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ABSTRACT  
Predictive modeling may just be the most thrilling aspect of data science. Who among us can deny the 
allure of observing a naturally-occurring phenomenon, conjuring a mathematical model to explain it and 
then using that model to make predictions about the future? Though many SAS® users are familiar with 
using a data set to generate a model, they may not utilize the awesome power of SAS to “store” their 
model and “score” other datasets. In this paper we will distinguish between parametric and non-
parametric models and discuss the tools that SAS provides for storing each and using them to score a 
cross-validation set. We will end with a brief survey of common measures often used for evaluating 
models. 

INTRODUCTION 

In the context of this paper, predictive modeling will involve splitting a dataset into two parts: the model 
building set (MB) and an independent cross-validation set (XV). Models are built using the MB set and 
“stored” so that they can later be applied to XV. The term “scoring” will be used to describe the process of 
applying a model to the XV dataset and generating a prediction for each observation. The XV dataset will 
then contain not only a predicted value but also a true value, making it the perfect tool for evaluating the 
efficacy of the model. 

SPLITTING SAMPLES 

If a data scientist is fortunate, he or she has access to a large and robust dataset. Once the data are 
procured, the SURVEYSELECT procedure is the perfect tool for randomly splitting the full dataset into 
smaller, usable subsets. The procedure can be used to sample according to complex weighting schemes 
and stratification methods or to draw a simple random sample. For example, we can select 100 random 
observations as follows:  

proc surveyselect data=sashelp.heart out=MB n=100 outall; 

run; 

The outall option is used to retain all observations from the data source and place them in the output 

dataset, adding a single numeric variable, SELECTED. The variable SELECTED equals 1 for those 

observations in the chosen sample and 0 otherwise.  

We are now in a position to create a cross-validation set by sampling records from the unselected portion: 

proc surveyselect data=MB out=XV (drop=SELECTED) n=100; 

where SELECTED=0; 

run; 

We then drop the excessive records from MB: 

data MB (drop=SELECTED);  

set MB; 

where SELECTED =1; 

run; 
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We now have two randomly-equivalent and disjoint datasets containing 100 observations each. The data 
has many numeric and character variables, all taken from the SASHELP.HEART dataset (Framingham 
Heart Study). Table 1 lists those variables that will be used throughout this paper: 

 

Variable Name Description Variable Type 

BP_Status Blood Pressure Status (‘Optimal’, ‘Normal’, ‘High’) Character 

Cholesterol Cholesterol Numeric 

Height Height (inches) Numeric 

Sex Sex of patient (‘Male’, ‘Female’) Character 

Weight Weight (lbs) Numeric 

Table 1. Variables of SASHELP.HEART used in this paper 

PARAMETRIC MODELS 

Parametric models express a set of quantities as explicit functions of so-called independent variables. 
The model may have a form that is often commonly referenced by a name (eg. “linear regression”). The 
model can be reconstructed by anyone possessing the model form and parameter set. A dependent 
variable can then be predicted using the model and data. 

Building and storing parametric models in SAS involves saving the resulting parameter estimates 
produced by one of many model building procedures.  

Parameters can be stored two basic ways in SAS: 

 

1. A dataset is generated with variables that have key names that can later be identified 
by the SCORE procedure. 

 

2. An item store is created by the model building procedure that can later be referenced 
by the PLM procedure. 

 

These two approaches will be illustrated in combination with various ways obtain predicted values. 

 

THE OUTEST= OPTION 

 

Parameter estimates can be exported to a dataset using the outest option as shown in the following regression:  

 

proc reg data=MB outest=regModel; 

 P_Cholesterol : model Cholesterol = Weight Height; 

run; quit; 

 

In this example, parameter estimates have been written out to the dataset regModel as seen here :             

_MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Weight Height Cholesterol 

P_Cholesterol PARMS Cholesterol 47.4506 458.8313 0.5339 -4.6373 -1 
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By using a colon in the model statement, we have assigned the name P_Cholesterol to the model. 

The name is significant not only in identifying the model parameters stored within regModel but also in 

identifying the variable that will contain predicted values on XV once scoring has occurred. That scoring 
process is carried out by proc score as shown below: 

proc score data=XV score=regModel type=parms predict out=XV; 

 var Weight Height; 

run; 

The scored dataset is written out to a new dataset using the out= option. The dataset now has variable 

P_Cholesterol that contains predictions for all observations as dictated by the P_Cholesterol 

model. In our example above, we have chosen to write the XV dataset over itself. If multiple models are 
attempted with alternate specifications, the user may find it beneficial to create a unique dataset for each 
model applied and leave the original XV unaltered. This approach would then involve managing those 
scored datasets. In these examples however, we will continue to write the results directly to the XV set.   

Note that some parametric modeling procedures support multiple model builds within a single execution: 
 
proc reg data=MB outest= regModel; 

 X : model Cholesterol = Weight; 

 Y : model Cholesterol = Height; 

 Z : model Cholesterol = Weight Height; 

run; quit; 

 

In this case, the dataset regModel will contain parameter estimates for each of the models X, Y and Z. 

All models captured in the dataset can be applied to XV using a single proc score as above. Note 

that the models must be uniquely named so that there is no variable naming conflict for the predicted 
values on XV. 

 

THE OUTMODEL= OPTION 

Similar to the outest= option, the outmodel= option is used to write parameter estimates to a 

dataset. In this example, we use PROC LOGISTIC to model the likelihood that character variable Sex is 

‘Male’: 

 

proc logistic data=MB outmodel=logitModel; 

 model Sex(Event='Male') = Weight Height; 

run; 

 

The model is then applied to XV using a score statement supported by proc logistic:  

 

proc logistic inmodel=logitModel; 

 score data=XV out=XV; 

run; 

 

On the XV dataset, true values of Sex are copied into a new variable F_Sex (From: Sex) and model 
predictions are directed to a new variable I_Sex (Into: Sex).  
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If the model does not need to be stored, the user has the option of combining the two procedures above 

by dropping the outmodel/inmodel options and writing a single procedure. For example, a 

cumulative logit model is built using MB and applied to XV in a single procedure below: 

 

proc logistic data=MB; 

 model BP_Status = Weight*Height/ link=CumLogit; 

 score data=XV out=XV; 

run; 

 

THE STORE STATEMENT 

A growing number of model building procedures in SAS support the store statement. This statement 

differs from outest= and outmodel= in that it creates a SAS library member known as an item 

store. The item store is held in memory and can be accessed by the restore= option in the post-

linear modeling procedure PROC PLM.  
 
Below we see the creation of an item store:  
 
proc orthoreg data=MB; 

 class Sex; 

 model Cholesterol = Sex | Height | Weight; 

 store orthoModel; 

run; 

 

The item store is referenced by a restore= statement as follow: 

 
proc plm restore=orthoModel; 

    score data=XV out=XV pred=P_Cholesterol;   

run; 

 

The predictions are stored in XV under variable P_Cholesterol, as dictated by the pred= option. 

 
 

THE CODE STATEMENT 

There is one additional way to store a parametric model which bears mentioning, though it is less flexible 

than those methods mentioned previously: the code statement. Some model building procedures can 

use this statement to store the resulting model in the form of an algorithm coded in SAS syntax. To apply 
this method, the syntax must be directed to an external file location where the user has write-access. An 
example is shown below:  

 

proc glm data=MB noprint; 

 class Sex; 

    model Cholesterol = Height | Weight;   

    code file='C:\glmModel.sas'; 

quit; 
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The scoring algorithm can then be accessed by an %include statement executed within a data step: 
 

data XV; 

 set XV; 

 %include 'C:\glmScore.sas'; 

run; 

 

An additional variable P_varname is added to XV, where varname is the name of the model’s 

dependent variable.  
 
 

NON-PARAMETRIC MODELS 

Unlike parametric models, so-called “non-parametric” models cannot be conveniently codified using a 
dataset or item store. Nevertheless, there are a set of non-parametric model building procedures that 
allow the user to apply the resulting model to an independent cross-validation set. 

 

THE SCORE STATEMENT 

Within select procedures, the score statement can be used to score XV while constructing a model 

based on MB, all within a single procedure. Below, we see that the model building and cross-validation 
processes both occur within a single procedure.  
 
 

proc tpspline data=MB; 

   model Cholesterol = (Height Weight); 

   score data=XV out=XV; 

run; 

 

 

Again we have overwritten XV with itself. It has a new variable P_Cholesterol that contains a 

prediction for each observation as dictated by the P_Cholesterol model. An additional variable is 

added, P_varname, where varname is the name of the dependent variable used in the model 

statement.  
 

Many parametric modeling procedures also offer this  score option, as noted previously. In this 

instance however, the model and score statements must appear together in a single procedure. 
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SUMMARY 

A list of popular modeling building procedures is listed in Table 2 along with information about whether 

the procedure supports outest= or outmodel= options and/or the store or code statements. 

The final column indicates if the model building procedure supports its own score statement that can 

be used to score a cross-validation set. This is not to be confused with the score statement used by 

proc plm to apply models that are stored using store. 

 

SAS PROCEDURE OUTEST= OUTMODEL= STORE CODE SCORE 

PROC ADAPTIVEREG      √ 

PROC CALIS / TCALIS  √ √    

PROC GAM     √ 

PROC GENMOD   √ √  

PROC GLIMMIX √  √ √  

PROC GLM   √ √  

PROC LIFEREG √  √   

PROC LOESS     √ 

PROC LOGISTIC  √ √ √ √ 

PROC MIXED   √ √  

PROC NLIN √     

PROC ORTHOREG √  √   

PROC PHREG √  √   

PROC PROBIT √  √   

PROC REG √  √   

PROC SURVEYLOGISTIC   √   

PROC SURVEYPHREG   √   

PROC SURVEYREG   √   

PROC TPSPLINE     √ 

 

Table 2. Sample model-building procedures that employ OUTEST=/OUTMODEL=, STORE, CODE and SCORE 
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EVALUATING 

Most model-building procedures in SAS will generate, by default, some kind of statistic suitable for 
evaluating model quality. However, because our goal here is to generate an independent evaluation on 
XV, some additional processing will be needed.  

Since there is no single metric for evaluating predictive models, we have chosen a small collection of 
favorites to describe here. 

 

R-SQUARE 

The R-Square measure describes the proportion of the dependent variable’s variance that has been 
explained by the model. Linear Regression modelling procedures will almost always produce this 
measure by default for the model building data set. The code below will calculate R-Square for 
predictions on XV:   

%let true = Cholesterol; 

%let pred = P_Cholesterol; 

%let dataset = XV; 

 

proc sql;  

 select 1-_SSE_/(_SSE_+_SSR_) as _RSQUARE_  

 from(  

  select  

SUM((A.&pred.-A.&true.)**2) as _SSE_ ,  

   SUM((A.&pred.-B.Ybar)**2) as _SSR_ ,  

   SUM((A.&true.-B.Ybar)**2) as _SST_  

  from  

   &dataset. as A,  

   (select MEAN(&true.) as Ybar from &dataset.) as B  

 ) ;  

quit; 

 

MSE AND RMSE 

Mean Square Error (MSE) and Root Mean Square Error (RMSE) are both popular ways for evaluating 
and comparing model accuracy. Each can be computed directly: 

%let true = Cholesterol; 

%let pred = P_Cholesterol; 

%let dataset = XV; 

 

proc sql;  

 select  

  mean((&pred.-&true.)**2) as _MSE_, 

  sqrt(mean((&pred.-&true.)**2)) as _RMSE_  

 from &dataset.;  

quit; 
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QUADRATIC-WEIGHTED KAPPA 

When a dependent variable is ordinal and categorical, it is good practice to review a cross-tabulation of 
the predicted categorization versus the true categorical values. Cohen’s kappa statistic is a popular way 
of quantifying the results of this cross-tabulation when the number of categories is larger than 2.  

Let us suppose a cumulative logistic regression has been carried out for dependent variable 

BP_STATUS, which takes on the values ‘High’, ‘Normal’ and ‘Optimal’.  

The quadratic-weighted kappa can be generated using PROC FREQ as shown below. 

 

proc freq data=XV order=internal; 

 tables F_BP_Status*I_BP_Status / agree (WT=FC); 

 test kappa wtkap; 

run; 

 

SAS assumes category order matches the alphabetical ordering of internal values. In this example it so 
happens that alphabetical order or internal values matches the appropriate category order and so 

order=internal is specified (which is also the default). If this is not the case, the user should 

position the variables in the data according to their order and order=data can be used.  

The linear-weighted kappa and simple kappa statistics are also available through PROC FREQ. 

 

MISCLASSIFCATION RATE 

In the case of logistic regression, a model classifies each observation based on a probability. The model’s 
ability to classify observations accurately can be measured using the misclassification rate. This value is 
the total number of false-positive and false-negative classifications divided by the total number of 

classifications made. The measure can be output using the fitstat option as seen below: 

proc logistic inmodel=clogitModel; 

 score data=XV out=XV fitstat;  

run; 

The misclassification rate is produced under the heading ERROR RATE.  

.  

AREA UNDER ROC CURVE 

The ROC (Receiver Operating Characteristic) curve is a popular diagnostic tool and the area under the 
ROC curve (AUC) is commonly used to assess binary response models such as logistic models. If the 

AUC statistic is all that the user needs, then the fitstat option can be used (provided that the data 

has binary responses). If the user wants to see the actual ROC curve, it is required that ods graphics 

is turned on and that the model and score statements are used together without an inmodel= 

option.  

ods graphics on; 

proc logistic data=MB rocoptions(id=cutpoint); 

 model Sex(Event='Male') = Weight Height; 

 score data=XV out=XV outroc=rocdata; 

run; 

ods graphics off; 
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Figure 1. Output for ROC Curve on XV data 

 

 

Note that the area under the curve is printed in the graph title. In the proc logistic header, the 

plots option has not been specified. If it were, then the ROC curve would be drawn for the MB data (by 

default). To produce the curve for XV, we use the outroc= option with our score statement. Not only 

does this trigger the creation of our ROC curve for the dataset being scored (XV), but it also produces an 

output dataset rocdata that contains information necessary for drawing the ROC. 

 

CONCLUSION 

With very little code, it is possible for even beginner-level data scientists to start storing their models and 
scoring cross-validation sets. Though the methods may differ slightly between model building procedures, 
each allows the models to be stored for subsequent application. The power to store and evaluate models 
opens up possibilities for collaborative efforts and long-term statistical modeling projects.  
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