Loads an action set in new sessions
 automatically
NOTE: log - Shows and modifies logging levels
NOTE: queryActionSet - Shows whether an action set is loaded
NOTE: queryName - Checks whether a name is an action or action set
name
NOTE: reflect - Shows detailed parameter information for an action or
 all actions in an action set
NOTE: serverStatus - Shows the status of the server
NOTE: about - Shows the status of the server
NOTE: shutdown - Shuts down the server
NOTE: userInfo - Shows the user information for your connection
NOTE: actionSetInfo - Shows the build information from loaded action
 sets
NOTE: history - Shows the actions that were run in this session
NOTE: casCommon - Provides parameters that are common to many actions
NOTE: ping - Sends a single request to the server to confirm that the
 connection is working
NOTE: echo - Prints the supplied parameters to the client log
NOTE: modifyQueue - Modifies the action response queue settings
NOTE: getLicenseInfo - Shows the license information for a SAS
 product
NOTE: refreshLicense - Refresh SAS license information from a file
NOTE: httpAddress - Shows the HTTP address for the server monitor
The `help` action prints a lot of information like tab-completion, but in this case you also get a short description of each action. To get help for a particular action, the easiest way is to use IPython’s `?` operator. This displays the Python docstring on the object.

```python
In [6]: conn.addnode?
Type:           builtins.Addnode
String form:    ?.builtins.Addnode()
File:           actions.py
Signature:      conn.addnode(role=None, node=None, **kwargs)
Docstring:
Adds a machine to the server

Parameters
----------
role : string, optional
    specifies the role for the machine. Controllers are added as backup
    controllers. Only two controllers are supported.
Default: captain
Values: captain, controller, general, worker

node : list, optional
    specifies the host names of the machines to add to the server.
Default: []
Note: Value range is 1 <= n < inf

Returns
-------
Addnode object
```

All of this information is downloaded from the CAS server and formatted when the actions are loaded on the server. This gives the benefit that the documentation displayed on the client can never be out of date with the actions on the server.

The keyword arguments to a Python method (such as `addnode`, `serverstatus`, or `help`) are used as the parameters to the corresponding CAS action. Let’s try a new action called `getsessopt`. This action retrieves the value of a session option. It takes a single argument called `name`. We can get the value of the `locale` option as follows:

```python
In [7]: conn.getsessopt(name='locale')
Out[7]:
[locale]
    'en_US'

+ Elapsed: 0.000253s, mem: 0.0634mb
```

Parameters can be in the form of many data types such as strings, integers, floating point numbers, lists, and dictionaries. The documentation for each action specifies which data type is required for each parameter. We will get into more advanced parameters in later sections, but first let’s look at the return values of CAS actions.
HANDLING CAS ACTION RESULTS

So far we have simply allowed IPython to display the output of our actions. The result of a CAS action call is always a CASResults object. The CASResults object is a subclass of Python’s collections.OrderedDict (which is a dictionary with keys that stay in the order in which they were inserted). Let’s look at the output of the serverstatus action again. However, this time we will capture the output into a variable first.

```
In [8]: status = conn.serverstatus()
In [9]: status
Out[9]:
[About]

{'CAS': 'Cloud Analytic Services',
 'Copyright': 'Copyright © 2014-2016 SAS Institute Inc. All Rights Reserved.',
 'System': {'Hostname': 'cas.mycompany.com',
             'Model Number': 'x86_64',
             'OS Family': 'LIN X64',
             'OS Name': 'Linux',
             'OS Release': '2.6.32-504.12.2.el6.x86_64',
             'OS Version': '#1 SMP Sun Feb 1 12:14:02 EST 2015'},
 'Version': '3.02',
 'VersionLong': 'V.03.02M0D12082016',
 'license': {'expires': '02Feb2017:00:00:00',
             'gracePeriod': 62,
             'site': 'SAS Institute Inc.',
             'siteNum': 1,
             'warningPeriod': 31}}

[server]
Server Status
    nodes actions
0      1       10

[nodestatus]
Node Status

    name        role   uptime  running  stalled
0  cas.mycompany.com  controller  387.823        0        0

+ Elapsed: 0.000662s, mem: 0.0934mb
```

In the output above, the keys of the result are displayed in brackets. The values of the result are displayed after the key name that they belong to. We can look at the keys programmatically using the keys method of the CASResults object:

```
In [10]: list(status.keys())
```

1 We use the list function around the call to the keys method to cover rendering differences between Python 2 and Python 3.
We can access keys individually using Python’s dictionary syntax as well.

```python
In [11]: status['server']
Out[11]:
[server]
```

Server Status

<table>
<thead>
<tr>
<th>nodes</th>
<th>actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

The values of the `CASResults` object vary from action to action. They can be a scalar-valued items such as a string or floating point value, or they can be more complex objects such as dictionaries or Pandas DataFrames. We can print the types of the values of the results above using Python’s `type` function.

```python
In [12]: for key, value in status.items():
    ...:     print(key, type(value))
Out[12]:
About <class 'dict'>
server <class 'swat.dataframe.SASDataFrame'>
nodestatus <class 'swat.dataframe.SASDataFrame'>
```

In this case, the ‘About’ key contains a dictionary, and the ‘server’ and ‘nodestatus’ keys contain DataFrames. A `SASDataFrame` is equivalent to a Pandas `DataFrame`. It simply contains extra metadata about the table and columns such as labels, formats, and so on.

Since the value in ‘nodestatus’ is a `DataFrame`, we can perform typical `DataFrame` operations on it just as we would with any other `DataFrame`. In the code below, we show the results of the `columns` attribute and the `info` method.

```python
In [13]: status['nodestatus'].columns
Out[13]: Index(['name', 'role', 'uptime', 'running', 'stalled'],
               dtype='object')
```

```python
In [14]: status['nodestatus'].info()
Out[14]:
<class 'swat.dataframe.SASDataFrame'>
RangeIndex: 1 entries, 0 to 0
Data columns (total 5 columns):
name               1 non-null object
role               1 non-null object
uptime             1 non-null float64
running           1 non-null int32
stalled           1 non-null int32
dtypes: float64(1), int32(2), object(2)
memory usage: 112.0+ bytes
```

In addition to the actual values returned, CAS also returns metrics about the action execution. Let’s look at those next.

CAS ACTION METRICS

At the end of each CAS action execution, you might have noticed a line at the end that looks like the following:
This gives you a brief summary of various timings and memory consumption statistics. There are several other pieces of information available about performance and the disposition of the result as well. The most commonly accessed attributes on the `CASResults` object are `severity`, `status`, and `messages`. The `severity` attribute contains a return code that is either 0 (for no reported problems), 1 (warnings were produced), or 2 (errors were produced). The `status` attribute contains a human-readable message summarizing the reason for any errors; if no errors were produced, the string is empty. The `messages` attribute contains any messages that were generated by the action. These are typically printed to the terminal as well, but it is sometimes handy to have them in a variable that you can use in post-processing.

In addition to basic information about the result of the action, there is also a `performance` attribute on the `CASResults` object. It contains various pieces of information about timings, memory usage, and grid usage.

```
In [15]: status.performance
Out[15]: CASPerformance(cpu_system_time=0.001, cpu_user_time=0.018997, 
data_movement_bytes=0, data_movement_time=0.0, elapsed_time=0.019644, 
memory=330688, memory_os=8441856, memory_quota=12111872, system_cores=32, 
system_nodes=1, system_total_memory=202931654656)
```

Each of the parameters shown in `Out[15]`, is available as an attribute on the `performance` object.

```
In [16]: status.performance.cpu_system_time
Out[16]: 0.001
```

These attributes should give you enough diagnostic information to handle errors, or simply report relevant performance information about your analyses. With all of this information under our belts, we can move on to loading some data and doing some real work.

LOADING DATA

Before we can do any sort of statistical analyses, we need to get some data loaded into CAS first. There are many ways to load data, so we'll just cover the simplest methods here. For larger data sets, you will likely want to have the data located on the same machine that CAS is running on so that you don't have to transfer the data each time it is loaded into a CAS table. For smaller data sets, it might not matter as much. We will start with smaller data sets located on the client side first.

LOADING DATA SETS FROM THE CLIENT SIDE

Loading data from the client side into CAS is fairly easy if it's in a common format such as CSV. You can use the `read_csv` method on your `CAS` connection object to read a CSV file (or URL) and load it into a CAS table.

```
In [17]: tbl = conn.read_csv('https://raw.githubusercontent.com/....:
....: 'sassoftware/sas-viya-programming/'
....: 'master/data/cars.csv')

In [18]: tbl
Out[18]: CASTable('_T_5FEPFN5Y_DPXS4G22_6PPE7JDUCF',
caslib='CASUSER(kesmit)')
```

Loading a table in this manner creates a table on the server with a generated table name in the active caslib. We won't go into detail about caslibs in this paper. They are essentially resources in the server that configure data sources, authentication, and authorization settings for the data source and loaded
They also act as namespaces for in-memory tables, which is what we are using them for here. We use the default caslib for all of our examples in this paper.

It is possible to set a specific name for the output table using the `casout=` parameter so that you don’t have to look at obscure generated table names.

```r
In [19]: tbl = conn.read_csv('https://raw.githubusercontent.com/
...: sassoftware/sas-viya-programming/
...: master/data/cars.csv', casout='cars')
```

```r
In [20]: tbl
Out[20]: CASTable('cars', caslib='CASUSER(kesmit)')
```

The result of the `read_csv` method is a `CASTable` object. The `CASTable` object is a very rich interface to tables in the CAS server. CAS actions can be executed through the `CASTable` object, and it supports much of the Pandas `DataFrame` API so that it looks and feels like a `DataFrame`, but the processing is done within CAS.

Now that we have a `CASTable` object that references a table in our CAS server, let’s get some information about it. The `tableinfo` and `columninfo` actions give you information about the table as a whole and the columns in the table, respectively.

```r
In [21]: tbl.tableinfo()
Out[21]:
[TableInfo]

       Name.Rows.Columns.Encoding.CreateTimeFormatted \ 
 0  CARS.428.15.utf-8.16Dec2016:15:43:47

       ModTimeFormatted.JavaCharSet.CreateTime.ModTime \ 
 0  16Dec2016:15:43:47.UTF8.1.797522e+09.1.797522e+09

  Global.Repeated.View.SourceName.SourceCaslib.Compressed \ 
 0  0  0  0

  Creator.Modifier
 0  kesmit

+ Elapsed: 0.000625s, mem: 0.1mb
```

```r
In [22]: tbl.columninfo()
Out[22]:
[ColumnInfo]

       Column.ID.Type.RawLength FormattedLength.NFL.NFD \ 
 0  Make.1.varchar.13.13.0.0
 1  Model.2.varchar.39.39.0.0
 2  Type.3.varchar.6.6.0.0
 3  Origin.4.varchar.6.6.0.0
 4  DriveTrain.5.varchar.5.5.0.0
 5  MSRP.6.double.8.12.0.0
 6  Invoice.7.double.8.12.0.0
 7  EngineSize.8.double.8.12.0.0
 8  Cylinders.9.double.8.12.0.0
 9  Horsepower.10.double.8.12.0.0
10  MPG_City.11.double.8.12.0.0
```
We can fetch a sample of the data using the `fetch` action.

```
In [23]: tbl.fetch(to=3)
Out[23]:
[Fetch]
Selected Rows from Table CARS

<table>
<thead>
<tr>
<th>Make</th>
<th>Model</th>
<th>Type</th>
<th>Origin</th>
<th>DriveTrain</th>
<th>MSRP</th>
<th>Invoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Acura</td>
<td>MDX</td>
<td>SUV</td>
<td>Asia</td>
<td>36945.0</td>
<td>33337.0</td>
</tr>
<tr>
<td>1</td>
<td>Acura</td>
<td>RSX</td>
<td>Type S 2dr</td>
<td>Sedan</td>
<td>23820.0</td>
<td>21761.0</td>
</tr>
<tr>
<td>2</td>
<td>Acura</td>
<td>TSX</td>
<td>4dr</td>
<td>Sedan</td>
<td>26990.0</td>
<td>24647.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EngineSize</th>
<th>Cylinders</th>
<th>Horsepower</th>
<th>MPG_City</th>
<th>MPG_Highway</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.5</td>
<td>6.0</td>
<td>265.0</td>
<td>17.0</td>
<td>23.0</td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
<td>4.0</td>
<td>200.0</td>
<td>24.0</td>
<td>31.0</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>4.0</td>
<td>200.0</td>
<td>22.0</td>
<td>29.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wheelbase</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>106.0</td>
</tr>
<tr>
<td>1</td>
<td>101.0</td>
</tr>
<tr>
<td>2</td>
<td>105.0</td>
</tr>
</tbody>
</table>
```

Now that we have verified that the table exists in the server and contains the expected data, let's look at the next method of loading data.

LOADING DATA SETS FROM THE SERVER SIDE

As we mentioned in the previous section, if you have large data sets, you probably want to load the data files on to the CAS server and load them from there so that you don’t have to transfer the data from the client each time it is loaded. To load data from a file, the file must be in a location that is accessible from a caslib. To keep things simple, we are going to assume that you have the data file in your home directory which is accessible through the Casuser caslib.

To load data files from the server side, you use the `loadtable` action.

```
In [24]: out = conn.loadtable(path='cars.csv', casout='cars2')
In [25]: out
Out[25]:
[caslib]
  'CASUSER(kesmit)'
[tableName]
  'CARS2'
```
In this case, we are calling a CAS action rather than a method on the connection object so the result is a `CASResults` object. However, we can get the `CASTable` object from the `casTable` key in the result.

```
In [26]: tbl2 = out['casTable']
In [27]: tbl2
Out[27]: CASTable('CARS2', caslib='CASUSER(kesmit)')
```

Loading tables from the server and getting the `CASTable` from the result is such a common thing to do that a small wrapper method was added to the connection object in order to simplify the process. The method is called `load_path`. It takes the same parameters as the `loadtable` action, but just returns the `CASTable` object.

```
In [28]: tbl3 = conn.load_path(path='cars.csv', casout='cars3')
In [29]: tbl3
Out[29]: CASTable('CARS3', caslib='CASUSER(kesmit)')
```

Of course, once the table is loaded, it works just like the `CASTable` that was loaded from the client side.

```
In [30]: tbl3.tableinfo()
Out[30]:
[TableInfo]
   Name  Rows  Columns Encoding CreateTimeFormatted
0  CARS3   428       15    utf-8  16Dec2016:16:06:30
   ModTimeFormatted JavaCharSet CreateTime ModTime
0  16Dec2016:16:06:30 UTF8  1.797524e+09  1.797524e+09
   Global Repeated View SourceName SourceCaslib
0       0         0     0  data/cars.csv  CASUSER(kesmit)
   Compressed Creator Modifier
0           0  kesmit
```

```
In [31]: tbl3.columninfo()
Out[31]:
[ColumnInfo]
   Column  ID     Type  RawLength  FormattedLength  NFL  NFD
0       Make   1  varchar         13               13    0    0
1      Model   2  varchar         39               39    0    0
2       Type   3  varchar          6                6    0    0
3      Origin   4  varchar          6                6    0    0
4  DriveTrain   5  varchar          5                5    0    0
5       MSRP   6   double          8               12    0    0
```
The examples of loading data in this section and the previous section demonstrate only the simplest methods of loading data. There are various data file formats that can be read, many options to modify the data types and column metadata, as well as ways of loading data from non-file-based sources such as databases. These topics are much too large to go into in this paper, so we’ll refer you to the SAS documentation for more information.

Now that we have some data to work with, we can move on to some more interesting work of performing analytics on it.

COMPUTING SIMPLE STATISTICS

Before getting into more advanced modeling, we can obtain quite a bit of information about our data using CAS actions for simple statistics. These actions are in an action set called `simple`. The `simple` action set should already be loaded. You can verify this by running the `actionsetinfo` action (in addition to running the action, we are also accessing the ‘actionset’ column of the `DataFrame` in the ‘setinfo’ key of the result in the code below).

```python
In [32]: conn.actionsetinfo().setinfo.actionset
Out[32]:
0    accessControl
1    accessControl
2    builtins
3    configuration
4    dataPreprocess
5    dataStep
6    percentile
7    search
8    session
9    sessionProp
10   simple
11   table
Name: actionset, dtype: object
```

As you can see, the `simple` action set is already loaded on our system. If you don’t see `simple` in your list of action sets, you can load it using the `loadactionset` action.

```python
In [33]: conn.loadactionset('simple')
NOTE: Added action set 'simple'.
Out[33]:
[actionset]
'simple'
```

+ Elapsed: 0.0192s, user: 0.018s, sys: 0.001s, mem: 0.282mb
Using IPython’s `?` operator for displaying help, we can display the following on the `simple` attribute of the connection object.

```
In[34]: conn.simple?
...

Analytics
Actions
-------
simple.correlation : Generates a matrix of Pearson product-moment correlation coefficients
simple.crosstab    : Performs one-way or two-way tabulations
simple.distinct    : Computes the distinct number of values of the variables in the variable list
simple.freq        : Generates a frequency distribution for one or more variables
simple.groupby     : Builds BY groups in terms of the variable value combinations given the variables in the variable list
simple.mdsummary   : Calculates multidimensional summaries of numeric variables
simple.numrows     : Shows the number of rows in a Cloud Analytic Services table
simple.paracoord   : Generates a parallel coordinates plot of the variables in the variable list
simple.regression  : Performs a linear regression up to 3rd-order polynomials
simple.summary     : Generates descriptive statistics of numeric variables such as the sample mean, sample variance, sample size, sum of squares, and so on
simple.topk        : Returns the top-K and bottom-K distinct values of each variable included in the variable list based on a user-specified ranking order
```

Now that we have this action set loaded, let’s try the `summary` action on our previously loaded table. We display only a few rows of the result below to save space.

```
In [35]: tbl.summary()
Out[35]:
[Summary]

Descriptive Statistics for CARS

<table>
<thead>
<tr>
<th>Column</th>
<th>Min</th>
<th>Max</th>
<th>N</th>
<th>NMiss</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MSRP</td>
<td>10280.0</td>
<td>192465.0</td>
<td>428.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>Invoice</td>
<td>9875.0</td>
<td>173560.0</td>
<td>428.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>Wheelbase</td>
<td>89.0</td>
<td>144.0</td>
<td>428.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>Length</td>
<td>143.0</td>
<td>238.0</td>
<td>428.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sum</th>
<th>Std</th>
<th>StdErr</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14027638.0</td>
<td>19431.71674</td>
<td>3.775916e+08</td>
</tr>
<tr>
<td>1</td>
<td>12846292.0</td>
<td>17642.117750</td>
<td>3.112443e+08</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
```
You can see that we get statistics such as the minimum value, the maximum value, the number of observations, the number of missing values, and so on. It is also possible to retrieve only the statistics you want by using the `subset` option.

In [36]: tbl.summary(subset=['Sum', 'Std', 'StdErr'])
Out[36]:

<table>
<thead>
<tr>
<th>Column</th>
<th>Sum</th>
<th>Std</th>
<th>StdErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRP</td>
<td>14027638.0</td>
<td>19431.716674</td>
<td>939.267478</td>
</tr>
<tr>
<td>Invoice</td>
<td>12846292.0</td>
<td>17642.117750</td>
<td>852.763949</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>46290.0</td>
<td>8.311813</td>
<td>0.401767</td>
</tr>
<tr>
<td>Length</td>
<td>79763.0</td>
<td>14.357991</td>
<td>0.694020</td>
</tr>
</tbody>
</table>

[10 rows x 4 columns]

Grouping results by data values can also be done. In the example below, we use the `groupby` method on the CASTable object. This works very much like the `groupby` method on Pandas DataFrames. In its simplest form, it takes a string or list of strings as the variable values to group by.

In [37]: tbl.groupby('Origin').summary(subset=['Sum', 'Std', 'StdErr'])
Out[37]:

<table>
<thead>
<tr>
<th>Origin</th>
<th>Sum</th>
<th>Std</th>
<th>StdErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>14027638.0</td>
<td>19431.716674</td>
<td>939.267478</td>
</tr>
<tr>
<td>Europe</td>
<td>12846292.0</td>
<td>17642.117750</td>
<td>852.763949</td>
</tr>
<tr>
<td>USA</td>
<td>79763.0</td>
<td>14.357991</td>
<td>0.694020</td>
</tr>
</tbody>
</table>

[10 rows x 4 columns]
From the output above, you can see that we get multiple tables back when using BY groups. The first table is a summary of all of the BY groups contained in the output. This can be useful if the number of BY groups is very large and you want to know at the beginning what to expect in the rest of the output. The remaining tables contain the summary statistics for each BY group. The keys of the CASResults object are the output table name (in this case, “Summary”) prefixed by “ByGroup#” where # is the index of the BY group. If you prefer to have all of the BY groups in one table, you can concatenate them using the concat_bygroups method of the CASResults object.

In [38]: out = tbl.groupby('Origin').summary(subset=['Sum', 'Std', 'StdErr'])

In [39]: out.concat_bygroups()
Out[39]:
[Summary]

Descriptive Statistics for CARS

<table>
<thead>
<tr>
<th>Column</th>
<th>Sum</th>
<th>Std</th>
<th>StdErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRP</td>
<td>3909129.0</td>
<td>11321.069675</td>
<td>900.655944</td>
</tr>
<tr>
<td>Invoice</td>
<td>3571144.0</td>
<td>9842.984880</td>
<td>783.065832</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>16730.0</td>
<td>7.735249</td>
<td>0.615383</td>
</tr>
<tr>
<td>Length</td>
<td>28885.0</td>
<td>12.564148</td>
<td>0.999550</td>
</tr>
</tbody>
</table>

[10 rows x 4 columns]
Let's look at another action in the simple action set: correlation. It works in the same way as the summary action, it is called like a method on the CASTable object. By default, the correlation action will also return some of the summary statistics in a separate table, since we have already looked at the summary action, we will disable those by setting the simple= parameter to False.

In [40]: tbl.correlation(simple=False)
Out[40]:
[Correlation]

Pearson Correlation Coefficients for CARS

<table>
<thead>
<tr>
<th>Variable</th>
<th>MSRP</th>
<th>Invoice</th>
<th>EngineSize</th>
<th>Cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRP</td>
<td>1.000000</td>
<td>0.999132</td>
<td>0.571753</td>
<td>0.649742</td>
</tr>
<tr>
<td>Invoice</td>
<td>1.000000</td>
<td>0.564498</td>
<td>1.000000</td>
<td>0.908002</td>
</tr>
<tr>
<td>EngineSize</td>
<td>0.571753</td>
<td>0.564498</td>
<td>1.000000</td>
<td>0.908002</td>
</tr>
<tr>
<td>Cylinders</td>
<td>0.649742</td>
<td>0.645226</td>
<td>0.908002</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Horsepower	0.826945	0.823746	0.787435	0.742209
MPG_City	-0.475020	-0.470442	-0.709471	-0.684402
MPG_Highway	-0.439622	-0.434585	-0.717302	-0.761000
Weight	0.448426	0.442332	0.807867	0.742209
Wheelbase	0.152000	0.148328	0.636517	0.546730
Length	0.172037	0.166586	0.637448	0.547783

<table>
<thead>
<tr>
<th>Horsepower</th>
<th>MPG_City</th>
<th>MPG_Highway</th>
<th>Weight</th>
<th>Wheelbase</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.826945</td>
<td>-0.475020</td>
<td>-0.439622</td>
<td>0.448426</td>
<td>0.152000</td>
<td>0.172037</td>
</tr>
<tr>
<td>0.823746</td>
<td>-0.470442</td>
<td>-0.434585</td>
<td>0.442332</td>
<td>0.148328</td>
<td>0.166586</td>
</tr>
<tr>
<td>0.787435</td>
<td>-0.709471</td>
<td>-0.717302</td>
<td>0.807867</td>
<td>0.636517</td>
<td>0.637448</td>
</tr>
<tr>
<td>0.810341</td>
<td>-0.684402</td>
<td>-0.761000</td>
<td>0.546730</td>
<td>0.547783</td>
<td>0.742209</td>
</tr>
<tr>
<td>1.000000</td>
<td>-0.676699</td>
<td>-0.647195</td>
<td>0.387398</td>
<td>0.381554</td>
<td>0.381554</td>
</tr>
<tr>
<td>-0.676699</td>
<td>1.000000</td>
<td>0.941021</td>
<td>-0.507284</td>
<td>-0.501526</td>
<td>-0.501526</td>
</tr>
<tr>
<td>-0.647195</td>
<td>0.941021</td>
<td>1.000000</td>
<td>-0.524661</td>
<td>-0.466092</td>
<td>-0.466092</td>
</tr>
<tr>
<td>0.630796</td>
<td>-0.737966</td>
<td>-0.790989</td>
<td>0.760703</td>
<td>0.690021</td>
<td>0.690021</td>
</tr>
<tr>
<td>0.387398</td>
<td>-0.507284</td>
<td>-0.524661</td>
<td>0.889195</td>
<td>0.889195</td>
<td>0.889195</td>
</tr>
<tr>
<td>0.381554</td>
<td>-0.501526</td>
<td>-0.466092</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

+ Elapsed: 0.00583s, user: 0.005s, sys: 0.003s, mem: 1.74mb

Correlation matrices are usually easier to interpret using heatmaps, so let’s plot the above data using a Python package called Seaborn. We first want to convert the output above to a lower-triangular matrix, then we’ll create the plot. Unfortunately, we don’t have the space in this paper to explain in detail everything we are doing in this example, so further study will have to be an exercise for the reader.

Import require packages
In [41]: import numpy as np

In [42]: import seaborn as sns

In [43]: from matplotlib.pyplot import show

Run the correlation action
In [44]: corr = tbl.correlation(simple=False).Correlation

Set the Variable column as the row labels
In [45]: corr = corr.set_index('Variable')

Create a lower-triangular matrix
In [46]: corrl = corr.where(np.tril(np.ones(corr.shape), -1).astype(np.bool))

Create the heatmap
In [47]: with sns.axes_style('white'):
 : hm = sns.heatmap(corrl)
 : hm.set_yticklabels(corrl.index.str.replace('_', ' '), rotation=0)
 : hm.set_xticklabels(corrl.index.str.replace('_', ' '), rotation=-30)
 : show()

The resulting graph from the example code above is shown here.

![Heatmap displaying the result of the correlation action](image)

Figure 1. Heatmap displaying the result of the correlation action
With the basics of running CAS actions under our belt, we can move on to some modeling examples.

BUILDING MODELS

CAS also provides a variety of statistical and machine learning models for you to model structured and unstructured data. These models are grouped into action sets based on functionality. For instance, the regression action set contains three different regression models: linear regressions, logistic regressions, and generalized linear models.

In [48]: conn.loadactionset('regression')
In [49]: conn.regression?

Actions

regression.genmod : Fits generalized linear regression models
regression.glm : Fits linear regression models using the method of least squares
regression.logistic : Fits logistic regression models

Let's continue to work on the cars data set you have loaded to the CAS server and build a simple linear regression model to predict the MSRP value of cars.

In [50]: tbl.glm(target='MSRP', inputs=['MPG_City'])
Out[50]:

[ModelInfo]

Model Information

<table>
<thead>
<tr>
<th>RowId</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DATA</td>
<td>CARS</td>
</tr>
<tr>
<td>1</td>
<td>RESPONSEVAR</td>
<td>MSRP</td>
</tr>
</tbody>
</table>

[NObs]

Number of Observations

<table>
<thead>
<tr>
<th>RowId</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NREAD</td>
<td>428.0</td>
</tr>
<tr>
<td>1</td>
<td>NUSED</td>
<td>428.0</td>
</tr>
</tbody>
</table>

[Dimensions]

Dimensions

<table>
<thead>
<tr>
<th>RowId</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NEFFECTS</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>NPARMS</td>
<td>2</td>
</tr>
</tbody>
</table>

[ANOVA]

Analysis of Variance

<table>
<thead>
<tr>
<th>RowId</th>
<th>Source</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>\</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MODEL</td>
<td>1.0</td>
<td>3.638090e+10</td>
<td>3.638090e+10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ERROR</td>
<td>426.0</td>
<td>1.248507e+11</td>
<td>2.930768e+08</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TOTAL</td>
<td>427.0</td>
<td>1.612316e+11</td>
<td>NaN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FValue</th>
<th>ProbF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>124.13436</td>
</tr>
<tr>
<td>1</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
</tr>
</tbody>
</table>

[FitStatistics]

Fit Statistics
Parameter Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>StdErr</th>
<th>tValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Intercept</td>
<td>1</td>
<td>68124.606698</td>
<td>3278.919093</td>
<td>20.776544</td>
</tr>
<tr>
<td>MPG_City</td>
<td>MPG_City</td>
<td>1</td>
<td>-1762.135298</td>
<td>158.158758</td>
<td>-11.141560</td>
</tr>
</tbody>
</table>

Probt
0 1.006169e-66
1 1.783404e-25

Timing

Task Timing

<table>
<thead>
<tr>
<th>RowId</th>
<th>Task</th>
<th>Time</th>
<th>RelTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SETUP</td>
<td>0.391366</td>
<td>0.283194</td>
</tr>
<tr>
<td>1</td>
<td>LEVELIZATION</td>
<td>0.315693</td>
<td>0.228437</td>
</tr>
<tr>
<td>2</td>
<td>INITIALIZATION</td>
<td>0.000099</td>
<td>0.000072</td>
</tr>
<tr>
<td>3</td>
<td>SSCP</td>
<td>0.512247</td>
<td>0.370665</td>
</tr>
<tr>
<td>4</td>
<td>FITTING</td>
<td>0.000415</td>
<td>0.000300</td>
</tr>
<tr>
<td>5</td>
<td>CLEANUP</td>
<td>0.002838</td>
<td>0.002054</td>
</tr>
<tr>
<td>6</td>
<td>TOTAL</td>
<td>1.381969</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

+ Elapsed: 1.81s, user: 0.032s, sys: 0.066s, mem: 37.9mb

Compared to the actions in the simple action set, the glm action might requires a more complex and deeper parameter structure. In this case, it might be more convenient to define a new GLM model first and then specify the model parameters, step-by-step. In other words, the linear regression above can be rewritten as:

```python
linear1 = tbl.Glm()
linear1.target = 'MSRP'
linear1.inputs = ['MPG_City']
linear1()```

This approach enables you to reuse the code when you need to change only a few parameters of the model. For example, let us add a categorical predictor and display only the parameter estimation table:

```python
In[51]: linear1.inputs = ['MPG_City','Origin']
...: linear1.nominals = ['Origin']
...: linear1.display.names = ['ParameterEstimates']
...: linear1()
```

Out[51]:

---

19
### Parameter Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Origin</th>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>StdErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>Intercept</td>
<td>1</td>
<td>57217.013184</td>
<td>2997.826305</td>
<td></td>
</tr>
<tr>
<td>MPG City</td>
<td>MPG City</td>
<td>1</td>
<td>-1511.917596</td>
<td>143.404229</td>
<td></td>
</tr>
<tr>
<td>Origin Asia</td>
<td>Origin Asia</td>
<td>1</td>
<td>805.634901</td>
<td>1755.483912</td>
<td></td>
</tr>
<tr>
<td>Origin Europe</td>
<td>Origin Europe</td>
<td>1</td>
<td>19453.581452</td>
<td>1817.953561</td>
<td></td>
</tr>
<tr>
<td>Origin USA</td>
<td>Origin USA</td>
<td>0</td>
<td>0.000000</td>
<td>NaN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tValue</th>
<th>Probt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19.086167 4.565959e-59</td>
</tr>
<tr>
<td>1</td>
<td>-10.543047 3.084694e-23</td>
</tr>
<tr>
<td>2</td>
<td>0.458925   6.465234e-01</td>
</tr>
<tr>
<td>3</td>
<td>10.700813 8.117258e-24</td>
</tr>
<tr>
<td>4</td>
<td>NaN         NaN</td>
</tr>
</tbody>
</table>

+ Elapsed: 2.04s, user: 0.036s, sys: 0.095s, mem: 39.4mb

The decisiontree action set is another popular analytic action set. It provides three distinct tree-based models: decision tree, random forests, and gradient boosting. Unlike the regression action set, the decisiontree action set splits a model into different actions, each represents a typical step of a machine learning process such as training, scoring and score code generation (as SAS DATA step score code).

In [52]: conn.loadactionset('decisiontree')

In [52]: conn.decisiontree?

Actions
-------
decisiontree.dtreecode : Generate DATA step scoring code from a decision tree model
decisiontree.dtreemerge : Merge decision tree nodes
decisiontree.dtreeprune  : Prune a decision tree
decisiontree.dtreescore : Score a table using a decision tree model
decisiontree.dtreesplit : Split decision tree nodes
decisiontree.dtreetrain  : Train a decision tree
decisiontree.forestcode : Generate DATA step scoring code from a forest model
decisiontree.forestscore : Score a table using a forest model
decisiontree.foresttrain : Train a forest
decisiontree.gbtreecode : Generate DATA step scoring code from a gradient boosting tree model
decisiontree.gbtreescore : Score a table using a gradient boosting tree model
decisiontree.gbtreetrain : Train a gradient boosting tree

The models in the decisiontree action set support either continuous, binary or multilevel response variable. Let us fit a random forest model to predict whether a vehicle is from Asia, Europe, or United States.

In [53]: forest1 = tbl.Foresttrain()
   ...: forest1.target = 'Origin'
   ...: forest1.inputs = ['MPG_City','MPG_Highway','Type',

...: forest1.nominals = ['Type','Cylinders']
...: forest1.casout = conn.CASTable('forestModel1', replace=True)
...: forest1()

Out[53]:

[ModelInfo]
Forest for CARS

<table>
<thead>
<tr>
<th>Descr</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Trees</td>
<td>50.000000</td>
</tr>
<tr>
<td>Number of Selected Variables</td>
<td>3.000000</td>
</tr>
<tr>
<td>Random Number Seed</td>
<td>0.000000</td>
</tr>
<tr>
<td>Bootstrap Percentage (%)</td>
<td>63.212056</td>
</tr>
<tr>
<td>Number of Bins</td>
<td>20.000000</td>
</tr>
<tr>
<td>Number of Variables</td>
<td>6.000000</td>
</tr>
<tr>
<td>Confidence Level for Pruning</td>
<td>0.250000</td>
</tr>
<tr>
<td>Max Number of Tree Nodes</td>
<td>29.000000</td>
</tr>
<tr>
<td>Min Number of Tree Nodes</td>
<td>11.000000</td>
</tr>
<tr>
<td>Max Number of Branches</td>
<td>2.000000</td>
</tr>
<tr>
<td>Min Number of Branches</td>
<td>2.000000</td>
</tr>
<tr>
<td>Max Number of Levels</td>
<td>6.000000</td>
</tr>
<tr>
<td>Min Number of Levels</td>
<td>6.000000</td>
</tr>
<tr>
<td>Max Number of Leaves</td>
<td>15.000000</td>
</tr>
<tr>
<td>Min Number of Leaves</td>
<td>6.000000</td>
</tr>
<tr>
<td>Maximum Size of Leaves</td>
<td>229.000000</td>
</tr>
<tr>
<td>Minimum Size of Leaves</td>
<td>5.000000</td>
</tr>
<tr>
<td>Out-of-Bag MCR (%)</td>
<td>NaN</td>
</tr>
</tbody>
</table>

[OutputCasTables]

<table>
<thead>
<tr>
<th>casLib</th>
<th>Name</th>
<th>Rows</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASUSERHDFS(ximeng)</td>
<td>forestModel1</td>
<td>804</td>
<td>38</td>
</tr>
</tbody>
</table>

In 

The `foresttrain` action outputs two result tables: ModelInfo and OutputCasTables. The first table contains parameters that define the forest, parameters that define each individual tree, and tree statistics such as the minimum and maximum number of branches and levels. The second table provides information of the CAS table that stores the actual forest model.

Random forest models are also commonly used in variable selection, which is usually determined by the variable importance of the predictors in training the forest model. In the `foresttrain` action, this importance measure is defined as the total Gini reduction from all of the splits that use this predictor. You can request variable important using the `varimp` option and generate the variable importance using the Matplotlib package.

In [54]: forest1.varimp = True
...: result = forest1()
...: dfVarImp = result['DTreeVarImpInfo']
...:
...: import matplotlib.pyplot as plt
import numpy as np

y_pos = np.arange(len(dfVarImp['Importance']))
plt.barh(y_pos, dfVarImp['Importance'], align='center')
plt.yticks(y_pos, dfVarImp['Variable'])
plt.xlabel('Variable Importance')
plt.show()

Figure 2. Variable Importance plot from the random forest model

To score the training data or the holdout data using the forest model, you can use the forestscore action.

In [55]: scored_data = conn.CASTable('scored_output', replace=True)
In [56]: tbl.forestscore(modeltable=conn.CASTable('forestModell'), casout=scored_data)
In [57]: scored_data.head()
Out[57]:
Selected Rows from Table SCORED_OUTPUT

<table>
<thead>
<tr>
<th>RF_PredName</th>
<th>RF_PredP</th>
<th>RF_PredLevel</th>
<th>MissIt</th>
<th>Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>0.66</td>
<td>0.0</td>
<td>0.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Asia</td>
<td>0.70</td>
<td>0.0</td>
<td>0.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Asia</td>
<td>0.66</td>
<td>0.0</td>
<td>0.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Asia</td>
<td>0.66</td>
<td>0.0</td>
<td>0.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Asia</td>
<td>0.50</td>
<td>0.0</td>
<td>0.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

CLOSING THE CONNECTION

When you are finished with a CAS connection, it’s always a good idea to close it explicitly.
In [58]: conn.close()

**CONCLUSION**

In this paper, we have covered everything from installing the Python client to SAS Viya, loading data into CAS, running CAS actions, to basic analytical modeling. In addition, we demonstrated the integration of CAS results with other Python packages such as the Matplotlib and Seaborn graphics packages. Having access to a third-party language interface to a SAS analytics engine is new territory for SAS, but we hope that we have shown that the integration between the two is quite natural and seamless.

**RECOMMENDED READING**

- *SAS® Viya: The Python Perspective*

**CONTACT INFORMATION**

Your comments and questions are valued and encouraged. Contact the authors at:

Kevin D Smith  
SAS Institute, Inc.  
Kevin.Smith@sas.com

Xiangxiang Meng, PhD  
SAS Institute, Inc.  
Xiangxiang.Meng@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.