
1

Paper 794-2017

Hands-On Graph Template Language (GTL): Part A

Kriss Harris, SAS Specialists Limited, Hertfordshire, United Kingdom

ABSTRACT

Would you like to be more confident in producing graphs and figures? Do you understand the differences
between the OVERLAY, GRIDDED, LATTICE, DATAPANEL, and DATALATTICE layouts? Finally, would
you like to learn the fundamental Graph Template Language methods in a relaxed environment that
fosters questions? Great—this topic is for you! In this hands-on workshop, you are guided through the
fundamental aspects of the GTL procedure, and you can try fun and challenging SAS® graphics
exercises to enable you to more easily retain what you have learned.

INTRODUCTION

Creating sophisticated graphs for your deliverables is one reason for you to know how to use Graph
Template Language (GTL). Another reason is because there are some graphs which only GTL can
create. According to (Matange, Getting Started with the Graph Template Language in SAS: Examples,
Tips, and Techniques for Creating Custom Graphs, 2013, p. 5) some reasons to learn GTL are:

 GTL provides in one system the full set of features that you need to create graphs from the simplest
scatter plots to complex diagnostics panels.

 GTL is the language used to create the templates shipped by SAS for the creation of the automatic
graphs from the analytical procedures. To customize one of these graphs, you will need to
understand GTL.

 GTL represents the future for analytical graphics in SAS. New features are being added to GTL with
every SAS release.

This paper intends to motivate you to use GTL. You will be introduced to GTL, and shown the best
layouts to use and why. SAS

®
9.4 was used to run the code in this paper.

The dataset used in this paper is from the CDISC SDTM / ADaM Pilot Project and this was obtained from
the CDISC website (CDISC, 2013).

LAYOUTS

The OVERLAY, LATTICE, DATAPANEL and PROTOTYPE layouts can be used to produce the majority
of your plots, if not all of your plots. Table 1 below, summarizes those layouts, and includes the GRIDDED
and DATALATTICE layout.

2

Table 1: Various Layouts in GTL

Layouts Example Plot

OVERLAY layout – This layout is equivalent to using SGPLOT.
It’s for plotting your single-cell plots. Such as plotting a boxplot
or a scatterplot, etc.

GRIDDED layout – Use this layout to produce multi-cell plots
which have the same proportion in width or height. For example,
in the figure on the right, the rows are the same size.

Summary statistics can also be plotted with the GRIDDED
layout.

The GRIDDED layout needs to be used in conjunction with the
OVERLAY layout.

LATTICE layout – This layout is very flexible and can be used to
produce multi-cell plots which have different heights and widths.
It’s possible to also nest layouts within the LATTICE layout.

The LATTICE layout needs to be used in conjunction with the
OVERLAY layout.

DATAPANEL layout – This layout is equivalent to using
SGPANEL. Use this layout to produce your multi-cell plots,
which are paneled by your variable(s) of choice. In the example
on the right, the plots are paneled by each Laboratory test.

The DATAPANEL layout needs to be used in conjunction with
the PROTOTYPE layout.

DATALATTICE layout – This layout is equivalent to using
SGPANEL with the LAYOUT=LATTICE option. Use this layout to
produce your multi-cell plots, when you have exactly two
classification variables. In the example on the right, the plots are
paneled for each Laboratory test and for each Gender.

The DATALATTICE layout needs to be used in conjunction with
the PROTOTYPE layout.

PROTOTYPE layout – This layout is essentially a restricted
OVERLAY layout with the same general rules for overlaying
plots. This is used with DATAPANEL and DATALATTICE.

3

FROM SG PROCEDURES TO GTL

If you are familiar with SGPLOT then you will probably find it easier to understand the GTL syntax.
Literally it is like learning a new language! Table 2 below shows the relationships in the syntax between
SGPLOT and GTL in the plot statements and Table 3 shows options that you are most likely to use. The
general background color of Table 2 represents the plot type that the plot would be in SGPLOT. In this
context the general background color means that the red and pink color are both referred to as red, and
similar groupings are done with the other colors. The red background represents the basic plots type,
blue represents fit and confidence plots, purple represents the categorization plots, and olive green
represents the distribution plots.

You will notice that the basic plots and fit and confidence plots work quite similar in GTL as they did in
SGPLOT. In most of the plot types all that is needed is to add “PLOT” on the end. You will also notice that
in the GTL syntax there is also an argument called expression. An expression allows you to plot data that
is not in actually in the dataset, i.e. it derives the data on the fly. For example, in your plot statement
instead of specifying that the variable X = column_x (a variable in your dataset), you could use an
expression to specify that X is column_x + 5, which could be done by using the syntax X = eval(column_x
+ 5). (Harris, 2016, p. 16) shows an example of how to use expressions.

In GTL the categorization plots and the distribution plots are slightly more difficult when compared to
the basic plots and fit and confidence plots. You will notice that there are generally more options such
as the BARCHART and BARCHARTPARM, HISTOGRAM and HISTOGRAMPLOT statements. For
categorization plots and distribution plots, the plot statement to use depends on the layout that is
used. Generally if you use the PROTOTYPE layout, which you will have to use if you use the
DATAPANEL or DATALATTICE layout, then the equivalent statement with “PARM” at the end should be
used. This is because the PROTOTYPE layout expects summarized data. More details on the
PROTOTYPE layout are found later on in the paper.

Table 2: Examples of Comparisons between plot statements in SGPLOT and GTL

 Plots SGPLOT syntax GTL Syntax

Scatter plot SCATTER X=variable Y=variable
</option(s)>

SCATTERPLOT X=column | expression

Y=column | expression </option(s)>

Series plot SERIES X=variable Y=variable
</option(s)>

SERIESPLOT X=column | expression

Y=column | expression </option(s)>

Regression Plot REG X=numeric-variable Y=numeric-
variable </option(s)>

REGRESSIONPLOT X=numeric-column |
expression

Y=numeric-column | expression
</<regression-options> <option(s)>>

Loess plot LOESS X=numeric-variable Y=numeric-
variable </option(s)>

LOESSPLOT X=numeric-column | expression

Y=numeric-column | expression
</<regression-options> <option(s)>>

Bar Chart VBAR category-variable </option(s)> BARCHART CATEGORY=column |
expression </option(s)>

BARCHART CATEGORY=column |
expression

RESPONSE=numeric-column | expression
</option(s)>

BARCHARTPARM CATEGORY=column |
expression RESPONSE=numeric-column |
expression </option(s)>

Dot plot DOT category-variable </option(s)> SCATTERPLOT X=column | expression

Y=column | expression </option(s)>

4

 Plots SGPLOT syntax GTL Syntax

Histogram HISTOGRAM response-variable
</option(s)>

HISTOGRAM numeric-column | expression
</option(s)>

HISTOGRAMPARM X=numeric-column |
expression

Y=non-negative-numeric-column | expression
</option(s)>;

Boxplots VBOX analysis-variable </option(s)> BOXPLOT Y=numeric-column | expression
</option(s)>

BOXPLOT X=column | expression

Y=numeric-column | expression </option(s)>

BOXPLOTPARM Y=numeric-column |
expression

STAT=string-column </option(s)>

BOXPLOTPARM X=column | expression

Y=numeric-column | expression

STAT=string-column </option(s)>

Table 3: Examples of Comparisons between option in SGPLOT and GTL

Options SGPLOT syntax GTL Syntax

Change x-axis label XAXIS label = "New Label"; XAXISOPTS=(label = "New Label")

Change y-axis range YAXIS min = 0 max = 0; YAXISOPTS=(linearopts=(viewmin=0 viewmax=100))

Specify tick values YAXIS values=(0 to 100 by 10); YAXISOPTS=(linearopts=(tickvaluesequence=(start=0
end=0 increment=10)))

CREATING A GRAPH USING GTL

As explained in (McConville & Much, 2015), in GTL, graphs are built by using plot and layout statements.
The plot statements determine how data are represented in the graph, and the layout statements
determine where the plots are drawn on the graph. More advanced layouts can be used to divide the plot
area into multiple independent cells. In addition, statements can be nested so multiple plots can be
arranged to create elegant visuals.

As mentioned in (Matange, Getting Started with the Graph Template Language in SAS: Examples, Tips,
and Techniques for Creating Custom Graphs, 2013), creating a graph using GTL is a two-step process,
which uses both the TEMPLATE and SGRENDER procedures.

Firstly, you define the structure of the graph in the form of the STATGRAPH template using GTL. The
typical syntax is shown below.

proc template;

 define statgraph <template-name>;

 begingraph / <options>;

 <GTL statements>;

 endgraph;

 end;

run;

Secondly, you associate the data with the template using the SGRENDER procedure to create the graph.

5

proc sgrender data=<data-set-name> template=<template-name>;

 <other optional statements>;

run;

The code below, combines the steps above to produce a boxplot of intensity by treatment as seen in
Figure 1. You will notice that the code below uses the OVERLAY layout and this is the most commonly
used layout for producing single-cell graphs. You can use this layout to maintain the contents of the
single-cell, and all plots within this layout share the same area which is bounded by the values used in the
x-axis and y-axis. You can use the OVERLAY layout to overlay a number of plot statements on top of one
another.

proc template;

 define statgraph boxplot_template;

 begingraph;

 layout overlay;

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 endgraph;

 end;

run;

proc sgrender data = adlbc_all template = boxplot_template;

 by param;

 format trtan trtfmt.;

run;

Figure 1: Boxplot of Intensity by Treatment Using GTL

6

MULTIPLE-CELL GRAPHS

It is quite common to want to see more than one graph on one page of a document or on an image. For
example you may want a graph that shows a boxplot and a bar chart on the same figure or you may want
to see the distribution of different treatments paneled by a parameter. Examples of this can be seen in
Figure 2 and Figure 3, and subsequent figures. Multiple-cell graphs can be achieved by using different
layouts. These layouts are the GRIDDED, LATTICE, DATAPANEL and DATALATTICE layout. To use
these layouts two other layout types are also needed. One of them you are already familiar with; the
OVERLAY layout. The other layout is the PROTOTYPE layout. The GRIDDED layout is the simplest
multiple-cell layout to use. All you have to do is wrap the GRIDDED layout around the OVERLAY layout.
Figure 2 shows you the output of the default GRIDDED layout, i.e. when no options are used to control
the grid. You will notice that equal space has been allocated to the box plots, and that the two boxplots
are arranged in one column with two rows. Options were used within the OVERLAY layout to ensure that
the y-axis had the same range of values for both plots. For code that was too long to display within the
main text of the paper or was deemed unnecessary to share then, <OPTIONS#> was used. The exact
code for each <OPTIONS#> is included in the appendix.

GRIDDED LAYOUT

proc template;

 define statgraph boxplot_template;

 begingraph;

 layout gridded;

 * First Row;

 layout overlay / yaxisopts=(<OPTIONS1>);

 boxplot x = trtan y = base / group = trtan groupdisplay = cluster;

 endlayout;

 * Second Row;

 layout overlay / yaxisopts=(<OPTIONS1>);

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 endlayout;

 endgraph;

 end;

run;

Figure 2: Default Gridded Layout

7

To arrange the boxplots differently, such as two rows with one column, instead of two columns with one
row as in Figure 3, then all that is needed is to add the columns option within the GRIDDED LAYOUT.

layout gridded / columns = 2;

Figure 3: Gridded Layout with Column Option.

LATTICE LAYOUT

The LATTICE layout is more flexible than the GRIDDED layout when it comes to ordering the cells in
multiple-cell graphs. For example, with the LATTICE layout you can specify the widths of the heights of
the cells, using the columnweights and columnheights options. The cells do not have to be equal as
with the GRIDDED layout. For example, Figure 4 shows the result when the columnweights options is
used to give different weights to the cells. You will notice that the width of the graph on the left is bigger
than the graph on the right.

proc template;

 define statgraph boxplot_template;

 begingraph;

 layout lattice / columns = 2 columnweights=(0.6 0.4);

 * First Column;

 layout overlay / yaxisopts=(<OPTIONS1>);

 boxplot x = trtan y = base / group = trtan groupdisplay = cluster;

 endlayout;

 * Second Column;

 layout overlay / yaxisopts=(<OPTIONS1>);

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 endlayout;

 endgraph;

 end;

run;

8

Figure 4: LATTICE Layout with Columnweights Option

The LATTICE layout can also be used to produce a nested layout as in Figure 5 below. The code below
uses two LATTICE layout statements, the first specifies that the graph should have 2 columns, and then
the second LATTICE layout statement, specifies that the second column should have 2 rows.

begingraph;

 layout lattice / columns = 2 columnweights=(0.5 0.5);

 * First Column;

 layout overlay / yaxisopts=(<OPTIONS1>);

 boxplot x = trtan y = base / group = trtan groupdisplay = cluster;

 endlayout;

 * Second Column;

 layout lattice / rows = 2

 * First Row;

 layout overlay / yaxisopts=(<OPTIONS1>);

 boxplot x = trtan y = aval / group = trtan groupdisplay = cluster;

 endlayout;

 * Second Row;

 layout overlay;

 barchart category = trtan response = aval / group = trtan stat = mean;

 endlayout;

 endlayout;

 endlayout;

endgraph;

9

Figure 5: Nested LATTICE layout

DATAPANEL LAYOUT

The DATAPANEL layout is similar to SGPANEL. The variable in the classvars option determines the
number of cells (panels) that the figure has. When using the DATAPANEL layout, you need to use the
PROTOTYPE layout with it. The PROTOTYPE layout is essentially a restricted OVERLAY layout with the
same general rules for overlaying plots. The main difference between the PROTOTYPE and OVERLAY
layout are that there are no axis options available on the LAYOUT PROTOTYPE statement. Axis
properties are set with the ROWAXISOPTS= and COLUMNAXISOPTS= options of the parent
DATAPANEL or DATALATTICE statement. Another restriction in the PROTOTYPE layout is that only
non-computed 2-D plot statements can be used in the LAYOUT PROTOTYPE block. From the plots
introduced in Table 2 this means that only BARCHARTPARM, BOXPLOTPARM, HISTOGRAMPARM,
SCATTERPLOT and SERIESPLOT can be used in the LAYOUT PROTOTYPE block. This also means
that REGRESSIONPLOT, LOESSPLOT, BARCHART, HISTOGRAM and BOXPLOT cannot be used in
the LAYOUT PROTOTYPE block because they are computed plot statements, i.e. the data that is
displayed on the plots is derived on the fly. An example of the consequences of having to use
BOXPLOTPARM instead of BOXPLOT is shown on the next page.

Essentially the LAYOUT PROTOTYPE defines a plot prototype or “rubber stamp” that repeats
automatically. Figure 6 below shows the result of using the DATAPANEL and PROTOTYPE layout to
produce a scatterplot of intensity by visit number paneled by the laboratory parameter. The jitter=auto
option allows the y-values to be seen across the x-axis which would have otherwise been obscured due
to the similar y-values being overlaid on top of each other.

begingraph;

 layout datapanel classvars = (param);

 layout prototype; * Datapanel uses layout prototype;

 scatterplot x = visitnum y = aval / group = trta groupdisplay = cluster

 jitter = auto;

 endlayout;

 endlayout;

endgraph;

10

Figure 6: Scatterplot with DATAPANEL

In Figure 6, the y-axis ranges from 0 to 2000 by default, which is due to the range of intensity values in
the Creatine Kinase (U/L) laboratory parameter. The maximum range is used by default. Using the
maximum range has its benefits and drawbacks. If you want each axis to be consistent for all of the
laboratory parameters then using the maximum range is fine, but if the laboratory parameter y-axis values
are different, and hence you want each laboratory test to have its own y-axis range then you can use the
rowdatarange=union option to help you to achieve this. Figure 7 shows the rowdatarange=union option in
use.

From now on when discussing the DATAPANEL layout, the y-axis will be referred to as row-axis, and the
x-axis will be referred to as column-axis, as this is more correct. You will notice that the range of the row-
axis makes it difficult to see all the results for each laboratory parameter. Also it appears that showing the
intensity values on the log scale and using a different plot such as the boxplot instead of the scatterplot
might be more appropriate.

In the rowaxisopts you can set the intensity values to be on the log scale, and in the PROTOTYPE
layout you can use boxplotparm to create boxplots. As mentioned above, the PROTOTYPE layout does
not accept computed plot statements. Therefore you cannot use the boxplot statement; however, you
can use the boxplotparm statement. Firstly the dataset needs to be manipulated so that it contains the
minimum, maximum, mean, median, 1st quartile and 3rd quartile of the data that you want to plot, which
in this case is by treatment and visit number. Then secondly, you plot the data that has already been
summarized. In SAS help, there is a generalized macro called %boxcompute which can help you to
summarize the data.

Figure 7 shows the result of using the boxplotparm and shows a boxplot of the intensity by the visit
number for each treatment, paneled by the laboratory parameter. The treatment legend is produced by
first assigning a name to the group=trta values. This is done using the option name = "trtleg", which then
coordinates the colors and the group values between the plot and the legend. The DISCRETELEGEND
statement within the SIDEBAR block is used to finally plot the legend by using the name which was
specified in the boxplotparm statement: “trtleg”.

11

begingraph;

 layout datapanel classvars = (param) / columns = 2

 rowaxisopts = (type = log label = "Lab Intensity Values") rowdatarange=union;

 layout prototype;

 boxplotparm x = visitnum y = col1 stat = _NAME_ / group = trta

 groupdisplay = cluster name = "trtleg";

 endlayout;

 sidebar;

 discretelegend "trtleg";

 endsidebar;

 endlayout;

endgraph;

Figure 7: Boxplot with DATAPANEL

In Figure 7, you will notice that the columns have the same column-axis. In all the laboratory parameters
the visit numbers range from 4 to 12. You will also notice that each row has the same row-axis. That is,
the parameters, Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) range from
approximately 1 to 160 and the parameters Creatine Kinase and Creatinine range from 10 to
approximately 1000. The fact that at least the row or the column has to have the same axes makes the
DATAPANEL layout very good for making comparisons between the rows or the columns or both. For
example, it is very easy to notice that the variability in the Creatinine parameter is much smaller than the
variability in Creatine Kinase, which is likely due to the difference in unit, and so a different axis might be
better for a smaller unit.

If you were interested in looking at data with different units or seeing how the data within each parameter
is distributed, so that you can assess the treatment difference, or investigate if there are any points
outside the limits then you might be interested in using a layout that has the functionality for using
independent axes: the LATTICE layout. More details on how to use independent axes can be seen in
(Harris, 2016, pp. 15-16).

Different axis
between the

two rows

row-axis

Same

row-axis

Same

row-axis

12

DATALATTICE LAYOUT

The DATALATTICE layout is similar to the DATAPANEL layout. The main difference is that you can only
exactly specify exactly two classification variables in the DATALATTICE layout, whilst in the DATAPANEL
layout you can specify one or more classification. In the DATALATTICE layout, the values of one of your
variables are shown in each column, and the values of your other variable are shown in the row. This
layout is useful when you want to compare and contrast the values from two variables.

In Figure 8, you will notice that the laboratory test values are shown in the column headers and the
gender of the subjects is shown in the row headers. The figure below is more for comparing the values of
the two laboratory tests within female subjects, and within male subjects. If you wanted to compare males
and females within each laboratory test, then you will swap the variables around that are used in the
rowvar and columnvar options. The code used to plot Figure 8 is below.

Figure 8: Boxplot with DATALATTICE layout

 begingraph;

 layout datalattice rowvar = sex columnvar = param /

 headerlabeldisplay=value columns = 2 rows = 2

 rowaxisopts=(type = log label = "Lab Intensity Values" rowdatarange=union;

 layout prototype;

 boxplotparm x = visitnum y = col1 stat = _NAME_ / group = trta

 groupdisplay = cluster name = "trtleg";

 endlayout;

 sidebar;

 discretelegend "trtleg";

 endsidebar;

 endlayout;

 endgraph;

CONCLUSION

GTL can be used to produce very sophisticated graphs. For a large amount of the graphs such as a
single-cell basic plots, and fit and confidence plots the learning curve from SGPLOT to GTL is quite

13

minimal. For multi-cell categorization plots and distribution plots, the learning curve is slightly steeper but
something that is worth doing because some graphs can only be produced with GTL, and also with GTL
you can produce almost any graph that you would like.

For single-cell layouts you should use the OVERLAY layout, and for multi-cell layouts where you want to
compare the graphs side by side then you should use the DATAPANEL layout. If you have exactly two
classification variables that you want to compare then use the DATALATTICE layout. For all other multi-
cell plots then you should use the most flexible layout: the LATTICE layout.

REFERENCES

CDISC. (2013). CDISC. Retrieved June 2015, from SDTM/ADaM Pilot Project:
http://www.cdisc.org/system/files/members/article/application/zip/updated_pilot_submission_package.zip

Harris, K. (2015). Picture this: Hands-on SAS Graphics Session. PharmaSUG 2015 (pp. 6-7). Orlando: PharmaSUG.

Matange, S. (2013). Getting Started with the Graph Template Language in SAS: Examples, Tips, and Techniques for
Creating Custom Graphs. Cary, NC: SAS Institute Inc.

McConville, K., & Much, K. (2015). Creating Sophisticated Graphics using Graph Template Language.
PharmaSUG 2015 (p. 1). Orlando: PharmaSUG

ACKNOWLEDGMENTS

I would like to thank Adrienne Bonwick for reviewing this paper.

RECOMMENDED READING

 Matange, S. (2013). Getting Started with the Graph Template Language in SAS: Examples, Tips, and
Techniques for Creating Custom Graphs. Cary, NC: SAS Institute Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Kriss Harris
SAS Specialists Limited
italjet125@yahoo.com
http://www.krissharris.co.uk

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX

<OPTIONS1>

linearopts = (viewmin=60 viewmax=180 tickvaluesequence = (start=60 end=180 increment=20))

