
1

Paper 864-2017

Hands-on Graph Template Language: Part B

Kriss Harris, SAS Specialists Limited, Hertfordshire, United Kingdom

ABSTRACT
Do you need to add annotations to your graphs? Do you need to specify your own colors on the graph?
Would you like to add Unicode characters to your graph, or would you like to create templates that can
also be used by non-programmers to produce the required figures? Great, then this topic is for you! In this
hands-on workshop, you are guided through the more advanced features of the GTL procedure. There
are also fun and challenging SAS® graphics exercises to enable you to more easily retain what you have
learned.

INTRODUCTION

Graph Template Language (GTL) can be used to create sophisticated graphs, and there are some graphs
which only GTL can create. Examples of these are trellised graphs with independent axes, and multi-cell
graphs with different cell proportions, and multi-cell graphs with different plot types, i.e. one cell is a bar
chart, and another is a box plot. With GTL you can also produce reproducible templates.

This paper intends to motivate you to use GTL, to show you how you can create plots in GTL which

cannot be produced with the SG Procedures, and to show you how to create reusable templates. SAS
®

9.4 was used to run the code in this paper.

If you’re reading this paper it is assumed that you already know how to create graphs in GTL, and that
you would like to know how to use some of the more advanced features of GTL. If you’re unfamiliar with
GTL then please see this paper first (Harris, Hands-on Graph Template Language: Part A, 2017).

The dataset used in this paper is from the CDISC SDTM / ADaM Pilot Project and this was obtained from
the CDISC website (CDISC, 2013). The analysis dataset ADLBC was used in the below examples, and
this dataset contained the laboratory results of 254 subjects. 86 of whom were treated with Placebo, 84
were treated with Xanomeline Low Dose and 84 subjects were treated with Xanomeline High Dose. In the
examples below, the Creatinine laboratory parameter was typically used. Other times the laboratory
parameters Alanine Aminotransferase, Aspartate Aminotransferase and Creatine Kinase were also used.

VARIABLES USED IN ADLBC

The examples in this paper use the variables trtan and aval. Trtan contains the numeric value of each
treatment, and is used to display the treatments in the desired order. There are 3 numeric values for trtan
and the treatments that these values correspond to can be seen below:

 0 -> Placebo

 54 -> Xanomeline Low Dose

 81-> Xanomeline High Dose

A format was used to apply the treatment labels to the numeric values. Aval contains the laboratory
intensity measurements and depending on the filtering used, the intensities can be either the post-dose
values or the baseline and post-dose values.

ADDING ANNOTATION TO FIGURES

The desire to annotate your figures is very common and there are at least four ways to add annotation.
These are using the:

 AXISTABLE statement.

 DRAWTEXT statement.

 SCATTERPLOT statement with the MARKERCHARACTER = option.

2

 ENTRY statement

This paper shows examples of the first two options: AXISTABLE and DRAWTEXT, because they are
believed to be slightly more useful. If you want to add summary statistics and align the summary statistics
with the values on the x-axis, you can use the AXISTABLE statement. This can be seen in Figure 1.
Firstly, you would need to calculate the summary statistics, using PROC MEANS, PROC UNIVARIATE or
PROC SQL, and then add (merge) these summary statistics to the dataset that you want to plot. In the
example below, the columns denoting the summary statistics are bigN, mean and stddev, and more
details about these variables can be seen below:

 bigN contains the number of subjects in each treatment group.

 mean contains the mean of the post dose Creatinine values for each treatment group.

 stddev contains the standard deviation of the post dose Creatinine values for each treatment
group.

AXISTABLE

The code below shows how to use the AXISTABLE statement. The x=trtan option ensures that the values
specified in the value option, align with the treatment values. This is the benefit of the AXISTABLE
statement because it allows you to easily align the x-axis on the plot with the x-axis on the table. In the
code below you will notice that the x-axis in the BOXPLOT statement is the same as the x-axis in the
AXISTABLE statement, which allows for the (easy) alignment.

The stat=mean option in the AXISTABLE statement specifies that the mean of the value you indicated
should be displayed. For example, in the first AXISTABLE statement, this indicates that the mean of the
bigN value should be displayed for each treatment group. For each treatment the bigN value only
contains 1 distinct record, and so the same (correct) value of bigN for each treatment is displayed. The
same thing happens for mean, and stddev. Other stat options in the AXISTABLE statement are freq,
median, percent, and sum.

proc template;

 define statgraph boxplot_template;

 begingraph;

 layout overlay;

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 innermargin / align=bottom opaque=true;

 axistable x = trtan value = bigN / stat=mean label = "N";

 axistable x = trtan value = mean / stat=mean label = "Mean";

 axistable x = trtan value = stddev / stat=mean label = "SD";

 endinnermargin;

 endlayout;

 endgraph;

 end;

run;

proc sgrender data = adlbc_all template = boxplot_template;

 by param;

 format trtan trtfmt.;

run;

3

Figure 1: Using AXISTABLE to show Summary Statistics

DRAWTEXT

If you want to add text anywhere on your graph you can use the DRAWTEXT statement. This is useful
because it is extremely flexible in terms of placing text anywhere on your graph, e.g. placing text beside
the Boxplots and/or beside the x-axis label. Placement of the text is controlled by the x and y values and
also the options that are selected for the xspace and yspace. Figure 2 shows a Boxplot of Intensity by
Treatment with p-values of the treatment different that were added using the DRAWTEXT statement. For
more information on this type of annotation please see (Matange, Annotate your SGPLOT Graphs, 2014).

proc template;

 define statgraph boxplot_template;

 begingraph;

 layout overlay;

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 drawtext "Pr > |t|: 0.0003" / x = 25 y = 160 xspace = datapercent

 yspace = datavalue width = 30;

 drawtext "Pr > |t|: <0.0001" / x = 75 y = 160 xspace = datapercent

 yspace = datavalue width = 30;

 endlayout;

 endgraph;

 end;

run;

4

Figure 2: Using DRAWTEXT to Annotate

CHANGING COLOR ORDER

There are at least two ways to change the color order in GTL. One way is to use the options in the
begingraph statement with the options datacolors and datacontrastcolors. Another way is to use
Attribute Maps.

DATACOLORS AND DATACONTRASTCOLORS

Using the datacolors option to assign colors to a group variable such as treatment group is fairly simple,
all you do is put a list of the colors in the order to display, and then the color and order are associated
with the order of the data in the grouping variable. The output in Figure 3 shows that the color of the
treatment groups within the interquartile box has now changed. Green denotes Placebo, yellow denotes
Xanomeline Low Dose and red denotes Xanomeline High Dose. You may be wondering why the
treatment colors in Figure 3 are green, yellow and red, whilst within the datacolors option the colors are
ordered (green red yellow). That is, it appears that the last two treatment groups have swapped colors.
This is because by default the grouped values are mapped in the order of the data, and in this example
the Placebo group was first in the data, followed by Xanomeline High Dose and then Xanomeline Low
Dose. Therefore, the order of the groups within the data is very important if you decide to use datacolors
to assign colors to your group variable. If you use datacolors then it is a good idea to also use
datacontrastcolors. This is because in Figure 3 you will notice that the color of the markers and the
whiskers do not always match the color within the interquartile range, whereas the template that produces
Figure 4 uses datacontrastcolors and you will notice that the colors match up in Figure 4.

proc template;

 define statgraph boxplot_template2;

 begingraph / datacolors = (green red yellow);

 layout overlay;

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 endgraph;

 end;

run;

5

proc template;

 define statgraph boxplot_template2;

 begingraph / datacolors = (green red yellow) datacontrastcolors =

 (darkgreen darkred darkyellow);

 layout overlay;

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 endgraph;

 end;

run;

Figure 3: DATACOLORS

Figure 4: DATACOLORS and DATACONTRASTCOLORS

If you like the default SAS colors but just want to rearrange the order than you can use the style attributes
such as GraphData3:color and GraphData2:color to choose your colors. The code below shows an
example of the options that can be used within the begingraph statement and Figure 5 shows the result of
the style attributes using a different order.

begingraph / datacolors = (graphdata3:color graphdata2:color

 graphdata1:color)

 datacontrastcolors = (graphdata3:contrastcolor

 graphdata2:contrastcolor graphdata1:contrastcolor);

6

Figure 5: Using Style Attribute to change the color order

Attribute Maps

If you want to clearly specify the colors of the levels within your group variable, such as the colors of
different treatments, then you should use Attribute Maps. The drawback of using the datacolors and
datacontrastcolors options to set your colors is that you have no guarantee on the colors that are going to
be assigned to the group levels. By default the colors are assigned by the order which the grouping
variable appears in your data, and therefore if one of the grouping variables are missing or the grouping
variable is not sorted as expected, then the colors can be assigned wrongly or inconsistently. Attribute
Maps provides a way to specify the colors, as well as other options such as line patterns, symbols and
text size for each of the levels in your group.

In the example below the DISCRETEATTRMAP statement was used to assign the attributes for the
different treatments. To assign the treatment colors in the boxplots the fillattrs and markerattrs was
used. Fillattrs controls the fill color of the interquartile range within the boxplot and markerattrs controls
the color of the mean and the whiskers. In the code below, Placebo was given the color green for the
fillattrs and dark green for the markerattrs. This is interesting, and this shows that in general the
markerattrs list of colors use colors that are in the contrastcolors list. The colors in contrastcolors are
slightly darker.

The DISCRETEATTRVAR statement was used to link the graphical properties of the
DISCRETEATTRMAP namely “Attributes” with the variable in the dataset named trtan. Therefore when
the FORMATTED value in trtan matches with a value in DISCRETEATTRMAP, then those specified
attributes for the treatment will appear on the graph. The formatted value is important here because, the
variable trtan is a numeric variable which has been formatted to show Placebo, Xanomeline Low Dose,
and Xanomeline High Dose, instead of the numbers 0, 54, and 81 respectively. Using the original values
of 0, 54 and 81 instead of the formatted values will not give the desired attributes in this instance.

Figure 6, shows the results of using the attribute maps to assign the colors.

7

/* Define the attribute map and assign the name "attributes" (Comments taken from

SAS Help)*/

discreteattrmap name="attributes" /discretelegendentrypolicy=attrmap;

 value "Placebo" / fillattrs=(color=green) markerattrs=(color=darkgreen)

 lineattrs=(color=darkgreen); *lineattrs is needed for the whiskers;

 value "Xanomeline Low Dose" / fillattrs=(color=red) markerattrs=(color=darkred)

 lineattrs=(color=darkred);

 value "Xanomeline High Dose" /fillattrs=(color=yellow)

 markerattrs=(color=darkyellow) lineattrs=(color=darkyellow);

enddiscreteattrmap;

/* Create attribute map variable GROUPATTRIBUTES to associate attribute

 map ATTRIBUTES with Treatment Group (Comments taken from SAS Help)*/

discreteattrvar attrvar=groupattributes var=trtan attrmap="attributes";

layout overlay;

 boxplot x = trtan y = aval / group = groupattributes groupdisplay = cluster;

endlayout;

Figure 6: Attribute Maps

So far all the graphs in this paper have only one layout type: LAYOUT OVERLAY. All options that you
have seen so far will also work for multi-cell graphs

8

MULTI-CELL GRAPHS

Independent Axes – LATTICE layout

Plots with independent axes can be created using layouts that you are already familiar with: LATTICE and
OVERLAY. (Hebber & Matange, 2013) show how you can simulate the subsetting of observations in GTL.
You can use these ideas as illustrated in the program below to create cells that have independent axes.
Evidently, it is possible for you to create cells using GTL that have independent axes without simulating
the subsetting of observations. However, using other methods to create cells that have independent axes
involves either using the ODS LAYOUT statement, which will be discussed later, or involves reformatting
your dataset, so that there is an x-variable and a y-variable for every parameter that you want to plot.
Therefore if you have lots of parameters, and you need to reformat your dataset you will end up with a
dataset with a large number of columns.

The program below shows a snippet of the full GTL code which produces the template for Figure 7. The
code snippet shows the code used to produce the independent axes for the laboratory parameters
Alanine Aminotransferase and Aspartate Aminotransferase. Figure 7 shows boxplots of intensity by visit
number for four laboratory parameters, and each laboratory parameter has its own independent axes.
Figure 7 was created using the layouts LAYOUT LATTICE and LAYOUT OVERLAY.

In the program below the EVAL and IFN functions are used to only show the Alanine Aminotransferase
intensity results in the first cell. This was then repeated for the second, third and fourth cell so that each
cell only showed the result of one parameter and each cell had its own independent axes.

Regarding the IFN function, there is another function called the IFC function, and these functions often
get mixed up. A way to remember the differences between the IFN and IFC functions is to remember that
the “N” or “C” part refers to the type of value that the function is returning, and does not take into
consideration the value type of the logical expression. For example, for the y-axis, IFN was used to return
the numeric AVAL values when the PARAM was equal to “Alanine Aminotransferase (U/L)”, otherwise
(numeric) missing values were returned.

The BLOCKPLOT statement was used to mimic the appearance of the classvars in the DATAPANEL
layout. The BLOCKPLOT creates one or more strips of rectangular blocks containing text values. In
Figure 7 the BLOCKPLOT has been used in conjunction with the INNERMARGIN block to plot the
laboratory parameter names at the top of each cell. The variable ALT contains the value “Alanine
Aminotransferase (U/L)”.

layout lattice / columns = 2 rows = 2;

 * First Column, First Row;

 layout overlay / yaxisopts = (type = log display = (line ticks tickvalues));

 innermargin / align = top;

 blockplot x = visitnum block = alt / valuehalign = center display = (outline values);

 endinnermargin;

 boxplot x = visitnum y = eval(ifn(param = "Alanine Aminotransferase (U/L)", aval, .)) /

 group = trtan groupdisplay = cluster;

 endlayout;

 * Second Columnm, First Row;

 layout overlay / yaxisopts = (type = log display = (line ticks tickvalues));

 innermargin / align = top;

 blockplot x = visitnum block = ast / valuehalign = center display = (outline values);

 endinnermargin;

 boxplot x = visitnum y = eval(ifn(param = "Aspartate Aminotransferase (U/L)", aval, .)) /

 group = trtan groupdisplay = cluster;

 endlayout;

9

Figure 7: Boxplot with Independent Axes – LATTICE and OVERLAY layout

A few drawbacks of using the method in the above program to obtain independent axes in each cell are:

 This is a manual method, and therefore if you have 9 cells, you will need to create 9 different cell
groupings of cell header, entry, layout overlay and boxplot statements, and also carefully add each
logical expression.

 The default label of the x-axis and y-axis will need to be changed, otherwise a string that looks very
similar to the expression will be shown as the x-axis and y-axis label on each cell.

(Harris, 2015) shows how you can address some of the drawbacks in the above code to make it more
generalized with the aid of a Macro.

INDEPENDENT AXES – ODS LAYOUT

The ODS LAYOUT statement can be used to produce independent axes in a simpler way than using the
LATTICE layout. This is because there is no need to use the EVAL, IFC, and IFN functions and also
there’s no need for all your data to be in one dataset. Although the drawbacks of using the ODS LAYOUT
statement for independent axes are that it only works well when you produce a .pdf file, and also the .pdf
typically has less resolution than the .png files or other image files that you can create when using the
LATTICE layout. It is better to view the plot when it is in the .pdf file than to copy and paste the image
from the .pdf file into a word document.

You can use a simple reusable template to produce a plot with independent axes, as shown below. The
GTL code below will produce a boxplot of the intensity by the visit number for a given dataset. The
DYNAMIC statement is used to display the name of the laboratory parameter by substituting cellhead for
another variable in the dataset that will be rendered.

10

proc template; Hands on GTL Final KH - Part A (Final)

 define statgraph boxplot_template;

 begingraph;

 dynamic cellhead;

 layout overlay / yaxisopts=(type=log display = (line ticks tickvalues));

 innermargin / align = top;

 blockplot x = visitnum block = cellhead / valuehalign = center

 display = (outline values);

 endinnermargin;

 boxplot x = visitnum y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 endgraph;

 end;

run;

ODS LAYOUT in conjunction with ODS REGION can produce a plot with independent axes. Below only
shows a snippet of the code which contains 2 out of the 4 regions which were used. In the first region,
denoted by ods region row=1 column=1 you can see that the SGRENDER procedure only selects the
data where param = "Alanine Aminotransferase (U/L)". In the second region only the Aspartate
Aminotransferase (U/L) data is used. The selection of data within each region is what makes it possible to
produce a plot with independent axes. The dynamic statement is used to display the laboratory name
within the cell header. In the first region, the ALT variable is specified in the dynamic cellhead statement
and in the second region the AST variable is specified. Similarly to the data used for the LATTICE layout,
the variable ALT contains the value “Alanine Aminotransferase (U/L)”. Using dynamic variables makes
the templates more reusable and flexible. Figure 8 shows the graph with independent axes which was
produced by the ODS LAYOUT statement.

options orientation=landscape nonumber nodate;

ods graphics / reset = all imagename="ods_layout" height= 3in width = 4.5in;

ods pdf file = "&outpath\ods_layout.pdf";

 ods layout Start columns=2 rows=2 row_gutter=0.3in column_gutter=0.3in;

 ods region row=1 column=1;

 proc sgrender data = adlbc_all template = boxplot_template;

 dynamic cellhead = "alt";

 where param = "Alanine Aminotransferase (U/L)";

 format trtan trtfmt.;

 run;

 ods region row=1 column=2;

 proc sgrender data = adlbc_all template = boxplot_template;

 dynamic cellhead = "ast";

 where param = "Aspartate Aminotransferase (U/L)";

 format trtan trtfmt.;

 run;

 ods layout end;

ods pdf close;

11

Figure 8: Independent Axes using ODS LAYOUT

CONDITIONAL BLOCK

Figure 9 below show boxplots of the intensity values by treatment for two laboratory parameters. The
laboratory parameter on the left is Creatine Kinase and the parameter on the right is Creatinine.

proc template;

 define statgraph notconditional;

 begingraph;

 layout overlay;

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 endgraph;

 end;

run;

12

Figure 9: In Need of a Conditional Block

In Figure 9 you can see that there are unusually high Creatine Kinase values, and therefore using the log
transformed scale may be a better approach, as seen in Figure 10.

The code below uses the conditional block to output the Creatine Kinase values on the log scale. The
dynamic variable _byval_ has been defined below and works in conjunction with the variable in the by
statement. The _byval_ dynamic variable is used for two purposes in the code below. The first purpose is
to help evaluate which section of the template should be run, that is if the value is equal to “Creatine Kinase

(U/L)” than the first section of the template with the y-axis on the log scale will be run, otherwise the other
section will be run with the y-axis on the default linear scale. The second purpose of the _byval_
statement is to assign a title to the figures. The statement ENTRYTITLE _byval_, does this. Figure 10
shows the result of using the conditional block.

proc template;

 define statgraph conditional;

 begingraph;

 dynamic _byval_;

 if (_byval_ = "Creatine Kinase (U/L)")

 entrytitle _byval_;

 layout overlay / yaxisopts=(type=log);

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 else

 entrytitle _byval_;

 layout overlay;

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 endif;

 endgraph;

 end;

run;

13

Figure 10: Using the Conditional Block

ADDING UNICODE TO LEGEND

Adding Unicode to your plots is a matter of using the ODS ESCAPECHAR statement and using the
correct Unicode symbols. There is a great blog on Unicode at (Heath, 2011). Adding Unicode in some
places in your graph such as the legend can be fiddly, using up to and including SAS 9.4 maintenance 2.
The code below shows you how you can add Unicode to your legend, and the main thing that needs to be
done to achieve this is to use the expression to subset the data, similarly to what was done to produce
the independent axes in the LATTICE layout. Using the expression to subset your data for stratum 1 and
stratum 2 allows you to then explicitly specify the legendlabel which can contain a Unicode symbol. The
Unicode symbol 2264 denotes the less than or equal to sign, which can be seen in the legend in Figure
11. If you were to use the group= option to produce a separate STEPPLOT and SCATTERPLOT, then it
would not be possible to add the Unicode into the legend in this version of SAS, unless you were to use
the DRAWTEXT statement to create your legend. The data used in this example is based on the Kaplan
Meier results from the SASHELP.BMT dataset.

layout overlay /

yaxisopts = (label = "Survial Probability" linearopts = (viewmin = 0 viewmax =1))

xaxisopts = (label = "Months");

 stepplot y = eval(ifn(stratum = 1, survival2, .)) x=eval(ifn(stratum = 1, t, .)) /

 name = "leg" legendlabel = "^{unicode '2264'x} 65" lineattrs = GRAPHDATA1;

 scatterplot y=eval(ifn(stratum = 1 and _CENSOR_ = 1, survival2, .))

 x=eval(ifn(stratum=1 and _CENSOR_ =1, t, .)) /

 markerattrs = (color = GRAPHDATA1:color symbol = plus);

 stepplot y=eval(ifn(stratum = 2, survival2, .)) x = eval(ifn(stratum = 2, t, .)) /

 name = "leg2" legendlabel = "> 65" lineattrs = GRAPHDATA2;

scatterplot y=eval(ifn(stratum = 2 and _CENSOR_ = 1, survival2, .))

 x= eval(ifn(stratum=2 and _CENSOR_ =1, t, .)) /

 markerattrs = (color = GRAPHDATA2:color symbol = plus);

 discretelegend "leg" "leg2";

endlayout;

14

Figure 11: Kaplan-Meier Curve with Unicode in the Legend

CONCLUSION

GTL can be used to produce very sophisticated graphs. Annotation can be added fairly easily with the
AXISTABLE and DRAWTEXT statements. The colors of your categorizing variables can be changed
using DATACOLORS, DATACONTRASTCOLORS and ATTRIBUTE MAPS, although ATTRIBUTE MAPS
is the best one to use because you will always get the color that you expect.

The LATTICE layout and the ODS LAYOUT can be used to produce plots which have independent axes.
The ODS LAYOUT is simpler to produce a plot with independent axes, but the LATTICE layout can
produce plots with better resolution.

REFERENCES

CDISC. (2013). CDISC. Retrieved June 2015, from SDTM/ADaM Pilot Project:
http://www.cdisc.org/system/files/members/article/application/zip/updated_pilot_submission_package.zip

Harris, K. (2015). Picture this: Hands-on SAS Graphics Session. PharmaSUG 2015 (pp. 6-7). Orlando: PharmaSUG.

Harris, K. (2017). Hands-on Graph Template Language: Part A. SAS Global Forum. Orlando: SAS Global Forum.

Heath, D. (2011, 11 14). The Power of Unicode. Retrieved 03 06, 2017, from Graphically Speaking:
http://blogs.sas.com/content/graphicallyspeaking/2011/11/14/the-power-of-unicode/

Hebber, P., & Matange, S. (2013). Free Expressions and Other GTL Tips. SAS Global Forum 2013 (p. 3). San
Francisco: SAS Global Forum.

ACKNOWLEDGMENTS

I would like to thank Adrienne Bonwick for reviewing this paper. I would also like to thank Sharon Carroll
for the support she gave me whilst preparing the paper.

RECOMMENDED READING

 Matange, S. (2013). Getting Started with the Graph Template Language in SAS: Examples, Tips, and

15

Techniques for Creating Custom Graphs. Cary, NC: SAS Institute Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Kriss Harris
SAS Specialists Limited
italjet125@yahoo.com
http://www.krissharris.co.uk

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

